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Abstract

Necessary and sufficient conditions for the weighted L”-convergence of Hermite and Hermite—Fejér
interpolation of higher order based on Jacobi zeros are given, extending previous results for Lagrange
interpolation. Error estimates in the weighted L”-norm are also shown.
© 2013 Elsevier Inc. All rights reserved.
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1. Introduction and preliminary results

We start with some notation. We define in the usual way the L? := LP(—1, 1) spaces,

1 <p<ooandifux)=0v"x) =>0-x)YA+x)°% y,8 > —%, 1<p<oolx| <1,
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we write f € LY, if uf € LP and ||f||€,, = f_11|(fu)(t)|pdt < o0. If p = oo, we put

L =C, ={f € c%-1,1) : limy—1(fu)(x) = 0}, with the obvious modifications if
y = 0or § = 0, and in particular we denote by C; = CO([—I, 1]) the set of all continuous
functions on [—1, 1]. The norm in C, is defined by || fllc, = | fulloo = maxyj<1 [(fu)(x)|.
Now we denote by L, (w; f; x), w = v*# a, B > —1, the Lagrange polynomial interpolating
a function f € C%(—1, 1) at the m zeros x; = Xmk, 1 <k < m, of the mth Jacobi polynomial
pm(w),ie. Ly (w; f;x;) = f(x;), i =1,2,...,m.Naturally, L,,,(w; f) € Pyu—1, where Py,_1
is the set of all polynomials of degree at most m — 1.

In what follows, C will stand for positive constants which can assume different values in each
formula, and we shall write C # C(a, b, ...) when C is independent of a, b, . ... Furthermore,
A ~ B will mean that, if A and B are positive quantities depending on some parameters, then
there exists a positive constant C independent of these parameters such that (A/B)*! < C.

It is well known that, with 1 < p < oo, the estimate

ILm(w; Hullp < Cll flloos € # Cm, f), (1.1)

holds for any continuous function on [—1, 1] if and only if the following condition on the weights
is satisfied:

€ L?, where p(x) =+ 1 — x2. (1.2)

u
VW
This is a special case of a theorem by P. Nevai in [17]. Obviously, under condition (1.1), the norm
rm(f) = ILf — Lm(w; f)]ull» can be estimated by the best approximation error; that is,

rm(f) S CEp—1(floo=C inf  |If = Pu_illo- (1.3)
Pou1€P,

m—1€Fm—1

If the function f is not continuous on [—1, 1] but belongs to C,,, u = v?8, y, 8§ > 0, (for example
f(x) =log(l 4 x)), then, again using [17, (31)], (1.1) can be replaced by

ILm(w; ullp < Cllfulloo, € # Clm, f), (1.4)

with 1 < p < oo, under the necessary and sufficient conditions

Lo Y2 gt (15)
JWQ u
Therefore, the estimate
Im(f) < cEm—1(f)u,00 (1.6)

holds, where

En-1(Huoco= inf  |(f = Pu-1Dtt]lco-
Py 1€Pm_1
For example, for f(x) = log(1 + x), estimate (1.3) cannot be used. On the other hand, f is con-
tinuous in (—1, 1) and f € Cy, u = v97 | with arbitrary y > 0, then, by (1.6), we get r,, (f) =
Oo(m=27).
However, in many contexts an estimate of r,,(f) is required in terms of the LP-norm of f
(see [7]). A partial result in this direction appears in [14]:

C
rm(f) = EEm—Z(f/)Ll,pv I <p<oo, C#Cm, f), (1.7
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under the sufficient hypothesis that the Fourier sums S, (w, f) are uniformly bounded in L7;
that is, sup,,, S (w, Pullp < Cll fullp.
A complete “iff” result is given by the following [8].

Theorem A. Forany f € CO(—I, 1), uelPandl < p < o0,

m 1/p
| Lm(ws ullp ~ (Z AMI(fM)(Xk)I”) ., C#Clm, [), (1.8)
k=1
with AXg = Xg41 — Xk, Xk = X,k (W), uniformly w.r.t. m and f, if and only if
“oerr, Y cpa gl (1.9)
JWY u

For the sake of completeness, we shall give an alternative proof of Theorem A in the Ap-
pendix, mainly to emphasize the necessity of conditions (1.9).

