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Abstract

Necessary and sufficient conditions for the weighted L p-convergence of Hermite and Hermite–Fejér
interpolation of higher order based on Jacobi zeros are given, extending previous results for Lagrange
interpolation. Error estimates in the weighted L p-norm are also shown.
c⃝ 2013 Elsevier Inc. All rights reserved.
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1. Introduction and preliminary results

We start with some notation. We define in the usual way the L p
:= L p(−1, 1) spaces,

1 ≤ p < ∞, and, if u(x) = vγ,δ(x) = (1 − x)γ (1 + x)δ, γ, δ > −
1
p , 1 ≤ p < ∞, |x | < 1,
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we write f ∈ L p
u , if u f ∈ L p and ∥ f ∥

p
L p

u
=
 1
−1 |( f u)(t)|pdt < ∞. If p = ∞, we put

L∞
u = Cu = { f ∈ C0(−1, 1) : lim|x |→1( f u)(x) = 0}, with the obvious modifications if

γ = 0 or δ = 0, and in particular we denote by C1 = C0([−1, 1]) the set of all continuous
functions on [−1, 1]. The norm in Cu is defined by ∥ f ∥Cu = ∥ f u∥∞ = max|x |≤1 |( f u)(x)|.
Now we denote by Lm(w; f ; x), w = vα,β , α, β > −1, the Lagrange polynomial interpolating
a function f ∈ C0(−1, 1) at the m zeros xk ≡ xm,k, 1 ≤ k ≤ m, of the mth Jacobi polynomial
pm(w), i.e. Lm(w; f ; xi ) = f (xi ), i = 1, 2, . . . , m. Naturally, Lm(w; f ) ∈ Pm−1, where Pm−1
is the set of all polynomials of degree at most m − 1.

In what follows, C will stand for positive constants which can assume different values in each
formula, and we shall write C ≠ C(a, b, . . .) when C is independent of a, b, . . . . Furthermore,
A ∼ B will mean that, if A and B are positive quantities depending on some parameters, then
there exists a positive constant C independent of these parameters such that (A/B)±1

≤ C .
It is well known that, with 1 ≤ p < ∞, the estimate

∥Lm(w; f )u∥p ≤ C∥ f ∥∞, C ≠ C(m, f ), (1.1)

holds for any continuous function on [−1, 1] if and only if the following condition on the weights
is satisfied:

u
√

wϕ
∈ L p, where ϕ(x) =


1 − x2. (1.2)

This is a special case of a theorem by P. Nevai in [17]. Obviously, under condition (1.1), the norm
rm( f ) := ∥[ f − Lm(w; f )]u∥p can be estimated by the best approximation error; that is,

rm( f ) ≤ C Em−1( f )∞ = C inf
Pm−1∈Pm−1

∥ f − Pm−1∥∞. (1.3)

If the function f is not continuous on [−1, 1] but belongs to Cu, u = vγ,δ, γ, δ > 0, (for example
f (x) = log(1 + x)), then, again using [17, (31)], (1.1) can be replaced by

∥Lm(w; f )u∥p ≤ C∥ f u∥∞, C ≠ C(m, f ), (1.4)

with 1 ≤ p < ∞, under the necessary and sufficient conditions

u
√

wϕ
∈ L p

√
wϕ

u
∈ L1. (1.5)

Therefore, the estimate

rm( f ) ≤ cEm−1( f )u,∞ (1.6)

holds, where

Em−1( f )u,∞ = inf
Pm−1∈Pm−1

∥( f − Pm−1)u∥∞.

For example, for f (x) = log(1 + x), estimate (1.3) cannot be used. On the other hand, f is con-
tinuous in (−1, 1) and f ∈ Cu , u = v0,γ , with arbitrary γ > 0, then, by (1.6), we get rm( f ) =

O(m−2γ ).
However, in many contexts an estimate of rm( f ) is required in terms of the L p

u -norm of f
(see [7]). A partial result in this direction appears in [14]:

rm( f ) ≤
C

m
Em−2( f ′)u,p, 1 < p < ∞, C ≠ C(m, f ), (1.7)
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under the sufficient hypothesis that the Fourier sums Sm(w, f ) are uniformly bounded in L p
u ;

that is, supm ∥Sm(w, f )u∥p ≤ C∥ f u∥p.
A complete “iff” result is given by the following [8].

