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Abstract

The eukaryotic transport protein family SLC25 consists of mitochondrial carriers (MCs)
that are recognized on the sequence level by a threefold repeated and conserved sig-
nature motif. The majority of MCs characterized so far catalyzes strict exchanges of sub-
strates across the mitochondrial inner membrane. The substrates are nucleotides,
metabolic intermediates, and cofactors that are required in cytoplasmic and matrix
metabolism. This review summarizes and discusses the current knowledge of the
antiport mechanism(s) of MCs that has been deduced from determining transport char-
acteristics and by analyzing structural, sequence, and mutagenesis data. The mode of
transport varies among different MCs with respect to how the substrate translocation
depends on the electrical and pH gradients across the mitochondrial inner membrane,
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for example, the ADP/ATP carrier is electrogenic (electrophoretic), the GTP/GDP carrier is
dependent on the pH gradient, the aspartate/glutamate carrier is dependent on both,
and the oxoglutarate/malate carrier is independent of them. The structure of the bovine
ADP/ATP carrier consists of a six-transmembrane a-helix bundle with a pseudo-
threefold symmetry and a closed matrix gate. By using this structure as a template in
homology modeling, residues engaged in substrate binding and the formation of a
cytoplasmic gate in MCs have been proposed. The functional importance of the resi-
dues of the binding site, the matrix, and the cytoplasmic gates is supported by transport
activities of different MCs with single point mutations. Cumulative evidence has been
used to postulate a general transport mechanism for MCs.

ABBREVIATIONS
AAC ADP/ATP carrier

AGC aspartate/glutamate carrier

APC ATP-Mg2þ/Pi carrier
CAC carnitine/acylcarnitine carrier

CIC citrate carrier

DTC dicarboxylate–tricarboxylate carrier

GC glutamate carrier

Ggc GTP/GDP carrier

MC mitochondrial carrier

MCF mitochondrial carrier family

OGC oxoglutarate carrier

Pi inorganic phosphate

PiC phosphate carrier

1. INTRODUCTION

Mitochondrial carriers (MCs) transport nucleotides, amino acids, car-

boxylic acids, inorganic ions, and cofactors across the mitochondrial inner

membrane, thereby connecting metabolic pathways of the cytoplasm with

those of the mitochondrial matrix. For example, MCs provide substrates for

oxidative phosphorylation, such as ADP and phosphate (Pi) transported by

the ADP/ATP carrier (AAC) and phosphate carrier (PiC), respectively.

MCs also transport reducing equivalents of NADH for respiratory complex

I by the malate/aspartate shuttle, which employs the following two mem-

brane transporters: the aspartate/glutamate carrier (AGC) and the

oxoglutarate carrier (OGC). Moreover, transport steps catalyzed by MCs

play roles in gluconeogenesis, thermogenesis, fatty acid and amino acid

metabolism, as well as for mitochondrial replication, transcription, and
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translation. The importance of MCs in intermediary metabolism is illus-

trated by the fact that severe diseases are caused by mutations in the genes

of certain MCs (Lindhurst et al., 2006; Palmieri, 2008, 2013).

MCs are encoded by the nuclear genes of the SLC25 family (Palmieri,

2013), translated in the cytosol, targeted to mitochondria with the help of

chaperones (Zara, Ferramosca, Palmisano, Palmieri, & Rassow, 2003;

Zara, Ferramosca, Robitaille-Foucher, Palmieri, & Young, 2009; Zara,

Palmieri, Mahlke, & Pfanner, 1992), and inserted into the inner membrane

with the N- and C-termini in the intermembrane space (Bisaccia,

Capobianco, Brandolin, & Palmieri, 1994; Capobianco, Bisaccia, Michel,

Sluse, & Palmieri, 1995; Capobianco, Brandolin, & Palmieri, 1991;

Palmieri, Bisaccia et al., 1993) by a specific insertion machinery (Endres,

Neupert, & Brunner, 1999). Although the majority of the mitochondrial

carrier protein family (MCF) members are found in mitochondria, a few

of them have been localized to peroxisomes and chloroplasts (Agrimi,

Russo, Pierri, & Palmieri, 2012; Agrimi, Russo, Scarcia, & Palmieri,

2012; Palmieri et al., 2009; Palmieri, Rottensteiner et al., 2001).

MCs are characterized by a tripartite structure consisting of three tan-

demly repeated domains of about 100 amino acids (Saraste & Walker,

1982). Each domain forms two hydrophobic transmembrane segments with

connecting loops, and contains a signature sequence motif PX[D/E]XX[K/

R]X[K/R] (20–30 residues) [D/E]GXXXX[W/Y/F][K/R]G (PROSITE

PS50920, PFAM PF00153, and IPR00193) (Palmieri, 1994, 2004). This

motif has been used to identify MCs in eukaryotic genomic sequences;

53 MCF members are found in man, 35 in yeast, and 58 in Arabidopsis

thaliana (Palmieri, Palmieri, Runswick, & Walker, 1996; Palmieri &

Pierri, 2010a; Picault, Hodges, Palmieri, & Palmieri, 2004). About half of

these have been functionally characterized, that is, their substrates and pos-

sible physiological roles have been identified by direct transport assays

(Palmieri, 2004, 2013; Palmieri, Agrimi et al., 2006; Palmieri, Runswick,

Fiermonte, Walker, & Palmieri, 2000). Currently, MCs can be divided into

four major classes or groups depending on the type of substrates they trans-

port (nucleotides/dinucleotides, carboxylic acids, amino acids, and other

substrates) and into subfamilies containing all homologues that transport

the same substrate (Palmieri, Pierri, De Grassi, Nunes-Nesi, &

Fernie, 2011).

Only the atomic structures of the carboxyatractyloside-inhibited

bovine AAC1 and yeast AAC2 and AAC3 have been determined by

X-ray crystallography (Pebay-Peyroula et al., 2003: Ruprecht et al., 2014).
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These structures have pseudo-threefold symmetry and consist of six-

transmembrane a-helices (H1-H6) forming a basket-like structure

(Fig. 8.1) closed toward the matrix side by a salt-bridge network formed

by the two conserved charged residues that follow the proline in the

signature motif. The salt-bridge network is accomplished by the close

proximity of the lower part of the odd-numbered a-helices owing to the

kink of the a-helices at the level of the prolines of the motifs. On the matrix

side, the odd- and even-numbered transmembrane a-helices are connected
by small a-helices (h12, h34, h56) that are terminated by the first glycine in

the second part of the signature motif. All MCs are thought to have the

same basic fold as represented by the structure of bovine AAC1.