The sum in (1.8) is uniformly bounded with respect to m if f is continuous on (—1, 1) and
fu € LP. In the following, we assume that f € LI and 24(f, t)u,pt_l_l/f’ e L', where
Q;( f> Dy, p is the main part of the weighted LPrth g-modulus of continuity (see [5]). Now, the
function f is continuous on (—1, 1) (see, e.g., [6]), and since [8, pp. 281-283]

1/p
u c [Ym Q(f D,
(ZAxm(fu)(xknp) < fo BT D gy o) (1.10)
k=1

~ ml/p t1+1/p
the summation in (1.8) is uniformly bounded. The following corollary holds.

Corollary A. Let f € Ll and $2,(f, ) pt~'"/P € L', with 1 < p < oc. Then, with the
notation and assumptions of Theorem A, we have

ILf — L (ws Hlullp <

l/m Qr ’ u
¢ / B Dup 4o cm p. (1.11)
0

ml/p t1+1/p

In the case when f(x) = log(1 + x), u(x) = v"¥(x) = (1 — x?)?,y > —1/p, the error is
dominated by ¢/m?Y+2/P as for the best L’ approximation.

The aim of this paper is to extend Theorem A and Corollary A to the case of Hermite inter-
polation. We will obtain, as a result, a close connection among the convergence of Lagrange,
Hermite, and Hermite—Fejér interpolation in suitable function spaces. Moreover, the proved es-
timates cannot be improved, and they cover the ones appearing in the literature.

2. Main results
2.1. Hermite interpolation

Let us denote by H,, - (w; f), r > 1, the Hermite polynomial based on the Jacobi zeros and
corresponding to a function f € c'1(—-1,1),ie., H,ﬁ,l,),(w; fixp) = f(i)(xk), k=1,....,m
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andi =0, ...,r—1;letus remark that H, 1 (w; f) = L,,(w; f). A wide literature exists on the
convergence of this sequence of operators {H,, ,(w)}. Among others, we mention [4,16,18-22].

The aim of the previous papers was an estimate of the norm e, , (f) = [[f —Hm,r (w, f)lullp
by the unweighted best approximation error in uniform norm, analogously to the Lagrange
interpolation. Here, we want to generalize Theorem A to Hermite interpolation, i.e. we want
to include u and p in the error estimation. To this purpose, we state the following theorem.

Theorem 1. Let u € L?, p € (1,00), and f € C"~1 (=1, 1). Then the following inequality
holds.

1 H,r(w: Pullp < C | || Hpr—1(ws foul,

m @ r—1 p I/p
+ Axy (f("l) - u> (xx) ) , .1
> (2)
with C # C(m, f), if and only if
u (Vo) -1, -1
— €L’ ~ L e, P t+qg =1 (2.2)
(vue) u

Proof. Let us assume that (2.2) holds. Using an idea by Xu [22], with

Hy p(w; f5x) — Hy p1(ws f %)

Q@) = [P (w; )71

€ Pm—1, 2.3)

we can write

Hpr (w3 f) = Hy 1 (w; f) + Opm(w) L.

Moreover, using the fact that for any measurable function g the relation (see [13,15])

llgpm (W)l p 2.4

8
|7
holds, further, by (2.2) and Theorem A, with u/ ( / w(p)r_1 instead of u and Q instead of f, we
obtain

9
p

|opy | ~o—
P (vwe) |,
m u p\1/p
<C A [l o—— ) ) —S.
(1; xk( (m)") * )

Now, recalling (2.3) and (see [17])

1
~ A/ we) ) ~ (/) (xo),

| Py, (W, xi)|
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we get
Fr V) - Hrﬁlr,r_fl)l(w; 5 %)
Qx| = (r — D![p}, (w; xx)] 1

_ © r—1 _ _
~ () @ (£) o | 1o = 1Y D s fix). @5)
whence S is dominated by

m N p\ /P
=0 (¥
(;Axk <f () u) (%) )
m r—1
+ (,; A (11,5; D (%) u) (x0)

Now, by the Marcinkiewicz and Bernstein inequalities

o\ /P
) =S+ 5.

