Full length article

L^{p}-convergence of Hermite and Hermite-Fejér interpolation

Biancamaria Della Vecchia ${ }^{\text {a,b }}$, Giuseppe Mastroianni ${ }^{\text {c,* }}$, László Szili ${ }^{\text {d }}$, Péter Vértesi ${ }^{\text {e }}$
${ }^{\text {a }}$ Dipartimento di Matematica, Istituto G. Castelnuovo, Università di Roma "La Sapienza", P.le Aldo Moro 2, I-00185 Roma, Italy
${ }^{\mathrm{b}}$ Istituto per le Applicazioni del Calcolo "Mauro Picone", CNR - Sezione di Napoli, Via P. Castellino 111, I-80131 Napoli, Italy
${ }^{\text {c }}$ Dipartimento di Matematica, Informatica ed Economia, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, I-85100 Potenza, Italy
${ }^{\text {d Department of Numerical Analysis, Loránd Eötvös University, Budapest, Pázmány P. sétány I/C, H-1117, Hungary }}$
${ }^{\mathrm{e}}$ Alfréd Rényi Mathematical Institute of the Hungarian Academy of Sciences, Budapest, Reáltanoda u. 13-15, H-1053, Hungary

Received 4 February 2013; received in revised form 17 July 2013; accepted 6 August 2013
Available online 27 August 2013
Communicated by Doron S. Lubinsky

Abstract

Necessary and sufficient conditions for the weighted L^{p}-convergence of Hermite and Hermite-Fejér interpolation of higher order based on Jacobi zeros are given, extending previous results for Lagrange interpolation. Error estimates in the weighted L^{p}-norm are also shown. (C) 2013 Elsevier Inc. All rights reserved.

Keywords: Hermite and Hermite-Fejér interpolation of higher order; Orthogonal polynomials; Weighted L^{p}-convergence

1. Introduction and preliminary results

We start with some notation. We define in the usual way the $L^{p}:=L^{p}(-1,1)$ spaces, $1 \leq p<\infty$, and, if $u(x)=v^{\gamma, \delta}(x)=(1-x)^{\gamma}(1+x)^{\delta}, \gamma, \delta>-\frac{1}{p}, 1 \leq p<\infty,|x|<1$,

[^0]we write $f \in L_{u}^{p}$, if $u f \in L^{p}$ and $\|f\|_{L_{u}^{p}}^{p}=\int_{-1}^{1}|(f u)(t)|^{p} d t<\infty$. If $p=\infty$, we put $L_{u}^{\infty}=C_{u}=\left\{f \in C^{0}(-1,1): \lim _{|x| \rightarrow 1}(f u)(x)=0\right\}$, with the obvious modifications if $\gamma=0$ or $\delta=0$, and in particular we denote by $C_{1}=C^{0}([-1,1])$ the set of all continuous functions on $[-1,1]$. The norm in C_{u} is defined by $\|f\|_{C_{u}}=\|f u\|_{\infty}=\max _{|x| \leq 1}|(f u)(x)|$. Now we denote by $L_{m}(w ; f ; x), w=v^{\alpha, \beta}, \alpha, \beta>-1$, the Lagrange polynomial interpolating a function $f \in C^{0}(-1,1)$ at the m zeros $x_{k} \equiv x_{m, k}, 1 \leq k \leq m$, of the m th Jacobi polynomial $p_{m}(w)$, i.e. $L_{m}\left(w ; f ; x_{i}\right)=f\left(x_{i}\right), i=1,2, \ldots, m$. Naturally, $L_{m}(w ; f) \in \mathcal{P}_{m-1}$, where \mathcal{P}_{m-1} is the set of all polynomials of degree at most $m-1$.

In what follows, C will stand for positive constants which can assume different values in each formula, and we shall write $C \neq C(a, b, \ldots)$ when C is independent of a, b, \ldots Furthermore, $A \sim B$ will mean that, if A and B are positive quantities depending on some parameters, then there exists a positive constant C independent of these parameters such that $(A / B)^{ \pm 1} \leq C$.