Many of the MCF members have been shown experimentally to be

antiporters in vitro (Table 8.1) (Krämer & Palmieri, 1989; Palmieri, 2013;

Palmieri, Lasorsa et al., 2000). When reconstituted into liposomes, these

MCs do not transport externally added radioactive substrate unless a counter

substrate is loaded inside the proteoliposome. The substrate gradient with a

high concentration of cold substrate internally drives the exchange. How-

ever, although MCs are considered antiporters based on in vitro transport

Figure 8.1 Structure of the bovine AAC1. The odd- and even-numbered a-helices are
colored inmagenta and green, respectively; loops are in red and thematrix a-helices are
in cyan. The signature motif of the MCF is shown at the bottom of the figure. (A) Viewed
from the lateral membrane side. (B) The last 100-residue repeat. The kinks in the odd-
numbered a-helices are induced by the proline in the signature motif. The even-
numbered a-helices initiate with the first glycine in the signature motif, and the kinks
are induced by the second glycine. (C) View into the central cavity from the inter-
membrane space side.
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Table 8.1 MCF members that are typical antiporters
Protein
name

Human
gene name

S. saccharomyces
gene name

Main cytosolic
substrate

Main matrix
substrate Reference

MCs transporting (deoxy)nucleotides

AAC1 SLC25A4 ymr056c ADP ATP Klingenberg (2008), Dolce, Scarcia,

Iacopetta, and Palmieri (2005)
AAC2 SLC25A5 ybl030c

AAC3 SLC25A6 ybr085w

AAC4 SLC25A31

APC1 SLC25A24 ynl083w ATP-Mg2þ Pi Fiermonte et al. (2004)

APC2 SLC25A23

RIM2 SLC25A33 ybr192w Py(d)NTP Py(d)NMP Floyd et al. (2007), Marobbio, Di Noia,

and Palmieri (2006)
PNC1

GGC1 ydl198c GTP GDP Vozza, Blanco, Palmieri, and Palmieri

(2004)

NDT1 yil006w NADþ (d)AMP/(d)GMP Palmieri et al. (2009), Todisco, Agrimi,

Castegna, and Palmieri (2006)
NDT2 yel006w

CoA

carrier

SLC25A42 CoA (d)NTP, adenosine

30,50-diphosphate
Fiermonte, Paradies, Todisco, Marobbio,

and Palmieri (2009)

MCs transporting carboxylic acid metabolites

CIC SLC25A1 ybr291c Citrate Malate Kaplan, Mayor, Johnston, and Oliveira

(1990)

Continued



Table 8.1 MCF members that are typical antiporters—cont'd
Protein
name

Human
gene name

S. saccharomyces
gene name

Main cytosolic
substrate

Main matrix
substrate Reference

YHM2 ymr241w a-Ketoglutarate Citrate Castegna et al. (2010)

OGC SLC25A11 Malate

(a-ketoglutarate)
a-Ketoglutarate
(malate)

Fiermonte, Walker, and Palmieri (1993)

ODC1 SLC25A21 ypl134c Oxoadipate a-Ketoglutarate Fiermonte et al. (2001), Palmieri, Agrimi

et al. (2001)
ODC2 yor222w

DIC SLC25A10 ylr348c Malate, Pi Malate, Pi Fiermonte, Palmieri et al. (1998),

Palmieri et al. (1996, 2008)

SFC1 ygr095w Succinate Fumarate Palmieri, Lasorsa et al. (1997)

OAC1 ykl120w Oxaloacetate Sulfate/a-
isopropyl-malate

Marobbio, Giannuzzi, Paradies, Pierri,

and Palmieri (2008), Palmieri, Vozza,

Agrimi et al. (1999)

DTC

(in

plant)

Oxaloacetate Citrate,

oxaloacetate,

a-ketoglutarate

Picault, Palmieri, Pisano, Hodges, and

Palmieri (2002)

MCs transporting amino acids or their derivatives

AGC1 SLC25A12 ypr021c Glutamate Aspartate Cavero et al. (2003), Palmieri,

Pardo et al. (2001)
AGC2 SLC25A13

ORC1 SLC25A15 yor103c Ornithine Citrulline Fiermonte et al. (2003), Hoyos et al.

(2003), Palmieri, De Marco et al. (1997)
ORC2 SLC25A2 Hþ (S. cerevisiae) Ornithine

(S. cerevisiae)

SAMC SLC25A26 ynl003c S-Adenosyl-

methionine

S-Adenosyl-

homocysteine

Agrimi et al. (2004), Bouvier et al. (2006),

Marobbio, Agrimi, Lasorsa, and Palmieri

(2003), Palmieri, Arrigoni, et al. (2006)



characteristics, the transport driving forces in vivo are more complex because

other factors come into play, such as the proton motive force in different

respiratory states and the steady-state concentrations of all substrates, inhib-

itors, and/or regulators in the matrix and intermembrane space. Another

factor that makes the in vitro and in vivo transport conditions different is that

the MCs are in general oriented randomly in proteoliposomes, whereas they

are all oriented with the N and C termini in the intermembrane space in

mitochondria.

Some MCs are not obligatory antiporters. There is a group of MCs that

principally catalyzes uniport transport, such as uncoupling protein 1

(Klingenberg & Winkler, 1985) and the yeast thiamine pyrophosphate car-

rier (Marobbio et al., 2002), or can catalyze uniport, such as the carnitine/

acylcarnitine carrier (CAC) (Iacobazzi, Naglieri, Stanley, Wanders, &

Palmieri, 1998; Indiveri et al., 2011; Indiveri, Tonazzi, & Palmieri, 1990,

1991; Indiveri, Tonazzi, Prezioso, & Palmieri, 1991; Palmieri, Lasorsa

et al., 1999). Moreover, other MCs are symporters, including the PiC

(Dolce, Iacobazzi, Palmieri, & Walker, 1994; Fiermonte, Dolce, &

Palmieri, 1998; Kadenbach, Mende, Kolbe, Stipani, & Palmieri, 1982;

Runswick, Powell, Nyren, & Walker, 1987) and the glutamate carriers

GC1 and GC2 (Fiermonte et al., 2002). In this review, we focus on the

MCs that function as antiporters as defined by in vitro experiments, and dis-

cuss their mode of transport and mechanism.