Theorem A. For any f ∈ C0(−1, 1), u ∈ L p and 1 < p < ∞,

∥Lm(w; f )u∥p ∼


m

k=1

1xk |( f u)(xk)|
p

1/p

, C ≠ C(m, f ), (1.8)

with 1xk = xk+1 − xk , xk = xm,k(w), uniformly w.r.t. m and f , if and only if

u
√

wϕ
∈ L p,

√
wϕ

u
∈ Lq , q−1

+ p−1
= 1. (1.9)

For the sake of completeness, we shall give an alternative proof of Theorem A in the Ap-
pendix, mainly to emphasize the necessity of conditions (1.9).

The sum in (1.8) is uniformly bounded with respect to m if f is continuous on (−1, 1) and
f u ∈ L p. In the following, we assume that f ∈ L p

u and Ωr
ϕ( f, t)u,pt−1−1/p

∈ L1, where
Ωr

ϕ( f, t)u,p is the main part of the weighted L pr th ϕ-modulus of continuity (see [5]). Now, the
function f is continuous on (−1, 1) (see, e.g., [6]), and since [8, pp. 281–283]

m
k=1

1xk |( f u)(xk)|
p

1/p

≤
C

m1/p

 1/m

0

Ωr
ϕ( f, t)u,p

t1+1/p
dt + c∥ f u∥p, (1.10)

the summation in (1.8) is uniformly bounded. The following corollary holds.

Corollary A. Let f ∈ L p
u and Ωr

ϕ( f, t)u,pt−1−1/p
∈ L1, with 1 < p < ∞. Then, with the

notation and assumptions of Theorem A, we have

∥[ f − Lm(w; f )]u∥p ≤
C

m1/p

 1/m

0

Ωr
ϕ( f, t)u,p

t1+1/p
dt, C ≠ C(m, f ). (1.11)

In the case when f (x) = log(1 + x), u(x) = vγ,γ (x) = (1 − x2)γ , γ > −1/p, the error is
dominated by c/m2γ+2/p, as for the best L p

u approximation.
The aim of this paper is to extend Theorem A and Corollary A to the case of Hermite inter-

polation. We will obtain, as a result, a close connection among the convergence of Lagrange,
Hermite, and Hermite–Fejér interpolation in suitable function spaces. Moreover, the proved es-
timates cannot be improved, and they cover the ones appearing in the literature.

2. Main results

2.1. Hermite interpolation

Let us denote by Hm,r (w; f ), r ≥ 1, the Hermite polynomial based on the Jacobi zeros and
corresponding to a function f ∈ Cr−1(−1, 1), i.e., H (i)

m,r (w; f ; xk) = f (i)(xk), k = 1, . . . , m
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and i = 0, . . . , r −1; let us remark that Hm,1(w; f ) = Lm(w; f ). A wide literature exists on the
convergence of this sequence of operators {Hm,r (w)}. Among others, we mention [4,16,18–22].

The aim of the previous papers was an estimate of the norm em,r ( f ) := ∥[ f −Hm,r (w, f )]u∥p
by the unweighted best approximation error in uniform norm, analogously to the Lagrange
interpolation. Here, we want to generalize Theorem A to Hermite interpolation, i.e. we want
to include u and p in the error estimation. To this purpose, we state the following theorem.

Theorem 1. Let u ∈ L p, p ∈ (1, ∞), and f ∈ Cr−1(−1, 1). Then the following inequality
holds.

∥Hm,r (w; f )u∥p ≤ C

Hm,r−1(w; f )u


p

+


m

k=1

1xk

 f (r−1)
 ϕ

m

r−1
u


(xk)

p
1/p

 , (2.1)

with C ≠ C(m, f ), if and only if

u√
wϕ
r ∈ L p,

√
wϕ
r

u
∈ Lq , (p−1

+ q−1
= 1). (2.2)

Proof. Let us assume that (2.2) holds. Using an idea by Xu [22], with

Q(x) =
Hm,r (w; f ; x) − Hm,r−1(w; f ; x)

[pm(w; x)]r−1 ∈ Pm−1, (2.3)

we can write

Hm,r (w; f ) = Hm,r−1(w; f ) + Qpm(w)r−1.