It is well known that, with $1 \leq p<\infty$, the estimate

$$
\begin{equation*}
\left\|L_{m}(w ; f) u\right\|_{p} \leq C\|f\|_{\infty}, \quad C \neq C(m, f), \tag{1.1}
\end{equation*}
$$

holds for any continuous function on $[-1,1]$ if and only if the following condition on the weights is satisfied:

$$
\begin{equation*}
\frac{u}{\sqrt{w \varphi}} \in L^{p}, \quad \text { where } \varphi(x)=\sqrt{1-x^{2}} \tag{1.2}
\end{equation*}
$$

This is a special case of a theorem by P. Nevai in [17]. Obviously, under condition (1.1), the norm $r_{m}(f):=\left\|\left[f-L_{m}(w ; f)\right] u\right\|_{p}$ can be estimated by the best approximation error; that is,

$$
\begin{equation*}
r_{m}(f) \leq C E_{m-1}(f)_{\infty}=C \inf _{P_{m-1} \in \mathcal{P}_{m-1}}\left\|f-P_{m-1}\right\|_{\infty} \tag{1.3}
\end{equation*}
$$

If the function f is not continuous on $[-1,1]$ but belongs to $C_{u}, u=v^{\gamma, \delta}, \gamma, \delta>0$, (for example $f(x)=\log (1+x))$, then, again using [17, (31)], (1.1) can be replaced by

$$
\begin{equation*}
\left\|L_{m}(w ; f) u\right\|_{p} \leq C\|f u\|_{\infty}, \quad C \neq C(m, f), \tag{1.4}
\end{equation*}
$$

with $1 \leq p<\infty$, under the necessary and sufficient conditions

$$
\begin{equation*}
\frac{u}{\sqrt{w \varphi}} \in L^{p} \frac{\sqrt{w \varphi}}{u} \in L^{1} . \tag{1.5}
\end{equation*}
$$

Therefore, the estimate

$$
\begin{equation*}
r_{m}(f) \leq c E_{m-1}(f)_{u, \infty} \tag{1.6}
\end{equation*}
$$

holds, where

$$
E_{m-1}(f)_{u, \infty}=\inf _{P_{m-1} \in \mathcal{P}_{m-1}}\left\|\left(f-P_{m-1}\right) u\right\|_{\infty}
$$

For example, for $f(x)=\log (1+x)$, estimate (1.3) cannot be used. On the other hand, f is continuous in $(-1,1)$ and $f \in C_{u}, u=v^{0, \gamma}$, with arbitrary $\gamma>0$, then, by (1.6), we get $r_{m}(f)=$ $O\left(m^{-2 \gamma}\right)$.

However, in many contexts an estimate of $r_{m}(f)$ is required in terms of the L_{u}^{p}-norm of f (see [7]). A partial result in this direction appears in [14]:

$$
\begin{equation*}
r_{m}(f) \leq \frac{C}{m} E_{m-2}\left(f^{\prime}\right)_{u, p}, \quad 1<p<\infty, C \neq C(m, f), \tag{1.7}
\end{equation*}
$$

under the sufficient hypothesis that the Fourier sums $S_{m}(w, f)$ are uniformly bounded in L_{u}^{p}; that is, $\sup _{m}\left\|S_{m}(w, f) u\right\|_{p} \leq C\|f u\|_{p}$.

A complete "iff" result is given by the following [8].
Theorem A. For any $f \in C^{0}(-1,1), u \in L^{p}$ and $1<p<\infty$,

$$
\begin{equation*}
\left\|L_{m}(w ; f) u\right\|_{p} \sim\left(\sum_{k=1}^{m} \Delta x_{k}\left|(f u)\left(x_{k}\right)\right|^{p}\right)^{1 / p}, \quad C \neq C(m, f) \tag{1.8}
\end{equation*}
$$

with $\Delta x_{k}=x_{k+1}-x_{k}, x_{k}=x_{m, k}(w)$, uniformly w.r.t. m and f, if and only if

$$
\begin{equation*}
\frac{u}{\sqrt{w \varphi}} \in L^{p}, \quad \frac{\sqrt{w \varphi}}{u} \in L^{q}, \quad q^{-1}+p^{-1}=1 \tag{1.9}
\end{equation*}
$$

For the sake of completeness, we shall give an alternative proof of Theorem A in the Appendix, mainly to emphasize the necessity of conditions (1.9).

The sum in (1.8) is uniformly bounded with respect to m if f is continuous on $(-1,1)$ and $f u \in L^{p}$. In the following, we assume that $f \in L_{u}^{p}$ and $\Omega_{\varphi}^{r}(f, t)_{u, p} t^{-1-1 / p} \in L^{1}$, where $\Omega_{\varphi}^{r}(f, t)_{u, p}$ is the main part of the weighted $L^{p} r$ th φ-modulus of continuity (see [5]). Now, the function f is continuous on $(-1,1)$ (see, e.g., [6]), and since [8, pp. 281-283]