2. TRANSPORT MODE OF THE MCF ANTIPORTERS

In this section, some MCF members that most likely function as

antiporters in vivo are described. They exemplify four different transport

modes with respect to their dependency on the proton motive force. Trans-

port activities across the mitochondrial inner membrane may be electro-

neutral or electrophoretic (electrogenic) (i.e., independent or dependent

on Dc, respectively), as well as dependent or independent on DpH.

2.1. The ADP/ATP carrier
The mitochondrial matrix is the site of oxidative phosphorylation, where

ATP is produced fromADP and Pi by ATP synthase in a mechanism involv-

ing the respiratory chain complexes and the proton motive force. The

matrix-produced ATP is exchanged for cytosolic ADP by the AACs (also

called adenine nucleotide translocators) at a ratio of 1:1 (Klingenberg,
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2008; Pfaff & Klingenberg, 1968; Pfaff, Klingenberg, & Heldt, 1965). Cyto-

solic ATP is consumed by a large number of processes and the products ADP

and Pi are recycled to the matrix by the AACs and the PiC, respectively. The

transport step of the latter carrier costs one proton pumped by the respiratory

chain complexes per ATP synthesized (Watt, Montgomery, Runswick,

Leslie, & Walker, 2010). The AACs have a narrow substrate specificity

because they transport only ADP and ATP. These transporters are inhibited

by the specific inhibitors atractyloside and bongkrekic acid (Klingenberg &

Buchholz, 1973). The four human AACs have different tissue distributions:

AAC1 is found in heart and skeletal muscle, AAC2 is found in proliferating

cells, AAC3 is ubiquitous, and AAC4 is found in lung and testis (Dolce et al.,

2005; Stepien, Torroni, Chung, Hodge, &Wallace, 1992). They have a Km

for ADP in the micromolar range (De Marcos Lousa, Trézéguet, Dianoux,

Brandolin, & Lauquin, 2002), except for AAC4 that has aKm approximately

10-fold higher.

TheDc andDpH dependencies of the ADP/ATP exchange catalyzed by

the mitochondrial AACs have been investigated by using two different

ionophores—valinomycin and nigericin (LaNoue, Mizani, &

Klingenberg, 1978; Villiers, Michejda, Block, Lauquin, & Vignais, 1979).

An artificial Dc can be created across the membrane of isolated mitochon-

dria or proteoliposomes by adding KCl externally and the Kþ-specific ion-
ophore valinomycin (Fig. 8.2A). Valinomycin allows Kþ to pass across the

membrane in the direction of the concentration gradient (i.e., inward),

thereby creating a charge separation because the Cl� counter ions remain

on the outside. Under these conditions, if transport is dependent on Dc,
then the exchange rate of an MC carrying unevenly charged substrates from

opposite sides of the membrane should be affected. If a net positive charge is

transported inward (or a net negative charge outward) by the exchange, then

the transport rate is decreased by the applied Dc. If, on the other hand, a net
positive charge is transported outward (or a net negative charge inward),

then the transport rate is increased.

An artificial DpH gradient can be created across isolated mitochondria or

proteoliposomes by the addition of KCl and nigericin on the outside

(Fig. 8.2B). Nigericin allows both Kþ and Hþ to pass across the membrane

by an exchange mechanism. Because [Kþ] is high on the outside and there

is a concentration gradient across themembrane, nigericinwill in fact exchange

external Kþ for internal Hþ. In this way, no Dc is created; rather, a DpHwith

higher [Hþ] on the outside is created by the transfer of protons outward.
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Figure 8.2 Use of valinomycin and nigericin to generate Dc and DpH in
proteoliposome transport assays. (A) External addition of KCl and valinomycin (Val, blue
filled circles) allows Kþ to pass across the proteoliposome membrane inwardly (blue
arrow) while Cl� remains outside. In this way, the charges are separated across the
membrane resulting in a positive net charge internally and a net negative charge exter-
nally (green arrow). The effects of Dc on the transport rates of some antiporters are
indicated by equal signs (unaffected) and arrows pointing up (increase). (B) A pH
gradient across the proteoliposome membrane can be created by transforming the Kþ

(Continued)
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Under these experimental conditions, the ADP/ATP exchange catalyzed

by the AACs was shown to be dependent on the Dc, but not on the DpH
in vitro (Dolce et al., 2005; LaNoue et al., 1978; Villiers et al., 1979). There-

fore, the transport mechanism is electrophoretic, that is, the net negative

charge that is transferred from the matrix to the cytosol in the ADP3�/ATP4�

exchange moves down the transmembrane charge gradient (Fig. 8.2). These

conclusions from the ionophore experiments were confirmed by measuring

electrical currents that arise upon ADP/ATP exchange by AAC in rec-

onstituted vesicles (Brustovetsky, Becker, Klingenberg, & Bamberg, 1996;

Gropp et al., 1999). These findings suggest that a major driving force for

the exchange of cytosolic ADP3� for matrix ATP4� in vivo comes from

the Dc, which is high in energized animal cells. However, the transport rates

in vivo also depend on the cytosolic and matrix [ATP] and [ADP]. Active cells

are thought to have ATP and ADP concentrations of about 5 and 1 mM,

respectively, and the [ATP]/[ADP] ratio fluctuates only slightly despite

extreme changes in the energy demand. The AACs work constantly toward

equilibrating steady-state concentrations of ADP and ATP between the

matrix and the cytosol. The effective ATP concentration could be influenced

by Mg2þ because of its ability to complex ATP, and the Mg2þ concentration

might be different inside the matrix with respect to the cytosol.