Moreover, using the fact that for any measurable function g the relation (see [13,15])

∥gpm(w)∥p ∼

 g
√

wϕ


p

, (2.4)

holds, further, by (2.2) and Theorem A, with u/
√

wϕ
r−1 instead of u and Q instead of f , we

obtainQpr−1
m (w)u


p

∼

Q
u√

wϕ
r−1


p

≤ C


m

k=1

1xk




Q
u√

wϕ
r−1


(xk)


p1/p

=: S.

Now, recalling (2.3) and (see [17])

1
|p′

m(w, xk)|
∼ 1xk


(wϕ)(xk) ∼

 ϕ

m
√

wϕ


(xk),
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we get

|Q(xk)| =

 f (r−1)(xk) − H (r−1)
m,r−1(w; f ; xk)

(r − 1)![p′
m(w; xk)]r−1


∼
√

wϕ
r−1

(xk)
 ϕ

m

r−1
(xk)

 f (r−1)(xk) − H (r−1)
m,r−1(w; f ; xk)

 , (2.5)

whence S is dominated by
m

k=1

1xk

 f (r−1)
 ϕ

m

r−1
u


(xk)

p
1/p

+


m

k=1

1xk

H (r−1)
m,r−1(w; f )

 ϕ

m

r−1
u


(xk)

p
1/p

=: S1 + S2.

Now, by the Marcinkiewicz and Bernstein inequalities

S2 ≤ C
Hm,r−1(w, f )u


p ,

so the first part of Theorem 1 ((2.2) ⇒ (2.1)) easily follows.
Now, we assume that, for any f ∈ Cr−1 and u ∈ L p,

∥Hm,r (w; f )u∥p ≤ C

∥Hm,r−1(w; f )u∥p

+


m

k=1

1xk

 f (r−1)
 ϕ

m

r−1
u


(xk)

p
1/p

 . (2.6)

Let gm : g(i)
m (xk) = 0, i = 0, . . . , r − 2, g(r−1)

m (xk) ≠ 0, k = 1, 2, . . . , m. The function
gm ∈ Cr−1(−1, 1), and Hm,r−1(w; gm) = 0. Therefore, by (2.6),

∥Hm,r (w; gm)u∥p ≤ C


m

k=1

1xk

g(r−1)
m

 ϕ

m

r−1
u


(xk)

p
1/p

. (2.7)

Letting Bm = Hm,r (w; gm)/pr−1
m (w) ∈ Pm−1, by (2.4), we have

∥Hm,r (w; gm)u∥p =

Bm pr−1
m (w)u


p

≥ C

Bm
u√

wϕ
r−1


p

= C

Lm(w; Bm)
u√

wϕ
r−1


p

.

Thus (2.7) becomesLm(w, Bm)
u√

wϕ
r−1


p

≤ C


m

k=1

1xk

g(r−1)
m

 ϕ

m

r−1
u


(xk)

p
1/p

.
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Therefore it suffices to show that the sum is equivalent to
m

k=1

1xk

 (Bmu) (xk)
(wϕ)r−1(xk)


p1/p

.

To this purpose, since, as before (see [17]),

1p′
m(w, xk)

 ∼
ϕ(xk)

m


(ϕw)(xk),

we have

|Bm(xk)| =
Hm,r (w; gm)(r−1)(xk)

(r − 1)!|p′
m(w, xk)|r−1

∼

g(r−1)
m (xk)

 ϕ(xk)

m

r−1 
(wϕ)(xk)

r−1

and

1xk

Bm(xk)
u(xk)√

(wϕ)(xk)
r−1


p

∼ 1xk

g(r−1)
m

 ϕ

m

r−1
u


(xk)

p

.

In conclusion, (2.6) implies thatLm(w; Bm)
u√

wϕ
r−1


p

≤ C


m

k=1

1xk




Bm
u√

wϕ
r−1


(xk)


p1/p

. (2.8)

Therefore, by Theorem A, with u replaced by u/
√

wϕ
r−1, and f replaced by Bm , inequality

(2.8) implies conditions (2.2). �

Obviously, Theorem 1 can be iterated. That means we obtain the following theorem, which
generalizes Theorem A.