$$
\begin{equation*}
\left(\sum_{k=1}^{m} \Delta x_{k}\left|(f u)\left(x_{k}\right)\right|^{p}\right)^{1 / p} \leq \frac{C}{m^{1 / p}} \int_{0}^{1 / m} \frac{\Omega_{\varphi}^{r}(f, t)_{u, p}}{t^{1+1 / p}} d t+c\|f u\|_{p} \tag{1.10}
\end{equation*}
$$

the summation in (1.8) is uniformly bounded. The following corollary holds.
Corollary A. Let $f \in L_{u}^{p}$ and $\Omega_{\varphi}^{r}(f, t)_{u, p} t^{-1-1 / p} \in L^{1}$, with $1<p<\infty$. Then, with the notation and assumptions of Theorem A , we have

$$
\begin{equation*}
\left\|\left[f-L_{m}(w ; f)\right] u\right\|_{p} \leq \frac{C}{m^{1 / p}} \int_{0}^{1 / m} \frac{\Omega_{\varphi}^{r}(f, t)_{u, p}}{t^{1+1 / p}} d t, \quad C \neq C(m, f) \tag{1.11}
\end{equation*}
$$

In the case when $f(x)=\log (1+x), u(x)=v^{\gamma, \gamma}(x)=\left(1-x^{2}\right)^{\gamma}, \gamma>-1 / p$, the error is dominated by $c / m^{2 \gamma+2 / p}$, as for the best L_{u}^{p} approximation.

The aim of this paper is to extend Theorem A and Corollary A to the case of Hermite interpolation. We will obtain, as a result, a close connection among the convergence of Lagrange, Hermite, and Hermite-Fejér interpolation in suitable function spaces. Moreover, the proved estimates cannot be improved, and they cover the ones appearing in the literature.

2. Main results

2.1. Hermite interpolation

Let us denote by $H_{m, r}(w ; f), r \geq 1$, the Hermite polynomial based on the Jacobi zeros and corresponding to a function $f \in C^{r-1}(-1,1)$, i.e., $H_{m, r}^{(i)}\left(w ; f ; x_{k}\right)=f^{(i)}\left(x_{k}\right), k=1, \ldots, m$
and $i=0, \ldots, r-1$; let us remark that $H_{m, 1}(w ; f)=L_{m}(w ; f)$. A wide literature exists on the convergence of this sequence of operators $\left\{H_{m, r}(w)\right\}$. Among others, we mention [4,16,18-22].

The aim of the previous papers was an estimate of the norm $e_{m, r}(f):=\left\|\left[f-H_{m, r}(w, f)\right] u\right\|_{p}$ by the unweighted best approximation error in uniform norm, analogously to the Lagrange interpolation. Here, we want to generalize Theorem A to Hermite interpolation, i.e. we want to include u and p in the error estimation. To this purpose, we state the following theorem.

Theorem 1. Let $u \in L^{p}, p \in(1, \infty)$, and $f \in C^{r-1}(-1,1)$. Then the following inequality holds.

$$
\begin{align*}
\left\|H_{m, r}(w ; f) u\right\|_{p} \leq & C\left[\left\|H_{m, r-1}(w ; f) u\right\|_{p}\right. \\
& \left.+\left(\sum_{k=1}^{m} \Delta x_{k}\left|\left(f^{(r-1)}\left(\frac{\varphi}{m}\right)^{r-1} u\right)\left(x_{k}\right)\right|^{p}\right)^{1 / p}\right] \tag{2.1}
\end{align*}
$$

with $C \neq C(m, f)$, if and only if

$$
\begin{equation*}
\frac{u}{(\sqrt{w \varphi})^{r}} \in L^{p}, \quad \frac{(\sqrt{w \varphi})^{r}}{u} \in L^{q}, \quad\left(p^{-1}+q^{-1}=1\right) . \tag{2.2}
\end{equation*}
$$

Proof. Let us assume that (2.2) holds. Using an idea by Xu [22], with

$$
\begin{equation*}
Q(x)=\frac{H_{m, r}(w ; f ; x)-H_{m, r-1}(w ; f ; x)}{\left[p_{m}(w ; x)\right]^{r-1}} \in \mathcal{P}_{m-1}, \tag{2.3}
\end{equation*}
$$

we can write

$$
H_{m, r}(w ; f)=H_{m, r-1}(w ; f)+Q p_{m}(w)^{r-1} .
$$

Moreover, using the fact that for any measurable function g the relation (see $[13,15]$)

$$
\begin{equation*}
\left\|g p_{m}(w)\right\|_{p} \sim\left\|\frac{g}{\sqrt{w \varphi}}\right\|_{p} \tag{2.4}
\end{equation*}
$$

holds, further, by (2.2) and Theorem A, with $u /(\sqrt{w \varphi})^{r-1}$ instead of u and Q instead of f, we obtain

$$
\begin{aligned}
\left\|Q p_{m}^{r-1}(w) u\right\|_{p} & \sim\left\|Q \frac{u}{(\sqrt{w \varphi})^{r-1}}\right\|_{p} \\
& \leq C\left(\sum_{k=1}^{m} \Delta x_{k}\left|\left(Q \frac{u}{(\sqrt{w \varphi})^{r-1}}\right)\left(x_{k}\right)\right|^{p}\right)^{1 / p}=: S .
\end{aligned}
$$