2.2. The ATP-Mg2þ/Pi carrier
Thematrix concentration of adenine nucleotides can change upon increased

demand for ATP-consuming processes, such as gluconeogenesis from lactate

and mitochondrial transcription. Under these conditions, mitochondria

require net transport of adenine nucleotides across the inner membrane

besides the exchange of mitochondrially produced ATP for cytosolic

ADP catalyzed by the AACs. This net transport is catalyzed by the

Figure 8.2—Cont'd gradient (blue arrow) into a Hþ gradient (red arrow) by adding
nigericin (Nig, red filled circle). Kþ is preferred by the ionophore on the outside because
the relative [Kþ]/[Hþ] is high, while more Hþ is preferred on the inside because the rel-
ative [Kþ]/[Hþ] is lower. The effects ofDpH on the transport rates of some antiporters are
indicated by equal signs (unaffected) and arrows pointing up (increase). Note that the
orientation of the proteoliposomemembrane is switched compared to that in panel (A).
(C) The effects of changing the external pH on the apparent Km values of the OGC, CIC,
and DTC are indicated by equal signs (unaffected), or arrows pointing up (increase) or
down (decrease).
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ATP-Mg2þ/Pi carrier (APC), which exchanges ATP-Mg2þ for Pi (Aprille,

1993; Fiermonte et al., 2004), and by the PiC, which recycles back the Pi
counter-exchanged with the adenine nucleotides. In man there are four

APC isoforms: APC1 (SLC25A24), which is exclusively expressed in testis;

APC2 (SLC25A23) and APC3 (SLC25A25), which are almost ubiquitously

expressed, although the former is preferentially expressed in kidney, liver,

skeletal muscle, and heart, and the latter in lung and brain (Fiermonte

et al., 2004); APC4 (SLC25A41), which is expressed in brain, testis, and liver

(Traba, Satrústegui, & del Arco, 2009). All human APCs have been localized

to mitochondria. APC1-3 have soluble N-terminal EF-hand Ca2þ-binding
domains, which are found in this subfamily of the MCF and in AGC1 and

AGC2; they are thought to regulate the transport activity of the C-terminal

domain depending on the cytosolic Ca2þ concentration. Therefore, these

carriers are also called Ca2þ-dependent MCs.

The substrates transported by human APC1 and APC2 were identified

by expressing the proteins in Escherichia coli and reconstituting them from

inclusion bodies into liposomes that were used in transport experiments with

radioactive substrates (Fiermonte et al., 2004). APC1 and APC2 are strict

antiporters that can exchange the substrates ATP, ADP, AMP, and Pi,

and to a much lesser extent dATP, dADP, dAMP, 30-AMP, 30,50-ADP,

and pyrophosphate. The transport of ATP is enhanced in the presence of

Mg2þ. The Km values of APC1 and APC2 are very similar for the substrates

ATP, ADP, AMP, Pi, and ATP-Mg2þ (0.3, 0.4, 1, 1.5, and 0.2 mM, respec-

tively). The values indicate that APC1 and APC2 have the highest affinity

for ATP-Mg2þ.
The transport mode of APC1 and APC2 was demonstrated to be elec-

troneutral for the ATP-Mg2þ/Pi exchange (Fiermonte et al., 2004). The

initial transport rates of ATP-Mg2þ in exchange for ATP-Mg2þ, ATP,
and Pi in APC-reconstituted liposomes were unaffected when a KCl/

valinomycin-generated Kþ gradient was applied across the membrane, indi-

cating that the substrate exchange is not electrophoretic and therefore inde-

pendent of the Dc. With the pH gradient across the APC proteoliposome

membranes generated by KCl and nigericin, the transport rates for the

ATP�Mg2þex/ATPin exchange decreased and for the ATPex/

ATP�Mg2þin and ATPex/Pin exchanges increased; substrate homo-

exchanges and the ATP�Mg2þex/Pin rates did not change. These results

suggest that the inward-directed Hþ gradient, which exists in respiratory

active mitochondria, facilitates the electrically unbalanced heteroexchanges
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of ATPex/Pin and ATPex/ATP�Mg2þin by protons compensating and neu-

tralizing the charge difference. The findings also suggest that the exchange of

the major substrates, ATP4�þMg2þ andHPO4
2�, transported by the APCs

(in the direction dependent on the increased or decreased mitochondrial

requirement for ATP) is electroneutral (Fig. 8.2), and therefore independent

not only of the Dc but also of the DpH.

2.3. The aspartate/glutamate carrier
In glycolysis and other cytoplasmic catabolic pathways, NADþ is used as an

electron acceptor forming NADH that needs to be reoxidized and recycled

as a reductant by complex I in the mitochondrial matrix or by the glycerol-

3-phosphate shuttle in the cytosol and intermembrane space in specific

tissues. Because there is no MC transporting NADH directly to provide

complex I with its substrate, the reducing equivalent of NADH is

transported through the malate/aspartate shuttle that involves aspartate/

glutamate exchange catalyzed by AGC and a-ketoglutarate/malate

exchange catalyzed by OGC. The malate/aspartate shuttle has been rec-

onstituted with purified carriers (Indiveri, Krämer, & Palmieri, 1987).

The two human carriers AGC1 (also called aralar1) and AGC2 (also called

citrin) have four EF-hand Ca2þ-binding motifs in their soluble N-terminal

domains (Palmieri, Pardo, et al., 2001). AGC1 is expressed in heart, skeletal

muscle, and brain, while AGC2 is expressed in many tissues, particularly the

liver (Iijima et al., 2001).

Human AGC1 and AGC2 have been overexpressed in E. coli, purified

from inclusion bodies and reconstituted into liposomes for functional char-

acterization (Palmieri, Pardo, et al., 2001). Both carriers specifically trans-

port aspartate, glutamate, and cysteinesulfinate by an exchange

mechanism, and are regulated by Ca2þ binding to the intermembrane space

EF-hand domains that activate transport. The Km values of both AGC1 and

AGC2 are about 0.05 and 0.2 mM for aspartate and glutamate uptake,

respectively, while the Vmax is about fourfold higher for AGC2 (about

200 mmol/min/g protein) than AGC1.

The transport mode of AGC was demonstrated to be electrogenic

(Palmieri, Pardo, et al., 2001). The transport rates of homoexchanges of glu-

tamate and aspartate in AGC1- and AGC2-reconstituted liposomes with an

inward-directed Kþ gradient in the presence of valinomycin were unaf-

fected, while the transport rate of glutamateex/aspartatein exchange was

decreased and that of aspartateex/glutamatein was increased. These results

300 Magnus Monné and Ferdinando Palmieri



indicate that the heteroexchange is electrophoretic and dependent on the

Dc. Therefore, in vivo AGC1 and AGC2 are likely to catalyze the exchange
of cytosolic glutamateþHþ for matrix aspartate (Fig. 8.2).

