
Natural frequencies of a immersed Rayleigh-beam 

carrying a tip mass with rotary inertia 
 

N.M. Auciello 
School of Engineering - University of Basilicata, 

Via dell’Ateneo Lucano, 10 - 85100 

Potenza, Italy 

e-mail:  nicola.auciello@unibas.it 

 

 
Abstract -  In the present paper, the free vibration analysis of an 

offshore structure, having the form of a column partially 

immersed in a liquid, is presented. A beam without contacting 

with water is called the dry beam, while the one partially 

immersed in water is called the wet beam. The column is 

modelled as a Rayleigh beam. For investigating the dynamic 

behaviour of the structure under consideration, the effect of the 

concentrated mass and its eccentricity are all taken into account. 

The analysis of free vibration frequencies and eigenfunctions of 

the model, presented in this paper, enables one to obtain very 

accurate results. The roots of the transcendental frequency 

equations are obtained by means the improved conventional 

analytical approximate solution. The non-dimensional frequency 

coefficients are given in tabular form. Some numerical examples 

are presented and the influence of different non-dimensional 

parameters on frequency values is discussed. 
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I.  INTRODUCTION 

Some structures, such as towers, piles, tall buildings, 
offshore platforms and onshore structure are subjected to 
various dynamic loads as those due to wind, waves and, not 
secondary in these regions classified as “seismic risk areas”, to 
earthquakes actions. Therefore, the knowledge of the dynamic 
behavior of such structural systems and the ability to predict 
dynamic response from the modal data is of utmost interest in 
mechanics, ocean and coastal engineering. Moreover, since the 
wind and waves loads and the earthquakes actions represent the 
prominent sources of excitation, the calculation of natural 
frequencies and associated mode shapes represents a 
significant preliminary study to evaluate the dynamic response 
of offshore and onshore structures. The literature regarding the 
free vibration analysis of beams/columns with different 
boundary conditions and with/without attachments is relatively 
rich. In the majority of the papers, Euler-Bernoulli uniform and 
tapered beams were considered. For non-uniform beam 
(particularly the linearly tapered) beam with tip mass, the 
reports of Mabie et al. [1], Goel [2], Abrate [3],  Craver et al. 
[4], Auciello et al. [5], Auciello [6-7] and Firouz-Abadi et al. 
[8]. In the case of beams with discontinuity of section, Auciello 
et al. [9-10] solve the dynamic problem the free frequencies 
taking into account the masses applied.  

In offshore engineering, since the dynamic behaviors of the 
structures such as piles and towers, surrounded by water, can 
be predicted from a cantilever beam carrying a tip mass with 

reasonable accuracy, the literature concerned is plenty. For 
example, Uscilowska et al. [11] have presented in closed form 
the values of the natural vibration frequencies for a uniform 
tower offshore. Moreover in Auciello [12] and Wu et al [13]  
the free vibration analysis of variable circular cross section 
column, carrying a tip mass and partially immersed in a fluid, 
has been studied. The closed form solution can be expressed in 
terms of Bessel functions.  

In this paper, the dynamic behavior of an offshore tower, 
partially immersed in liquid (water), has been considered. The 
tower, under consideration, consists of two span beams: for 
convenience, the immersed beam (in contact with water) is 
called the “wet” beam, and the other part (a beam without 
contact with water) is called the “dry” beam, which represents 
the special case of the “wet” beam.  Finally, the analysis the 
influence of the various parameters is examined and  some of 
the results are presented in tabular and graphical form. 

 

 

Figure 1.  Offshore structure under consideration. 
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II. PROBLEM FORMULATION 

Let us consider the tower in Figure 1, whose total span L 
can be divided into a partial span L1= a L, totally submerged, 
and a partial span L2=(1-a), which is considered to be dry. The 
first span is assumed to have a tapered section, with cross 
sectional area A1, moment of inertia I1 and mass density 
(ρw+ρ), where ρw represents the added mass density of fluid. 
The dry part of the beam is defined by a variable cross section 
with mass density ρ. The material is supposed to obey to the 
Hooke law, with Young modulus E, at the top the tower has an 
eccentric concentrated mass M with eccentricity e and rotary 
inertia JM.  For the immerged uniform beam the area A1 and the 
moment of inertia I1 are given by: 

 
( ) ( )1 1( ), ( ) , 0 .A x A H x I x I G x x L= = ≤ ≤  (1) 

In the case of structure in which the bending effect, the 
axial effect are often assumed negligible and ignored. 