Theorem 2. Let u ∈ L p, 1 < p < ∞, and r > 1. Then, for all f ∈ Cr−1(−1, 1) the
equivalence

Hm,r (w; f )u


p ∼


m

k=1

1xk

r−1
i=0

 f (i)
 ϕ

m

i
u


(xk)

p
1/p

(2.9)

holds uniformly w.r.t. m and f if and only if

u√
wϕ
r ∈ L p,

√
wϕ
i

u
∈ Lq , i = r, r − 1, . . . , 1. (2.10)

(p−1
+ q−1

= 1).

For f ∈ Prm−1, formula (2.9) (with “≤”) is the second Marcinkiewicz inequality with
multiple nodes (proved first by Xu [22] using Fourier sums under stronger assumptions on the
weights).
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Our next statement generalizes Corollary A.

Corollary 1. Let f (r−1)
∈ L p

u and Ω s
ϕ( f (r−1), t)uϕr−1,pt−1−1/p

∈ L1, with s ≥ r ≥ 1 and
1 < p < ∞. Then, with the conditions and notation of Theorem 2, we have[ f − Hm,r (w; f )]u


p ≤

C

mr−1+1/p

 1/m

0

Ω s
ϕ( f (r−1), t)uϕs−1,p

t1+1/p
dt,

with C ≠ C(m, f ).

Proof. We can write
m

k=1

1xk

r−1
i=0

 f (i)
 ϕ

m

i
u


(xk)

p
 1

p

≤ C


r−2
i=0

m
k=1

1xk

 f (i)
 ϕ

m

i
u


(xk)

p
 1

p

+ C
1

mr−1


m

k=1

1xk

 f (r−1)ϕr−1u


(xk)

p
 1

p

.

The first sum is dominated by C
r−1

i=0
∥ f (i)ϕi u∥p

mi , using (1.10) several times, with f and u

replaced by f (i) and ϕi u, respectively. The second sum is dominated by

C


∥ f (r−1)ϕr−1u∥p

mr−1 +
1

mr−1+1/p

 1/m

0

Ω s
ϕ( f (r−1), t)uϕr−1,p

t1+1/p
dt


,

with s ≥ r , using again (1.10) with f (r−1) instead of f and uϕr−1 instead of u.
If P ∈ Prm−1 is the best approximation polynomial of f , we have f − Hm,r (w, f )


u


p ≤ C


r−1
i=0

( f − P)(i)ϕi u


p

mi

+
1

mr−1+1/p

 1/m

0

Ω s
ϕ


( f − P)(r−1), t


uϕr−1,p

t1+1/p
dt


. (2.11)

The general term of the sum in the r.h.s. of (2.11) obeys the following inequality:( f − P)(i)ϕi u


p

mi ≤ C
Erm−1−i ( f (i))uϕi ,p

mi ≤ C
E(r−1)m


f (r−1)


uϕr−1,p

mr−1 ,

whence
r−1
i=0

( f − P)(i)ϕi u


mi ≤
C

mr−1+1/p

 1/m

0

Ω s
ϕ


f (r−1), t


uϕr−1,p

t1+1/p
dt.

Moreover, the following obvious inequality holds for the second term in the r.h.s. of (2.11):

1

mr−1+1/p

 1/m

0

Ω s
ϕ


( f − P)(r−1)

; t


uϕr−1,p

t1+1/p
dt

≤
1

mr−1+1/p

 1/m

0

Ω s
ϕ


f (r−1), t


uϕr−1,p

t1+1/p
dt

+
1

mr−1+1/p

 1/m

0

Ω s
ϕ


P(r−1), t


uϕr−1,p

t1+1/p
dt := A + B.
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Now

B ≤
C

mr−1+1/p

 1/m

0
t s−1−1/pdt

P(r−1)
(s)

uϕr+s−1


p

∼
1

mr−1

1
ms

P(r−1)
(s)

uϕr+s−1


p

≤
1

mr−1+1/p

 1/m

0

Ω s
ϕ


f (r−1), t


uϕr−1,p

t1+1/p
dt,

where the last inequality follows from [5, p. 100], considering that P(r−1) is a polynomial
approximating f (r−1) with the order as its best approximating polynomial in the proper metric
(we shall call P(r−1) the quasi best approximant).