2.4. The oxoglutarate carrier
The other membrane component of the malate/aspartate shuttle, apart from

AGC, is OGC, which exchanges a-ketoglutarate for malate (Bisaccia,

Indiveri, & Palmieri, 1985; Iacobazzi, Palmieri, Runswick, & Walker,

1992; Monné, Miniero, Iacobazzi, Bisaccia, & Fiermonte, 2013;

Runswick, Walker, Bisaccia, Iacobazzi, & Palmieri, 1990). The substrate

specificity of OGC was determined upon its overexpression in E. coli and

reconstitution into liposomes followed by transport experiments. OGC also

transports malonate, maleate, succinate, oxaloacetate, and 2-oxoadipate

(Fiermonte et al., 1993). It has a Km of about 55 mM for a-ketoglutarate
and about 0.2 mM for malate (Indiveri, Palmieri, Bisaccia, & Krämer,

1987; Palmieri, Quagliariello, & Klingenberger, 1972). OGC is involved

in the citrate (isocitrate)/oxoglutarate shuttle, the pyruvate/citrate cycling

pathway, nitrogen metabolism, and gluconeogenesis from lactate, as well

as the malate/aspartate shuttle (Palmieri, 2004). Human OGC is expressed

at abundant levels in heart and skeletal muscle, and at moderate levels in

brain, placenta, liver, kidney, and pancreas (Huizing et al., 1998).

All substrates of OGC possess two negative charges at physiological pH,

and the a-ketoglutarate/malate exchange catalyzed by OGC is electro-

neutral and independent of pH (Indiveri, Palmieri et al., 1987; Palmieri,

Quagliariello, & Klingenberger, 1972). It was shown that OGC-catalyzed

a-ketoglutarate homoexchange rates were not pH sensitive. The apparent

Km of OGC for a-ketoglutarate was increased upon raising pH while the

Vmax remained constant, indicating that the substrate binding is affected

rather than the transport rate. Thus, OGC transport is independent of

DpH and Dc (Fig. 8.2C).

2.5. The citrate carrier
Fatty acid biosynthesis, gluconeogenesis, and the citrate (isocitrate)/

oxoglutarate shuttle require the transport of citrate across the mitochondrial

inner membrane that is catalyzed by the citrate carrier (CIC) in exchange for

malate (Palmieri, Stipani, Quagliariello, & Klingenberg, 1972). Rat CIC has

a Km for malate and citrate of 0.13 and 0.76 mM, respectively (Bisaccia, De

Palma, Prezioso, & Palmieri, 1990). The substrate specificity of CIC also
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includes phosphoenolpyruvate, cis-aconitase, and isocitrate, but not trans-

aconitate or a-ketoglutarate (Bisaccia, De Palma, & Palmieri, 1989;

Kaplan, Mayor, & Gremse, 1995; Kaplan et al., 1990). Human CIC is

expressed in liver, kidney, pancreas, and in other tissues to a lesser extent

(Huizing et al., 1998).

The citrate transport catalyzed by CICwas suggested to be dependent on

DpH because CIC purified from rat liver mitochondria and reconstituted in

liposomes displayed an uptake rate for citrate that was considerably higher at

pH 7 than at pH 8 (Bisaccia, De Palma, Dierks, Krämer, & Palmieri, 1993).

This pH dependency could be explained by an effect either on the carrier or

on the substrate. The Km for citrate transport was measured at a pH range

from 7.0 to 7.8, and the Km values for the differently charged citrate species

were calculated based on the pKa values for citrate (Bisaccia et al., 1993). The

analysis showed that the Km for citrate2� remained constant in the pH range

unlike the other species, suggesting that the effect was linked to protonation

of the substrate. The same approach was used for CIC transport of malate

and the results showed a constant Km for malate2�. Based on these results,

it was therefore suggested that CIC catalyzes an electroneutral exchange of

Hþþcitrate3� for malate2�, an exchange that is therefore dependent on

DpH (Fig. 8.2C).

2.6. The plant dicarboxylate–tricarboxylate carrier
Fatty acid synthesis, nitrogen assimilation, and the shuttling of reducing

equivalents in plants are processes thought to involve the dicarboxylate–

tricarboxylate carrier (DTC) that shares a substantial sequence identity with

OGC but displays a broader substrate specificity (Picault et al., 2002). DTC

from A. thaliana andNicotiana tabacum was expressed in E. coli, purified, rec-

onstituted into liposomes, and shown to transport both dicarboxylates (such

as malate, oxaloacetate, oxoglutarate, and maleate) and tricarboxylates (such

as citrate, isocitrate, cis-aconitate, and trans-aconitate). The Km of DTC for

a-ketoglutarate, malate, and citrate is in the micromolar range. The expres-

sion of DTC is found in all plant tissues.

DTC transport of citrate and a-ketoglutarate is pH dependent. The Km

values for the different charged species of citrate and malate were calculated

from kinetic transport experiments at different pH values, demonstrating

that the Km was constant for the species with two negative charges

(Picault et al., 2002). This finding suggests that Hþþcitrate3� and malate2�

are the main substrates for DTC (Fig. 8.2C). Furthermore, the influence of
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the membrane potential on DTC transport in proteoliposomes was investi-

gated by applying a Kþ diffusion potential in the presence of valinomycin

(Fig. 8.2A). The results demonstrated that the DTC-mediated citrate/

oxoglutarate exchange was independent of the Dc. Therefore, DTC was

suggested to catalyze the electroneutral, DpH-dependent 1:1 substrate

exchange of Hþþcitrate3�, a-ketoglutarate2�, or malate2�.

2.7. The GTP/GDP carrier (Ggc1p)
Mitochondrial GTP is required for fundamental mitochondrial processes,

such as protein and RNA synthesis, as well as iron homeostasis. In many

organisms, succinyl-CoA synthetase of the citric acid cycle produces GTP

from GDP in mitochondria. An alternative way to generate mitochondrial

GTP is by nucleoside diphosphate kinase that catalyzes the transfer of the

g-phosphate of ATP to a GDP molecule. However, in Saccharomyces

cerevisiae, succinyl-CoA synthetase uses ADP instead of GDP (Przybyla-

Zawislak, Dennis, Zakharkin, & McCammon, 1998), and nucleoside

diphosphate kinase is localized in the intermembrane space (Amutha &

Pain, 2003). In this species, the mitochondrial GTP/GDP carrier Ggc1p

(also known as Shm1p and Yhm1p, encoded by ydl198c) catalyzes the

exchange of cytosolic GTP for matrix GDP (Vozza et al., 2004).