SH=<C ||Hm,r—1(wa f)””p s

so the first part of Theorem 1 ((2.2) = (2.1)) easily follows.
Now, we assume that, forany f € C" ' andu € L?,

[ Hm,r (w; Pullp < C | ([ Hpr—1(w; fullp

o1 P\ 1/p
(f(’”(a> u)(xk)) . (2.6)

Let gm : g0(xx) =0, i = 0,....7r —2, 897 V(x0) #£ 0, k = 1,2,..., m. The function
gm € c1(~1,1), and Hyy r—1(w; gm) = 0. Therefore, by (2.6),

+ (i Ax

k=1

m N P\ /P
| H 3 gudullp = € (D A (gf,:” (£) u) wl ) - @7
k=1 m
Letting By, = Hy (w3 gm)/p;f](w) € Pn—1, by (2.4), we have
_ u
“Hm,r(U); gm)u”p = HBmp:n l(w)uH >C Bm—r—l
P (Vwe) |,
= C || Ly (w; By) —1
(Vwe) I,
Thus (2.7) becomes
1/p
u n _ r—1 p
Ly, By)————| <C (Z Axk <g’§1r D (2) u) (xk) ) :
(Vwe) » =1 m
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Therefore it suffices to show that the sum is equivalent to

p\ 1/p
< (Bmut) (x¢)
)T CIONCI A iy
k=1 vV (we) =1 (x)
To this purpose, since, as before (see [17]),

L. ‘”(Z")\/(wwxxk),

|pp (w, xp)|
we have
H, (w; gm)(r_l)(xk)
B, =
B )| = o T
r—1 r—1
~Jes V@l (@) (Voo o)
and
P
u(xy) ((r_1) @\l ) P
Axg | By () —————— |~ Axg (g9 () u) o)
(Ve on) ! (m)

In conclusion, (2.6) implies that

Ly (w; By)

" p\ 1/p
Bm—_ (x) . (28)
(vag) ( (vire)' ) ' )

Therefore, by Theorem A, with u replaced by u/ ( /w(p)r_l, and f replaced by B,,, inequality
(2.8) implies conditions (2.2). O

-1

m
<C (Z Axp
p k=1

Obviously, Theorem 1 can be iterated. That means we obtain the following theorem, which
generalizes Theorem A.

Theorem 2. Let u € L?, 1 < p < oo, and r > 1. Then, for all f € C’_l(—l,l) the

equivalence
m r—1 ) @ i P I/p
| Honr s Pru], ~ | D0 Ay (f(’) (n—1) u) (k) 2.9)
k=1 i=0
holds uniformly w.r.t. m and f if and only if
i
" err (vV9) €Ll i=rr—1,....1 (2.10)
(vwg) u

(P +q7! =1

For f € Prp—1, formula (2.9) (with “<”) is the second Marcinkiewicz inequality with
multiple nodes (proved first by Xu [22] using Fourier sums under stronger assumptions on the
weights).
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Our next statement generalizes Corollary A.

Corollary 1. Let fU~V e LF and (l;(f(’_l),t)mprf],pt_l_l/p e LY, withs >r > 1 and
1 < p < oo. Then, with the conditions and notation of Theorem 2, we have

c /1/'" Q5 (fUD, 1) g

”[f — Hp,r(w; f)]’/al = o —1F1/p A [+1/p ,

with C # C(m, f).
> |(r0 (&) )] ) < (%

Proof. We can write
(zww vt)wl')

38

m
Z Axp

0 k=1

£ )

The first sum is dominated by C Zr ! M, using (1.10) several times, with f and u

m!
replaced by £ and ¢'u, respectively. The second sum is dominated by

— — -1
c { ”f(r 1)(pr lu”p N 1 /l/m Q;(f(r )’t)“‘Prl’Pdt} ’

mr—1 mr—1+1/p t1+1/p

||M

(fm (%)i u) (xk)

S =

+

with s > r, using again (1.10) with f~D instead of f and u¢’ ! instead of u.