The proof is complete. �

2.2. Hermite–Fejér interpolation

As is well known, we can write

Hm,r (w, f ) = Fm,r (w, f ) + Gm,r (w, f ), r > 1,

where Fm,r is the Hermite–Fejér interpolation polynomial of higher order defined, for 1 ≤ k ≤

m, by
Fm,r (w, f, xk) = f (xk),

Fm,r (w, f )(i)(xk) = 0, i = 1, . . . , r − 1

and 
Gm,r (w, f, xk) = 0,

Gm,r (w, f )(i)(xk) = f (i)(xk) i = 1, . . . , r − 1.

If r = 1, then Fm,1(w, f ) = Lm(w, f ); now, we define Gm,1(w, f ) ≡ 0. The behaviour of the
polynomial Fm,r (w, f ) is given by the following.

Theorem 3. Conditions (2.2) are equivalent to

∥uFm,r (w; f )∥p ≤ C∥uFm,r−1(w; f )∥p, C ≠ C(m, f ), (2.12)

for any f ∈ C0(−1, 1) and p ∈ (1, ∞).
Moreover, under assumptions (2.10), if Ωϕ( f, t)u,pt−1−1/p

∈ L1,

∥[ f − Fm,r (w; f )]u∥p ≤
C

m1/p

 1/m

0

Ωϕ( f, t)u,p

t1+1/p
dt. (2.13)

Proof. Proceeding as in the proof of Theorem 1, we let

qm−1 =
Fm,r (w; f ) − Fm,r−1(w; f )

pm(w)r−1 .

Then we can write

Fm,r (w; f ) = Fm,r−1(w; f ) + qm−1 pr−1
m (w).
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In addition, using [17],pm(w, x)


(wϕ)(x)

 ≤ C, |x | ≤ 1 −
c

m2 .

By (2.4) and (2.2), we getqm−1 pr−1
m (w)u


p

∼

qm−1
u√

wϕ
r−1


p

∼


m

k=1

1xk




qm−1
u√

wϕ
r−1


(xk)


p1/p

.

Since

|qm−1(xk)| =

 Fm,r−1(w; f ; xk)
(r−1)

(r − 1)!


p′
m(w, xk)

r−1

 ∼


ϕ(xk)

m

r−1 
wϕ(xk)

r−1

×

Fm,r−1(w, f ; xk)
(r−1)

 ,
the sum is equivalent to

m
k=1

1xk

Fm,r−1(w; f ; xk)
(r−1)


ϕ(xk)

m

r−1

u(xk)


p1/p

.

Now, using [8, formula (2.19)] and the Bernstein theorem, the last sum is less than C∥Fm,r−1
(w; f )u∥p. So formula (2.12) follows.

Conversely, if (2.12) is true for any function f ∈ C0(−1, 1), it will be true for a continuous
function gm such that gm(xk) ≠ 0 and g(i)

m (xk) = 0, k = 1, . . . , m, i = 1, . . . , r − 1; that is,

∥Fm,r (w; gm)u∥p ≤ C∥Fm,r−1(w; gm)u∥p.

By definition,

Fm,r (w; gm) = Hm,r (w; gm)

and

Fm,r−1(w; gm) = Hm,r−1(w; gm).

Therefore,Hm,r (w; gm)u


p ≤ C
Hm,r−1(w; gm)u


p ;

that is, we have (2.1) with f = gm . Therefore, condition (2.2) follows.
To estimate the error, we observe that, if Pm is a quasi best approximant polynomial of

f ∈ L p
u , then we have

f − Fm,r (w; f ) = ( f − Pm) + [Pm − Fm,r (w; Pm)] − [Fm,r (w; f − Pm)].