At steady state, the system can be considered conservative and 
its dynamic behavior can be obtained through the Hamilton 
principle; 
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where Φ =T-U,  and T, U are respectively the kinetic and 
the potential energy.

 
  

The total potential energy of the system U is given by the 
sum of two terms: one due to bending deformation and the 
other due to stiffness of constraints, kT, kR: 
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where w(x,t) is the transverse displacements at the abscissa 
x and  
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Similarly, T is the kinetic energy of the system, and if the   
Rayleigh beam model is assumed, the effects of the rotary 
inertia must be taken into account: 

 

2 2
,

0 0

2 2 2
,

2 2 2
, 1 2 3

1 1
( )

2 2

1 1
( )

2 2

L L

x x

M x
x L x L

x
x L x L

T m x w dx I w dx

M w M e J w

M e w w T T T

ρ

= =

= =

= + +

   + + + +   

   − = + +   

∫ ∫ɺ ɺ

ɺ ɺ

ɺ ɺ

  (5) 

where .
d w

w
dt

=ɺ Separating the variables, the displacement 

functions can be written as:  
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III. APPROXIMATE SOLUTION 

In the approximate formulation the transversal 
displacements are assumed to be linear combination of n 
independent functions which satisfy the boundary equations. If 
functions φi are chosen respecting the geometrical constraints 
the displacements can be written; [14]: 
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The elastic energy of the system can be written as  
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or in matrix form: 
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The stiffness matrix KU contains the flexural deformation 
energy and stiffness of constraints. Substituting (6) into (5) we 
get for the kinetic energy T the expression: 
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in matrix form:  
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Finally, the kinetic energy can be written as: 
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At last, functional Φ  is writer 
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By the stationary condition of the functional in (3) leads the 
following eigenvalues problem: 

 ( )2 0.K M qU ω− =  (26) 

The free vibration frequencies are given by calculating the 
roots of the characteristic polynomial  

 ( )2det 0.K MU ω− =  (27) 

A. Non-dimensional analysis 

From a numerical point of view it is convenient to 
introduce the non-dimensional parameters: 
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Where M is the applied tip mass and JM is its rotary inertia. 
The whole mass of the beam is written as:  
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As well known, the polynomial functions are chosen 
respecting both essential and normality conditions.  

The geometric conditions are: 
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From (25) the first polynomial ϕ1 can be obtained. After, by 
means of the Gram-Schmidt normalization, all the other 
requested functions can be obtained by Mathematica program. 

IV. FREE VIBRATION RESULTS 

In this section, the results obtained from the immersed 
Rayleigh beam are presented in tabular and graphical form for 
selected geometric and kinematic parameters. Results obtained 
from selected publications are also included for comparison 
with the Euler-Bernoulli and Rayleigh frequencies.  

A. Tapered beam 

Let us assume now that the variation of the cross section of 
the beam is given by the equations (1, 2). In the case of tapered 
beams, the cross section area and moment of inertia are 
represented by the following expressions: 
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The whole mass of the beam is, (29): 
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In order to evaluate the reliability of the theory and the 
computer programs developed for this paper, the results of this 
note have been compared with those already existing in the 
literature; see Table I. The results have been obtained for ε= 0, 
i.e., [11] are reported in italics. As shown, the exact value is 
sensitive higher and lower, respectively, respect to the value 
obtained by present procedures the results are in excellent 
agreement. 

 



TABLE I.  COMPARISON OF FIRST THREE NATURAL FREQUENCIES OF 

UNIFORM EULER-BERNOULLI (E-B) BEAM; ε=0, ν=0.887, d=0, rH=0 with 
KT=KR=0. 