Now, recalling (2.3) and (see [17])

$$
\frac{1}{\left|p_{m}^{\prime}\left(w, x_{k}\right)\right|} \sim \Delta x_{k} \sqrt{(w \varphi)\left(x_{k}\right)} \sim\left(\frac{\varphi}{m} \sqrt{w \varphi}\right)\left(x_{k}\right)
$$

we get

$$
\begin{align*}
\left|Q\left(x_{k}\right)\right| & =\left|\frac{f^{(r-1)}\left(x_{k}\right)-H_{m, r-1}^{(r-1)}\left(w ; f ; x_{k}\right)}{(r-1)!\left[p_{m}^{\prime}\left(w ; x_{k}\right)\right]^{r-1}}\right| \\
& \sim(\sqrt{w \varphi})^{r-1}\left(x_{k}\right)\left(\frac{\varphi}{m}\right)^{r-1}\left(x_{k}\right)\left|f^{(r-1)}\left(x_{k}\right)-H_{m, r-1}^{(r-1)}\left(w ; f ; x_{k}\right)\right|, \tag{2.5}
\end{align*}
$$

whence S is dominated by

$$
\begin{aligned}
& \left(\sum_{k=1}^{m} \Delta x_{k}\left|\left(f^{(r-1)}\left(\frac{\varphi}{m}\right)^{r-1} u\right)\left(x_{k}\right)\right|^{p}\right)^{1 / p} \\
& \quad+\left(\sum_{k=1}^{m} \Delta x_{k}\left|\left(H_{m, r-1}^{(r-1)}(w ; f)\left(\frac{\varphi}{m}\right)^{r-1} u\right)\left(x_{k}\right)\right|^{p}\right)^{1 / p}=: S_{1}+S_{2} .
\end{aligned}
$$

Now, by the Marcinkiewicz and Bernstein inequalities

$$
S_{2} \leq C\left\|H_{m, r-1}(w, f) u\right\|_{p}
$$

so the first part of Theorem $1((2.2) \Rightarrow(2.1))$ easily follows.
Now, we assume that, for any $f \in C^{r-1}$ and $u \in L^{p}$,

$$
\begin{align*}
\left\|H_{m, r}(w ; f) u\right\|_{p} \leq & C\left[\left\|H_{m, r-1}(w ; f) u\right\|_{p}\right. \\
& \left.+\left(\sum_{k=1}^{m} \Delta x_{k}\left|\left(f^{(r-1)}\left(\frac{\varphi}{m}\right)^{r-1} u\right)\left(x_{k}\right)\right|^{p}\right)^{1 / p}\right] . \tag{2.6}
\end{align*}
$$

Let $g_{m}: g_{m}^{(i)}\left(x_{k}\right)=0, i=0, \ldots, r-2, g_{m}^{(r-1)}\left(x_{k}\right) \neq 0, k=1,2, \ldots, m$. The function $g_{m} \in C^{r-1}(-1,1)$, and $H_{m, r-1}\left(w ; g_{m}\right)=0$. Therefore, by (2.6),

$$
\begin{equation*}
\left\|H_{m, r}\left(w ; g_{m}\right) u\right\|_{p} \leq C\left(\sum_{k=1}^{m} \Delta x_{k}\left|\left(g_{m}^{(r-1)}\left(\frac{\varphi}{m}\right)^{r-1} u\right)\left(x_{k}\right)\right|^{p}\right)^{1 / p} \tag{2.7}
\end{equation*}
$$

Letting $B_{m}=H_{m, r}\left(w ; g_{m}\right) / p_{m}^{r-1}(w) \in \mathcal{P}_{m-1}$, by (2.4), we have

$$
\begin{aligned}
\left\|H_{m, r}\left(w ; g_{m}\right) u\right\|_{p} & =\left\|B_{m} p_{m}^{r-1}(w) u\right\|_{p} \geq C\left\|B_{m} \frac{u}{(\sqrt{w \varphi})^{r-1}}\right\|_{p} \\
& =C\left\|L_{m}\left(w ; B_{m}\right) \frac{u}{(\sqrt{w \varphi})^{r-1}}\right\|_{p} .
\end{aligned}
$$