Now, by iterating (2.12), we have ∥Fm,r (w; f )∥p ≤ C∥Lm(w; f )u∥p, and it follows that

∥( f − Pm)u∥p + ∥Fm,r (w; f − Pm)u∥p ≤ ∥( f − Pm)u∥p + ∥Lm(w; f − Pm)u∥p

≤
C

m1/p

 1/m

0

Ωϕ( f, t)u,p

t1+1/p
dt
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(see (1.11)). In order to estimate ∥[Pm − Fm,r (w; Pm)]u∥, we notice that, since Hm,r (w; f ) =

Fm,r (w; f ) + Gm,r (w; f ), with Gm,r (w; f )(xk) = 0 and Gm,r (w; f )(i)(xk) = f (i)(xk), i =

1, . . . , r − 1, we have Pm − Fm,r (w; Pm) = Gm,r (w; Pm).
Therefore, using the same arguments as in the proof of Theorem 1, we set

A(x) =
Gm,r (w; Pm; x) − Gm,r−1(w; Pm; x)

[pm(w; x)]r−1 ∈ Pm−1

and

Gm,r (w; Pm; x) = Gm,r−1(w; Pm; x) + [pm(w; x)]r−1 A(x).

Since

A(xk)
P(r−1)

m (xk) − G(r−1)
m,r−1(w; Pm; xk)

(r − 1)!


p′
m(w; xk)

r−1 ,

under assumptions (2.2), we easily getGm,r (w; Pm) u


p ≤ C

Gm,r−1 (w; Pm) u


p +

P(r−1)
m

 ϕ

m

r−1
u


p


.

Under assumptions (2.10), we can iterate, obtainingGm,r (w; Pm) u


p ≤ C

Gm,2 (w; Pm) u


p +

r−1
i=2

P(i)
m

 ϕ

m

i
u


p


.

Since

∥Gm,2(w; Pm)u∥p =

Lm


w;

P ′
m

p′
m(w)


pm(w)u


p

∼

Lm


w;

P ′
m

p′
m(w)


u

√
wϕ


p

∼


m

k=1

1xk

P ′
m(xk)

ϕ(xk)

m
u(xk)

p
1/p

∼

P ′
m

 ϕ

m


u


p
,

we get

∥Gm,r (w; Pm)u∥p ≤ C
r−1
i=1

P(i)
m

 ϕ

m

i
u


p

≤ rC
P ′

m

 ϕ

m


u


p

≤
C

m1/p

 1/m

0

Ωϕ( f, t)u,p

t1+1/p
dt.

The proof is completed. �

Remark 1. For the sake of simplicity, we took the Jacobi zeros as interpolation points. Nev-
ertheless, the stated theorems hold for a wider class of nodes. Among others we may use the
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zeros of orthonormal polynomials related to generalized Jacobi weights [1,15,17], to generalized
Ditzian–Totik weights [8], to Badkov weights [2], or to the weights considered in [15]. Also, the
weight u of the norm can be one of the previously mentioned weights, but, if u has some inner
zeros, then the Ditzian–Totik ϕ-modulus has to be replaced by a modulus defined in [3] (see
also [9–12]).

This means that, if

Bs
u =


f (s)

∈ L p
u : Ω k

ϕ( f (s), t)u,pt−1−1/p
∈ L1, s, k ≥ 1


,

we obtain the following.
For a wide class of interpolation nodes, the L p

u -convergence of the sequence
Hm,r (w, f ), f ∈ Br−1

u


implies the L p

u -convergence of the sequence
Lm(w, f ), f ∈ B0

u


,

and this last is equivalent to the L p
u -convergence of the sequence of Hermite–Fejér polynomials

Fm,r (w, f ), f ∈ B0
u


.
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Appendix

Here, we give a new relatively simple proof for Theorem A of [8].

Proof. a. We prove that conditions (1.9) imply (1.8).
Let Am = [−1 + c/m2, 1 − c/m2

]. Then, by the Remez inequality [11], we have

∥Lm(w; f )u∥p ≤ ∥Lm(w; f )u∥L p(Am ) = sup
∥g∥q=1

A(g),

A(g) =


Am

Lm(w; f, x)u(x)g(x)dx .

Hence

A(g) =

m
k=1

f (xk)u(xk)

u(xk)p′
m(w, xk)


Am

pm(w, x)

x − xk
u(x)g(x)dx

≤ c
m

k=1

|( f u)(xk)|1xk

√
(wϕ)(xk)

u(xk)
|Γm(g, xk)|,

where, for arbitrary Q ∈ Plm (l ≥ 1, integer),

Γm(g, t) =


Am

pm(w, x)Q(x) − pm(w, t)Q(t)

x − t

(gu)(x)

Q(x)
dx ∈ P2m−2.
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Consequently,

A(g) ≤ C


m

k=1

1xk |( f u)(xk)|
p

1/p  m
k=1

1xk

√wϕ(xk)

u(xk)
Γm(w, xk)

q
1/q

=: C


m

k=1

1xk |( f u)(xk)|
p

1/p

B(g).