The biochemical identification and characterization of Ggc1p was per-

formed by expressing the protein in E. coli and reconstituting it from inclu-

sion bodies into liposomes that were used in transport experiments (Vozza

et al., 2004). Ggc1p is a strict antiporter that exchanges the substrates GTP,

GDP, dGTP, dGDP, ITP, and IDP. ITP and IDP are structurally similar to

GTP and GDP, the difference being that the former two compounds lack an

amino group on the guanosine base. However, according to competitive

inhibition experiments, the affinity of Ggc1p for GTP and GDP is about

10-fold higher than for dGTP and dGDP, and 100-fold higher than for

IDP and ITP. This finding is also reflected by the Km values determined

for GTP, GDP, and dGTP that are 1.2, 4.5, and 15.9 mM, respectively.

The transport mode of Ggc1p was demonstrated to be electroneutral

(Vozza et al., 2004). The transport rates of homo- and heteroexchanges

of GDP and GTP in Ggc1p-reconstituted liposomes were unaffected by

valinomycin and an inward-directed Kþ gradient, indicating that the

GDP/GTP heteroexchange is not electrophoretic and therefore indepen-

dent of the Dc. When a pH gradient was generated across Ggc1p

proteoliposome membranes by adding KCl and nigericin, the transport rate
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for the GDPex/GTPin exchange decreased, and that for the GTPex/GDPin
exchange increased; the homoexchange rates were unchanged. These results

suggest that the inward-directed Hþ gradient, created by the respiratory

chain complexes in mitochondria, facilitates the import of GTP4�þHþ

in electroneutral exchange with GDP3�, and the Ggc1p-mediated transport

is dependent on DpH (Fig. 8.2).

Further support for the conclusion that GTP and GDP are the main sub-

strates for Ggc1p in vivo stems from studies of GGC1D yeast cells where

mitochondria have increased levels of GDP and decreased levels of GTP

(Vozza et al., 2004). It has been demonstrated that the lack of Ggc1p inter-

feres with cellular iron homeostasis (Lesuisse, Lyver, Knight, & Dancis,

2004)—a defect that can be complemented by the expression of the human

mitochondrial nucleoside diphosphate kinase in mitochondria of GGC1D
yeast cells (Gordon, Lyver, Lesuisse, Dancis, & Pain, 2006). That Ggc1p also

transports dGDP and dGTP in vivo is supported by the fact that it acts as a

suppressor of a mutation leading to loss of mitochondrial DNA, and thereby

plays a role in maintaining the mitochondrial genome (Kao, Megraw, &

Chae, 1996).

3. TRANSPORT MECHANISM OF MCF ANTIPORTERS

3.1. Structure of MCs
For a long time,MCswere thought to be homodimeric. This hypothesis was

based on quantifications of how many atractyloside molecules bind to each

AAC protein, their apparent size when migrating on gel filtration columns

or in blue native gels, and kinetic experiments (Aquila, Eiermann, Babel, &

Klingenberg, 1978; Bisaccia et al., 1996; Block & Vignais, 1984; Block,

Zaccaı̈, Lauquin, & Vignais, 1982; Brandolin et al., 1980; Hackenberg &

Klingenberg, 1980; Lin, Hackenberg, & Klingenberg, 1980; Palmieri,

Indiveri, Bisaccia, & Krämer, 1993; Palmieri, Vozza, Hönlinger et al.,

1999; Palmisano et al., 1998; Riccio, Aquila, & Klingenberg, 1975;

Schroers, Burkovski, Wohlrab, & Krämer, 1998). However, these results

have been re-interpreted, and a large body of evidence is now pointing

toward MCs being monomers (Crichton, Harding, Ruprecht, Lee, &

Kunji, 2013; Kunji & Crichton, 2010). The X-ray crystallographic structure

of bovine AAC1 showed that a single polypeptide chain could form a pro-

tein fold by itself, and the crystal packing did not reveal any hint of dimer

formation (Pebay-Peyroula et al., 2003). Yeast AAC2 is monomeric in

detergent solution and during purification (Bamber, Harding, Butler, &
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Kunji, 2006; Bamber, Slotboom, & Kunji, 2007). No inhibitory effect of

hypothetical dimer formation could be seen when varying concentrations

of mixed active and inactive mutant forms of purified AAC2 were rec-

onstituted into liposomes and transport assays were performed (Bamber,

Harding, Monné, Slotboom, & Kunji, 2007). Furthermore, the transport

activities of all the mutants used in the complete cysteine-scanningmutagen-

esis of OGC have revealed that no functionally crucial or conserved dimer

interface is found on the bilayer-exposed surface of the OGC structural

homology model (Miniero et al., 2011).

3.2. Matrix and cytoplasmic gates in MCs
The inhibitors atractyloside and bongkrekic acid trap the AACs in two dif-

ferent conformations known as the c- and m-state where the carrier is open

to the cytoplasmic (intermembrane space) and matrix sides, respectively

(Aquila et al., 1978; Brandolin, Dupont, & Vignais, 1985; Buchanan,

Eiermann, Riccio, Aquila, & Klingenberg, 1976). The structure of bovine

AAC1 revealed the conformation of the carrier inhibited by carboxy–

atractyloside where the six-transmembrane a-helix bundle is closed toward

the matrix side by a kink in H1, H3, and H5, and a salt-bridge network

formed by the charged residues of the threefold repeated signature motif

(Fig. 8.3A). These charged residues have been shown to be critical for trans-

port function in AAC (Nelson, Felix, & Swanson, 1998), OGC (Cappello

et al., 2007), and CAC (Giangregorio, Tonazzi, Console, Indiveri, &

Palmieri, 2010). The AAC1 structure has therefore been seen as representing

the carrier with a closed matrix gate as in the c-state.

On the even-numbered a-helices, charged residues have been found

near the cytoplasmic side that could form a salt-bridge network closing

the cytoplasmic gate (Fig. 8.3C) (Robinson, Overy, & Kunji, 2008). The

charged residues of the cytoplasmic and matrix gates are generally conserved

in the MCF and are symmetric, that is, amino acids with identical charge

occupy the corresponding positions in all three carrier repeats. The residues

of the proposed cytosolic gate in OGC have been shown to be functionally

important (Miniero et al., 2011).

