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Abstract 

We consider the problem of accurate tracing of long magnetic 
field lines in tokamaks for the determination of scrape off 
layers and plasma boundaries. The problem of the accuracy of 
the numerical integration is tackled. Criteria for the specific 
problem are introduced and discussed. Standard ODE 
(Ordinary Differential Equation) integrators are considered 
and compared with a volume preserving algorithm, with 
reference to prescribed accuracy requirements.  

1 Introduction 

Basic equilibria in Tokamaks are mostly 2-D axisymmetric. 
Perturbations of such axisymmetric equilibria are then 
considered in different context, mainly related to plasma 
stability and control. When realistic estimations of the 3-D 
plasma (shape, scrape off layer, connection length) have to be 
evaluated, an accurate tracing of magnetic field lines is 
required. Once the field is known, either in an analytic 
representation or as numerical values on a grid, the problem is 
easily recognized as the tracing of a vector field flow, which 
turns in the solution of a given ODE system. 

Since the length of the field lines in tokamaks can be 
considerably long, it is not trivial to pursue accurate tracing at 
an affordable computational cost. The problem of long-term 
behaviour in ODE systems is faced in several science areas, 
as for example in classical nonlinear dynamics for the 
determination of bifurcation diagrams and chaotic attractors. 
Some research has been carried out to improve properties of 
algorithms, mainly in the area of the so-called geometric 
integrators [1]. Differently from that case, where the main 
interest is in the preservation of some average properties of 
the solutions, in plasma shape determination in Tokamaks the 
accuracy of any single line tracing is crucial for the reliable 
estimation of the quantities under investigation. We here 
discuss the performance and results of some ODE integrators 
for the 3-D determination of connection length [2] and the 
plasma boundary in tokamaks. 

2 Field Lines Evaluation 
The problem of field lines tracing with assigned field can be 
viewed as the solution of an ODE: 

 

dx dτ = B(x) 	
  
(1) 

 

from a specified starting point x0  at τ = 0 , where B(x) 	
   is 
the magnetic field as function of position x  (we consider 
stationary magnetic configurations). Therefore, once the 
required spatial resolution in the mapping of the plasma 
contour is assigned, we need an accurate solution of (1) also 
for very long integration lengths, at an affordable 
computational burden. 

The problem can be successfully faced with standard ODE 
integrators, but strict control and verification of integration 
error is needed in order to ensure reliable results in the plasma 
shape evaluation. Moreover, it is desirable that intrinsic 
invariant properties are preserved in the numerical solution. 
In particular, due to the solenoidal property of the magnetic 
field (  ∇⋅B = 0 ) the correct integration of (1) is “volume 
preserving”, like Lagrangian trajectories in incompressible 
fluids, which coincide with the velocity field lines in 
stationary conditions. Such basic property can be used a 
posteriori as a figure of merit of the integrator.  

It is possible to implement volume preserving integration 
schemes [1,3] that a priory guarantees such invariance. In 
particular, we implemented a vector potential based splitting 
method, belonging to the class of “Generation Functions” 
algorithms [1]. It is based on the idea of splitting the 3-D  B  
field as a sum of 2-D divergence free components, as properly 
obtained from a vector potential B = ∇×A , integrating them 
via any simplectic method, so preserving volume. By 
expressing both the flux density field and the vector potential 
in Cartesian components, it is possible to consider the 
splitting   B = B1 +B2 +B2  with: 
 

B1 = ∇Ax × i x;  B2 = ∇Ay × i y ;  B3 = ∇Az × i z  (2)	
  

Each Bi  component is 2-D and divergence free. For such 
problem the Midpoint Rule (MR) method: 
 

xk+1 = xk + Δ ⋅Bi
xk+1 + xk
2
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is demonstrated to be symplectic (area preserving) [3]. 
On that basis an algorithm for the tracing and 

representation of the field lines in Tokamaks has been 
implemented in Matlab. It allows (i) to specify the field 
configuration both directly from numerical data, as well as 
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from a proper analytical reconstruction of the field; (ii) to 
perform accurate 3D simulation of the field lines allowing the 
choice of different ODE integrators; (iii) to evaluate accuracy 
in terms of magnetic flux and volume preservation; (iv) to 
calculate the connection length (the length of the field line up 
to the point where it intersects the solid wall), Poincarè 
intersections on poloidal sections, visualizing results in 
different view modes. 

3 Examples, results, accuracy and CPU time 

We discuss about the performance of a standard ODE 
algorithm available under the MATLAB platform (ode45 
based on Runge-Kutta method) [4], as well as the 
implemented Volume Preserving MR formulation (3). A 
general example of the field lines tracing is shown in Figure 
1. In order to achieve satisfactory accuracy, the maximum 
step is selected so as to get a maximum step of 2 deg in 
toroidal angle ϕ. 

 

 
Figure 1: 3-D plot of typical field lines in a Tokamak  
 

The error assessment was performed by evaluating the 
conservation of the Jacobian of the mapping (1), as well as 
the poloidal magnetic flux Ψ , which is invariant in 
axisymmetric cases. A comparison of the ODE integrators is 
given In Table I. The volume   Vh(τ )  is approximated by 
considering time evolution of the vertices of a finite 
tetrahedron (h is the edge size) around the starting point. The 
quantity   V (τ ) V (0)  is estimated via second order 
extrapolation as: 
 

  V (τ ) V (0) = 2Vh/2 (τ ) Vh/2 (0)−Vh(τ ) Vh(0)  (4) 
 

As for the MR scheme implemented, comparable results are 
obtained. The volume preservation is paid in terms of higher 
computational time for a given accuracy, as expected [5]. 

Figure 2 shows how to use the field tracing to calculate 
the plasma-wall gap at a given position: the connection length 
is finite only outside the plasma. 

Algorithm ε[m] V/V0-1 ΔΨ  CPU [s] 
ODE 45 1e-7 -5.7936e-4 0.7e-3 153 

MR 2e-4 - 0.91 3590 
 

Table I. Comparison of algorithms on a typical configuration 
for 1 km long field line evaluation (ε is the absolute accuracy) 
and the edge size of the tetrahedron h=1e-6 m. 
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Figure 2: Plasma boundary: (a) 3-D plot; (b) the corresponding 
poloidal plane projection; (c) a detail of cross section close to the 
X−point; (d) connection lengths in a layer of 20 mm, identifying the 
plasma boundary (the integration is truncated after about 20 Km). 
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