By the Marcinkiewicz inequality, we get

B(g) ≤

√
wϕ

u
Γm(g)


Lq (Am )

≤

√
wϕ

u


|H(pm(w)ug)| +

pm(w)Q H


ug

Q


Lq (Am )

:= J1 + J2,

where

(H f )(t) = lim
ε→0+


|x−t |>ε

F(x)

x − t
dt

is the Hilbert transform. Now, if σ is a Jacobi weight, then ∥H( f )σ∥p ≤ C∥ f σ∥p, iff σ ∈ L p

and σ−1
∈ Lq . Therefore,

J1 ≤ C

√
wϕ

u
pm(w)ug


q

≤ C∥g∥q .

Using that 0 < c(m) ≤
√

wϕ ≤ d(m) in Am , we can choose Q such that Q ∼
√

wϕ in Am . So

J2 ≤

√
wϕ

u
pm(w)Q H


ug

Q


Lq (Am )

≤ C

√
wϕ

u
H


ug

Q


Lq (Am )

≤ C

√
wϕ

u

ug

Q

 ∼ ∥g∥q .

b. We prove that (1.8) implies (1.9).
Let us assume that (1.8) holds for all f ∈ C0(−1, 1) and u ∈ L p. Let τm be a piecewise linear

function such that τm(xk) = 0 if xk ∉ [−η, η], η < 1/2, and τm(xk) = | f (xk)| sgn p′
m(w; xk), if

xk ∈ [−η, η] (see [13]). Then (1.8) must hold with τm in place of f . Moreover, since x − xk < 2
and ∥upm(w)∥p ≥ C∥u/

√
wϕ∥p, we have

∥Lm(w, τm)u∥p ≥ ∥Lm(w, τm)u∥L p{|x |>η}

≥ C

 pm(w)u

2


L p{|x |>η}


xk∈[−η,η]

|τm(xk)u(xk)|

|p′
m(w, xk)|u(xk)

≥ C

 u
√

wϕ


L p{|x |>η}


xk∈[−η,η]

|(τmu)(xk)|

|p′
m(w, xk)u(xk)|

.
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Then  u
√

wϕ


L p{|x |>η}


xk∈[−η,η]

∆1/pxk |(τmu)(xk)|

|p′
m(w, xk)u(xk)∆1/pxk |

≤ C

 
xk∈[−η,η]

1xk |(τmu)(xk)|
p

1/p

,

and necessarily u
√

wϕ


L p{|x |>η}

 
xk∈[−η,η]


1

∆1/pxk |p′
m(w, xk)u(xk)|

q
1/p

≤ C.

The last sum is equivalent to 
xk∈[−η,η]

1xk

√(wϕ)(xk)

u

q
1/p

∼

 η

−η

√(wϕ)(x)

u(x)

q dx

1/q

∼ 1,

and therefore
u

√
wϕ

∈ L p.

For the Lq -condition, we consider the functionτm(x) such thatτm(xk) = 0 for x ∈ [−η, η] and

τm(xk) = | f (xk)|sgnp′
m(w, xk), x ∉ [−η, η].

We have

∥Lm(w;τm)u∥p ≥ ∥Lm(w;τ)u∥L p(−η,η)

≥ ∥pm(w)u∥L p(−η,η)


xk ∉[−η,η]

|(τmu)(xk)|

|p′
m(w, xk)|u(xk)

.

The L p-norm is ∼ 1, and


xk ∉[−η,η]

|(τmu)(xk)|∆1/pxk

∆1/pxk |p′
m(w, xk)|u(xk)

≤ c

 
xk∈[−η,η]

|(τmu)(xk)|
p

1/p

,

from which 
xk ∉[−η,η]


1

∆1/pxk |p′
m(w, xk)|u(xk)

q
1/q

≤ C.

The last sum is equivalent to
|x |>η

√wϕ(x)

u(x)

q dx

1/q

,

from which we get the Lq -condition. �
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