3.3. The substrate binding site in MCs
The bovine AAC1 structure is in an atractyloside-inhibited form. However,

a substrate binding site was proposed based on its approximate location in the

3D structure, and on mutagenesis work that indicated residues crucial for
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carrier function (Pebay-Peyroula et al., 2003). The definition of the

substrate binding site in AAC has later been refined by using molecular

dynamics simulations with ADP as a ligand in the carrier cavity (Dehez,

Pebay-Peyroula, & Chipot, 2008; Falconi et al., 2006; Wang &

Tajkhorshid, 2008). Despite the relatively low sequence identity among

many MCs, structural homology models based on the bovine AAC1 struc-

ture can be made from reliable alignments due to the presence of the highly

conserved signature motifs in all MCF members that define the beginning

and the end of the even- and odd-numbered a-helices, respectively. By ana-
lyzing cavity residues that display covariation with the substrates of charac-

terized MC subfamilies (Palmieri, Agrimi, et al., 2006 for a review),

Robinson and Kunji (2006) proposed a putative common binding site

(Fig. 8.3B). This binding site consists of three contact points—one on each

even-numbered a-helix between the matrix and the cytoplasmic gates close

to the middle of the membrane bilayer. Based on the identity of the residues

in contact point II on H4, the following three major classes of substrates can

be distinguished: nucleotides, carboxylates, and amino acids. The common

binding site corresponds to asymmetric residues, that is, different kinds of

amino acids occupy the same corresponding positions within the three tan-

dem repeats (Robinson et al., 2008). The complete cys-scanning

Figure 8.3 Important residues for transport in the central cavity of the bovineAAC1 struc-
ture. For simplicity, the loops andmatrixa-helices have been removed. (A) Thematrix gate
is formed by the matrix salt-bridge network that consists of the charged residues of the
first half of the signature motif on H1, H3, and H5. (B) The common substrate binding site
is formed by three contact points (Roman numbered black filled circles) consisting of res-
idues on H2, H4, and H6 above the matrix gate. (C) The hypothetical cytoplasmic gate is
formed in the matrix conformation by a salt-bridge network of the charged residues on
top of the three even-numbered transmembrane a-helices.
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mutagenesis studies of OGC, as well as the site-directed mutagenesis data of

other carriers, support the crucial role of the contact point residues for func-

tion (Briggs, Mincone, & Wohlrab, 1999; Cappello et al., 2006; De Lucas

et al., 2008; Giangregorio et al., 2010; Heidkämper, Müller, Nelson, &

Klingenberg, 1996; Ma et al., 2007; Stipani et al., 2001; Tonazzi,

Console, Giangregorio, Indiveri, & Palmieri, 2012; Wohlrab, Annese, &

Haefele, 2002). Experimental evidence that residues in the common binding

site directly interact with the substrate has been found in yeast AAC2 and the

human ornithine carrier. ThemutationR294A of contact point III in AAC2

diminishes the transport rate of ATP without affecting the transport of ADP

(Heidkämper et al., 1996), and the substrate specificities of the two human

ornithine carriers could be swapped by exchanging the arginine and the glu-

tamine at contact point II of the two isoforms (Monné et al., 2012).

Although the common substrate binding site may be mainly responsible

for substrate binding, it does not fully explain how different substrates are

selected by carriers with identical contact point residues. Other asymmetric

residues that are specific for certain MC subfamilies and protrude into the

internal carrier cavity in proximity to the three contact points most likely

play a role in fine-tuning the substrate specificity of MCs (Palmieri &

Pierri, 2010b; Palmieri et al., 2011; Pierri, Palmieri, & De Grassi, 2013).

Consequently, potential substrates for an MC with unknown function

can be predicted by identifying the small set of residues in its sequence that

defines the binding site (Palmieri et al., 2011).

3.4. General transport mechanism for MCs
By combining the data concerning the monomeric state, the evidence for a

matrix and cytoplasmic gate, and the location of the substrate binding site, it

is possible to suggest a simple model for the antiport transport mechanism of

MCs (Palmieri & Pierri, 2010a, 2010b; Palmieri et al., 2011; Robinson et al.,

2008) within the framework of the structure of bovine AAC1. This model

basically represents the “single binding center-gating pore mechanism” as

proposed earlier by Klingenberg (Klingenberg, 1976, 1979) in which the

substrate binding site is alternatively accessible from the cytoplasmic or

the matrix side. For example, the exchange of cytosolic ADP for matrix

ATP catalyzed by AACs includes the following steps (i–vi):

(i) ADP binds to the substrate binding site exposed to the intermembrane

space, that is, in the c-state (Fig. 8.3B).

(ii) The ADP–carrier interactions induce conformational changes that

involve opening of the matrix gate and closing of the cytoplasmic gate,
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and result with the substrate bound in the m-state. The conformational

change is driven by the binding energy of the substrate to the substrate

binding site residues (Fig. 8.3B), and might involve the substrate inter-

fering with the matrix salt-bridge network (Fig. 8.3A) and/or assisting

the formation of the cytoplasmic salt-bridge network (Fig. 8.3C). The

substrate–carrier interactions could therefore involve both the even-

numbered a-helices (binding site and cytoplasmic salt-bridge network)

and the odd-numbered a-helices (binding site and matrix salt-bridge

network). Moreover, the opening of the matrix gate is likely to involve

a switch of the interactions between the relayed charged residues. There

may be an occluded state where the substrate is bound and both gates are

partially closed, but exactly what the transition- and m-states look like is

not known. However, the m-state is probably also pseudo-symmetric

because the matrix and cytosolic gate residues are symmetric and, as

suggested by the mechanism described here, all three contact points

are involved in substrate translocation.

(iii) ADP leaves the substrate binding site of the carrier that is open toward

the matrix side. The carrier cannot switch back to the c-state confor-

mation without another bound substrate because it is a strict antiporter.

(iv) ATP binds to the matrix substrate binding site that most likely involves

the same residues of the cytoplasmic substrate binding site, but which

are positioned in a different conformation.

(v) The ATP-carrier interactions induce the reverse conformational

changes leading to closure of the matrix gate and opening of the

cytoplasmic gate.

(vi) ATP is released into the intermembrane space and leaves the carrier in

the c-state ready for a new cycle of transport.