If P € Prm—1 is the best approximation polynomial of f, we have
= = POyl

1L/ = Fhur . 1], = € (Z

i=0

ym 25 ((f = P)r=V1)
L / v Jug “2ar) . @1y
0

mi

mr—1+1/p t1+1/p

The general term of the sum in the r.h.s. of (2.11) obeys the following inequality:
” (f - P)(i)(ﬂi’/al _ CErm—l—i(f(i))mp",p - CE(r—l)m (f(ril))mpr—l’p

mi - mi - mr—1

whence

O A iy L AU AT

- mr—l—H/p t1+1/p
Moreover, the following obvious inequality holds for the second term in the r.h.s. of (2.11):

S —-1).
1 /l/m Q(;) ((f - P)(r )7 t)u‘/),_lvpd

mr—1+1/p t1+1/p 4
-1
- 1 1/m _Q; (f(r )’ t)ugor’l,pdt
- mr—1+1/p t1+1/p
-1
1 m Q5 (PUD1) e,
T p fo [1+1/p dt =A+B
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Now

1/m
B < L/ ls_l_l/pdt
0

()
-1 +s—1

p

1 1 (s)
~ _ (r—1) r+s—1
m—1! ms [P :I ug
p
< 1 Vm {2y (f(r_l)’ t)mﬂ"lal’d
- mr—1+1/p 0 t1+1/p t,

where the last inequality follows from [5, p. 100], considering that P*~D is a polynomial
approximating £~ with the order as its best approximating polynomial in the proper metric
(we shall call PU~1 the quasi best approximant).

The proof is complete. [

2.2. Hermite—Fejér interpolation

As is well known, we can write
Hm‘r(ws f)ZFm,r(ws f)“l‘Gm,r(W, f), r>1,

where F), , is the Hermite—Fejér interpolation polynomial of higher order defined, for 1 < k <
m, by

Fm,r(wa f xk) = f(xx),
Fm,r(w,f)(l)(Xk):O, i:1,...,r—l

and

{Gm,r(wa fv -xk) =07 .

G, IP0x) = fO00) i=1,...,r—1.

If r =1, then F,;, 1 (w, f) = L,y (w, f); now, we define G, 1(w, f) = 0. The behaviour of the
polynomial F, »(w, f) is given by the following.

Theorem 3. Conditions (2.2) are equivalent to

luF r(w; O)llp < ClluFmr—1(w; Hllp, € #Clm, f), (2.12)
forany f € CcO(—1,1) and p € (1, 00).
Moreover, under assumptions (2.10), if £2,(f, t)u,pt_l_l/” el

c (V"™ Q,(f 1)
ILF = Pt ol = o [ S LD .13

Proof. Proceeding as in the proof of Theorem 1, we let

Fm,r(w; f) - Fm,rfl(uﬁ f)
pm(w)r_l ’

qm—-1 =

Then we can write

Fm,r(w; f) = Fm,r—l(u); f) + Qm—lp;n_l(w)~
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In addition, using [17],

[pntw. Ve <€ w15
By (2.4) and (2.2), we get

u
Qm—l—fl

(vwe) 1,
(B )

Fr—1(w; £ x3)0 D
(r = D! pyw, x0)] "
X ‘Fm,r—l(ws 1 xk)(ril)‘ s

the sum is equivalent to

m r—1 p\ 1/p
<ZAxk Fm,r-l(w;f;Xk)(’_”($> u(Xk)) :

k=1
Now, using [8, formula (2.19)] and the Bernstein theorem, the last sum is less than C|| Fj, —1
(w; fullp. So formula (2.12) follows.
Conversely, if (2.12) is true for any function f € C%(—1, 1), it will be true for a continuous
function g, such that g,, (xz) # 0 and _(’)(xk) =0, k=1,...,m,i=1,...,r — 1; thatis,