    Uściłowska     [11]  

ε k  µ a  λ1 λ2 λ3 

0 0 1 0 1,28589 4,15381 7,35122 

 0 2 0,5 1,10878 4,05978 7,20006 

 �1/2 2 0,5 0,91261 1,74004 4,89985 

   1 0,91147 1,73393 4,84047 

    Present      

ε k  µ a  λ1 λ2 λ3 

0 0 1 0 1,28589 4,15381 7,35124 

 0 2 0,5 1,10878 4,10377 7,31880 

 �1/2 2 0,5 0,91261 1,74004 4,89985 

   1 0,91148 1,73393 4,84047 
 

In Table II the first three natural frequencies for a uniform 
Rayleigh beam are presented for two relatively extreme 
slenderness ratios. As expected, the Rayleigh results for the 
more slender beam are closer to the (E-B) results than the non- 
slender case. As expected, the natural frequencies of the 
vibration increases as the slenderness ratios →0; (E-B) beam. 
In Figure 2, the variation of the frequencies of the tapered 
Rayleigh beam and (E-B) beam is shows. It is evident from the 
figure that, as the slenderness ratio decreases, the Rayleigh 
frequencies converge the (E-B) frequencies. 

TABLE II.  NON-DIMENSIONAL FREQUENCIES FOR UNIFORM RAYLEIGH 

AS A FUNCTION OF THE LENDERNESS RATIO rH; ε=0, ν=0.887, d=0, k=0, 
KT=KR=0 and µ=2. 

µ=2 
Uniform beam, a=0,5 

rH=1/10 rH=1/30 (E-B) 

λ1 1,10726 1,10861 1,10878 

λ2 3,94126 4,04573 4,05978 

λ3 6,58158 7,11601 7,20007 

λ4 8,79548 10,1409 10,3996 

λ5 10,6614 13,0321 13,5917 

 

Figure 2.  Natural frequencies of vibraion of uniform beam for various 
parameters rH; ν=0.887, d=0, k=0, KT=KR=0 and µ=2 

In Table III, the first natural frequencies of tapered 
cantilever Rayleigh in function of taper ratio ε.  

TABLE III.  NON-DIMENSIONAL FREQUENCIES FOR TAPERED BEAM , 
ν=0.887, d=0, k=0, KT=KR=0 and µ=2. 

a=0,5 µ=2    rH=1/30  

ε λ1 λ2 λ3 

0 1,10878 4,05978 7,20006 

0.25 1,10971 3,91021 6,76878 

0.5 1,10365 3,80816 6,51049 

1 1,08222 3,66157 6,1389 
 

Figure 3 shows the trend in the variation of the first three 
natural frequencies of vibration for various parameters of tip 
mass for rH=1/30. The natural frequencies decreases when the 
tip mass increase. 

   

Figure 3.  Natural frequencies of vibraion of non-uniform beam (rH=1/30) 
for various tip mass parameters µ.  

 

V. CONCLUDING REMARKS 

The approximated procedure is used the solve the free 

vibration problem of a immersed tapered beam based on the 

Rayleigh beam theory. The theory is valid for a wide range of 

applications the offshore structures. The column under 

consideration is elastically constrained at the bottom and 

having a mass, with rotary inertia, at its free end. 
The derivation of the governing equation of motion and the 

algebraic manipulations are achieved by simple symbolic codes 
written in Mathematica program. A numeric algorithm is also 
implemented in program to compute the natural frequencies of 
vibration with very accurate results in comparison with the 
selected references in the literature available.  

Also it is demonstrated in the numerical routine that, the 
present technique is quite simple and converges quickly to the 
exact solution with very minimal computational effort and 
resources. Furthermore, the Rayleigh theory (R-B) is proved to 
give very accurate results in comparison with the Euler-
Bernoulli (E-B) theory. Thus, this study demonstrates the 
reliability and convenience of the application of the Rayleigh 
theory,(R-B). The natural frequencies are in excellent 
agreement with published results. Though for comparison 
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purposes, the natural frequencies are kept accurate to the fourth 
decimal places, the precision of the natural frequencies can be 
increased and made as high as desired. 
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