Mechanistically, MC uniporters and antiporters could work the same except

for the requirement in the 1:1 exchange of a counter substrate to induce the

retrograde conformational change (step iv). In the case of the uniporters,

probably one of the gates (e.g., the cytoplasmic one) is destabilized and only

forms transiently during substrate translocation; then it is reopened and the

carrier switches directly back to the outside open state without the bound

substrate (steps iv–vi). MC uniporters can also perform antiport with

increased velocity in vitro, because in proteoliposomes, the orientation of

the carriers is random and the high counter-substrate concentration drives

the opening of the carriers toward the outside.

Thus, the mechanism described here suggests a single substrate binding

site inMCs that switches between two or three major conformations, that is,
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with the binding site open toward the cytosol or the matrix, or occluded from

both sides in the transition state. Mutagenesis data from many MCs may be

interpreted within the context of the substrate binding site and the transport

mechanism as described above (Monné, Palmieri, & Kunji, 2013). Moreover,

most of the disease-causing single point mutations are found along the carrier

substrate translocation path (Palmieri, 2008; Poduri et al., 2013;Wibom et al.,

2009). In the structural homology models of MCs, there are two levels in the

carrier cavity where glycines and prolines are symmetric and conserved in

transmembrane a-helices (Palmieri & Pierri, 2010b). These residues have

been suggested to work either as sites for close helix–helix interactions

(Robinson et al., 2008) or as hinges required for opening and closing the cyto-

plasmic and matrix gates (Palmieri & Pierri, 2010b).

It should be noted that because the transport mechanism described above

suggests a single substrate binding site that can bind the substrate in two dif-

ferent conformations, the affinities (Km) for the same substrate on the cyto-

solic and matrix sides might be different, as experimentally observed with

some carriers in reconstituted liposomes (Palmieri, Indiveri, Bisaccia, &

Krämer, 1993). These different substrate affinities will help to maintain dif-

ferent steady-state concentrations of the substrate in the cytosol and in the

matrix. In the case where a difference in substrate concentration is not

required by the cell, the cytosolic and matrix Km is probably close to equal.

In the case of carriers that are dependent on DpH, it is not completely

clear if the proton binds to a residue in the binding site or protonates the

substrate. The protonation is probably allowed by the pH gradient and

the environment within the substrate binding site causing alteration of local

pKa values. Residues involved in proton coupling have been hypothesized

(Kunji & Robinson, 2010), but remain to be established experimentally.

4. KINETIC MECHANISM OF MCs

Several MC antiporters that represent a two-substrate reaction (one

substrate binding to the carrier on the outside and one on the inside of

the membrane) have been studied kinetically. Most MCs seem to operate

according to a sequential (simultaneous) mechanism (Bisaccia et al., 1993;

Dierks, Riemer, & Krämer, 1988; Indiveri, Dierks, Krämer, & Palmieri,

1991; Indiveri, Prezioso, Dierks, Krämer, & Palmieri, 1993; Indiveri,

Tonazzi, De Palma, & Palmieri, 2001; Sluse, Duyckaerts, Liebecq, &

Sluse-Goffart, 1979; Sluse et al., 1991; Stappen & Krämer, 1994), suggesting

that both the cytoplasmic and matrix substrates first bind to the carrier (i.e.,
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form a ternary complex) before they are translocated. These results are con-

sistent with the idea that MCs are homodimers with one protomer open

toward the cytosol and the other toward the matrix. Upon the binding of

the substrate to each protomer (on opposite sides), cooperative conforma-

tional changes are induced leading to the exchange of the substrates between

the two compartments (Palmieri, Indiveri et al., 1993).

However, the formation of a ternary complex is incompatiblewith the gen-

eral transport mechanism of monomeric MCs as described above that corre-

sponds kinetically to a ping-pong mechanism. In this mechanism, one

substrate binds to the open carrier and is then translocated across themembrane

leaving the carrier open on the opposite side ready for the counter substrate to

bind and be translocated. In other words, the substrates are dependent on each

other for the conformational changebut donot forma ternary complexwith the

carrier.TheonlyMCfoundto followaping-pongmechanismisCAC(Indiveri,

Tonazzi, & Palmieri, 1994)—a finding that might reflect the fact that CAC is

able to catalyze uniport transport as well as exchange of substrates. Because of

the apparent contradiction between the proposed transport mechanism and

the kinetic data, it is possible that either the model for the transport mechanism

or the interpretation for the sequential mechanism of MCs is incorrect.

5. SYNOPSIS

Many MCs have been known to be antiporters for a long time,

although how they perform this function at the molecular level was unclear.

The current model for the transport mechanism of MCs is based on the

wealth of information now available about the MCF, including biochemical

characterization of a large number of carriers, site-directed mutagenesis

studies, identification of disease-causing mutants, genomic sequences,

sequence analysis, and structural and functional studies. The picture of

the transport mechanism that has emerged applies in part to all MCs and

in part to each MC subfamily. A single similarly located binding site and

a matrix and cytoplasmic gate are involved in substrate translocation of all

MCs by an alternating access mechanism. Specific residues of the binding

site, specific substrate–carrier interactions, regulation by N-terminal

Ca2þ-binding domains, dependency on Dc and DpH, as well as anti-,

uni-, and symport modes of transport vary among MC subfamilies. In other

words, the driving forces and energies vary, but the structural scaffold and

probably also the substrate translocating conformational changes are funda-

mentally the same for all MCs.
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Future investigations are warranted to provide further evidence for the

current transport mechanism of MCs and to refine it. The determination

of MC structures in the m-state and intermediate conformations within the

transport cycle is imperative to assess the dynamics involved in substrate trans-

location. Many MCF members have not been characterized yet, and several

substrates known to be transported across the mitochondrial inner membrane

have not been assigned to a transporter. In this respect, the recent finding that

uncoupling protein 2 is a transporter for four-carbonmetabolites (Vozza et al.,

2014) strongly suggests that the function of the previously-named uncoupling

proteins 3-5 (encoded by SLC25A9, SLC25A14 and SLC25A27) can also be

to transport solutes across the mitochondrial membrane. All the above-

mentioned knowledge could contribute to the understanding of the physio-

logical roles of MCs and the molecular basis for the deleterious effects of the

constantly increasing number ofmutations inMCs involved in human disease.
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