417 |~

p)l/p

~ <‘/’(Xk))r_l (W)r_l

m

Since

|Qm—l(xk)| =

”Fm,r(U); gm)u”p = C”Fm,r—l(w§ gm)u”p

By definition,

Fo (W3 ) = Hp r (w5 g,)
and

Fonr—1(w; 8,) = Hpr—1(W3 8,)-
Therefore,

” Hm,r(U); gm)u”p <C ” Hm,r—l(u); gm)u“p

that is, we have (2.1) with f = g,,. Therefore, condition (2.2) follows.
To estimate the error, we observe that, if P, is a quasi best approximant polynomial of
fe LY then we have

f=Fnrw; f) = — Pu) +[Pn— Fnr(w; Pp)l — [Fo r(w; f — Pyl
Now, by iterating (2.12), we have || Fy,  (w; f)llp < CllLyu(w; f)ullp, and it follows that
ICf = Podullp + 1 Fr(ws f — Pdullp < 1(f — Pdullp + |1 Lm(w; f — Puullp
C /1/'" 2 Dup 5.

ml/p t1+1/p
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(see (1.11)). In order to estimate [Py — Fyn,r(w; Pr)lull, we notice that, since Hp r(w; f) =
Fonr W5 f) + G (w3 f), with G (ws f)(x) = 0 and G (w; )P G) = fO (i), i
I,...,r =1, wehave Py, — Fy, r(w; Pp) = Gy r(W; Pp).

Therefore, using the same arguments as in the proof of Theorem 1, we set
Gm,r(U}; P x) — Gm,r—l(w§ Py x)

[pm (w; x)] !

Alx) = €Pyy

and
Gy (W5 Py ) = G 1 (w5 P X) + [p (w; )11 A(x).
Since

P V) = G (w; P )

m,r—1
(r — D! [plyw; x)] !

under assumptions (2.2), we easily get

A(xp)

|G (w3 Payu], < €3Gt ws Py ], + ‘

r—1
P (2) }
14

Under assumptions (2.10), we can iterate, obtaining

. © i
B ()

r—1
||Gm,r (w; Pm)u”p =C ”G’"!z (w; P’")u”P + Z
i=2

P
Since
P/
1Gm2(w; Paullp = ‘Lm (w; — )pm(w)u
P (w) »
P/
e fesfe)
1/p
< p
@ (xr)
~ ( Axy | Py (i) u(xk)' )
m
k=1
4
=[P G2l
s (2)a],
we get
r—I1 ) 0 ;
G m,r(w; Pull, < CZ P (_) "
i=1 m p

IA

@
e |7 ()l
m P

C /1/’" 2 (f: Dup .
0

— ml/p t1+1/p

The proof is completed. [

Remark 1. For the sake of simplicity, we took the Jacobi zeros as interpolation points. Nev-
ertheless, the stated theorems hold for a wider class of nodes. Among others we may use the
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zeros of orthonormal polynomials related to generalized Jacobi weights [1,15,17], to generalized
Ditzian—Totik weights [8], to Badkov weights [2], or to the weights considered in [15]. Also, the
weight u of the norm can be one of the previously mentioned weights, but, if # has some inner
zeros, then the Ditzian—Totik ¢-modulus has to be replaced by a modulus defined in [3] (see
also [9-12]).

This means that, if
B = {f@ e Ll QY. Dupt™ P e L s k> 1},

we obtain the following.
For a wide class of interpolation nodes, the LY -convergence of the sequence

{Hunr 0, 1), f €87
implies the LL-convergence of the sequence
{Lnw. ). feBl},

and this last is equivalent to the LY -convergence of the sequence of Hermite—Fejér polynomials

{Fnr(w, /), f € BY).
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Appendix

Here, we give a new relatively simple proof for Theorem A of [8].

Proof. a. We prove that conditions (1.9) imply (1.8).
LetA,, =[-1+ c/mz, 1-— c/mz]. Then, by the Remez inequality [11], we have

ILm (s flullp < 1 Lm(w; flullreca,) = sup Alg),
lglly=1

A(g) =/A Ly (w; f,x)u(x)g(x)dx.

Hence

AGg) i f Geu(xi) Ppm(w, x)
=1

= L o, 10 Jay x— e 8O

< e 1000l O m e v,
= u(xg)

where, for arbitrary Q € Py, (I > 1, integer),

(2. 1) :/ P (W, x) Q(x) — p(w, ) O(1) (gu)(x)dx € Poo.
Anm x—t 0(x)




12 B. Della Vecchia et al. / Journal of Approximation Theory 176 (2013) 1-14

q)l/q

Consequently,

m 1/p
Ag) < c(ZAkafu)(ka) (ZA VR (") L (w, x0)

m 1/p
—C (Z Axk|(fu><xk>|”> B(g).
k=1

By the Marcinkiewicz inequality, we get

B(g) < H VP (o)
u L9(Ap)
< H—“w“’ (|H(pm(w)ug>|+ P (w) QH (ﬁ)D
u 0 LI(Ap)
= J1 + /)2,
where

(Hf)(t) = lim F@,

=0T Jijx—t|>¢ X — 1

is the Hllbert transform. Now, if o is a Jacobi weight, then |H(f)o |, < C| follp,iff o € LP
and o ~! € LY. Therefore,

NATIG
Ji<C HTPm(w)Mg

= Cligllg-
q

Using that 0 < c¢(m) < ,/wg < d(m) in A,,, we can choose Q such that Q ~ ,/w¢ in A,,. So

—VZ"ppmw)QH <@>

Q
[ (3)

J <

Li(Anm)

L9(Am)

~ lglg-

H JWw soug

b. We prove that (1.8) implies (1.9).

Let us assume that (1.8) holds forall f € C%(—1, 1) andu € LP. Lett,, be a piecewise linear
function such that 7, (xx) = 0if xx & [—n, 1], n < 1/2, and 7, (x) = | f (xx)| sgn p,, (w5 xx), if
xr € [—n, n] (see [13]). Then (1.8) must hold with t,, in place of f. Moreover, since x — x; < 2
and [upm (W)l p > Cllu/J/wellp, we have

1L (w, Ti)uelly = | L (W, T)ll Lo x|y

- ‘ pm(w)u | Cei)u ()|

B 2 LP{|x|>n} xe[=n.n] | Py (w, xi) [u (X))

¢ H u | (o 0) (30|
«/_90 LP{|x|>1) xpel—n.n] [Py (W, xk)u(xk)|
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Then

AVP x| (tnu) (xi0)|
I | P (w, xp)u () AV P x|

|

LP{|x|>n} xpel—n,n

1/p
SC( Z Axk|(rmu)(xk)|p> ;
Xk €[—n,7]

and necessarily

(651 s (. rmmtiirn] )
<C.
WO o gia1=n) \epergon LAY Pl Py (w, xiu ()|
The last sum is equivalent to
1/p 1/q
( 3 Axk'y(wso)‘(xk) q) N( f" ¢(w¢)(x>qu> ~1
xk€[—n.n] “ - u(x)

and therefore

eL”.

u
VWY

13

For the L4-condition, we consider the function T,, (x) such that T,, (x;) = 0 for x € [—n, n] and

T (xk) = | f () Isgnpy, (w, xx),  x & [—n, 7]
We have
Lo (w; T)ully = N L (w3 Dl o=, )

> lpmlrcnny Y

xXe€l—n.nl

| (T (xi0) |
| Py (w, i) | (xg)

The L?-normis ~ 1, and

~ 1/p
| Tntn) () | AP ~ »
Z | AVP x| ph, (w, xi) |u(x) =¢ ( Z |Cmit) Co)| ’

Xk €l—n.1 Xk €l—n,7]
from which
1 A4
2 [A“Px P (0, 20l Cx J =¢
Xk El—n.7] k1P (W0 Xk k

The last sum is equivalent to

dx ,
[x|>n

u(x)
from which we get the L9-condition. [
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