Thus (2.7) becomes

$$
\left\|L_{m}\left(w, B_{m}\right) \frac{u}{(\sqrt{w \varphi})^{r-1}}\right\|_{p} \leq C\left(\sum_{k=1}^{m} \Delta x_{k}\left|\left(g_{m}^{(r-1)}\left(\frac{\varphi}{m}\right)^{r-1} u\right)\left(x_{k}\right)\right|^{p}\right)^{1 / p} .
$$

Therefore it suffices to show that the sum is equivalent to

$$
\left(\sum_{k=1}^{m} \Delta x_{k}\left|\frac{\left(B_{m} u\right)\left(x_{k}\right)}{\sqrt{(w \varphi)^{r-1}\left(x_{k}\right)}}\right|^{p}\right)^{1 / p}
$$

To this purpose, since, as before (see [17]),

$$
\frac{1}{\left|p_{m}^{\prime}\left(w, x_{k}\right)\right|} \sim \frac{\varphi\left(x_{k}\right)}{m} \sqrt{(\varphi w)\left(x_{k}\right)},
$$

we have

$$
\begin{aligned}
\left|B_{m}\left(x_{k}\right)\right| & =\frac{H_{m, r}\left(w ; g_{m}\right)^{(r-1)}\left(x_{k}\right)}{(r-1)!\left|p_{m}^{\prime}\left(w, x_{k}\right)\right|^{r-1}} \\
& \sim\left|g_{m}^{(r-1)}\left(x_{k}\right)\right|\left(\frac{\varphi\left(x_{k}\right)}{m}\right)^{r-1}\left(\sqrt{(w \varphi)\left(x_{k}\right)}\right)^{r-1}
\end{aligned}
$$

and

$$
\Delta x_{k}\left|B_{m}\left(x_{k}\right) \frac{u\left(x_{k}\right)}{\left(\sqrt{(w \varphi)\left(x_{k}\right)}\right)^{r-1}}\right|^{p} \sim \Delta x_{k}\left|\left(g_{m}^{(r-1)}\left(\frac{\varphi}{m}\right)^{r-1} u\right)\left(x_{k}\right)\right|^{p}
$$

In conclusion, (2.6) implies that

$$
\begin{equation*}
\left\|L_{m}\left(w ; B_{m}\right) \frac{u}{(\sqrt{w \varphi})^{r-1}}\right\|_{p} \leq C\left(\sum_{k=1}^{m} \Delta x_{k}\left|\left(B_{m} \frac{u}{(\sqrt{w \varphi})^{r-1}}\right)\left(x_{k}\right)\right|^{p}\right)^{1 / p} \tag{2.8}
\end{equation*}
$$

Therefore, by Theorem A, with u replaced by $u /(\sqrt{w \varphi})^{r-1}$, and f replaced by B_{m}, inequality (2.8) implies conditions (2.2).

Obviously, Theorem 1 can be iterated. That means we obtain the following theorem, which generalizes Theorem A.

Theorem 2. Let $u \in L^{p}, 1<p<\infty$, and $r>1$. Then, for all $f \in C^{r-1}(-1,1)$ the equivalence

$$
\begin{equation*}
\left\|H_{m, r}(w ; f) u\right\|_{p} \sim\left(\sum_{k=1}^{m} \Delta x_{k} \sum_{i=0}^{r-1}\left|\left(f^{(i)}\left(\frac{\varphi}{m}\right)^{i} u\right)\left(x_{k}\right)\right|^{p}\right)^{1 / p} \tag{2.9}
\end{equation*}
$$

holds uniformly w.r.t. m and f if and only if

$$
\begin{equation*}
\frac{u}{(\sqrt{w \varphi})^{r}} \in L^{p}, \quad \frac{(\sqrt{w \varphi})^{i}}{u} \in L^{q}, \quad i=r, r-1, \ldots, 1 . \tag{2.10}
\end{equation*}
$$

$\left(p^{-1}+q^{-1}=1\right)$.
For $f \in \mathcal{P}_{r m-1}$, formula (2.9) (with " \leq ") is the second Marcinkiewicz inequality with multiple nodes (proved first by Xu [22] using Fourier sums under stronger assumptions on the weights).

Our next statement generalizes Corollary A.
Corollary 1. Let $f^{(r-1)} \in L_{u}^{p}$ and $\Omega_{\varphi}^{s}\left(f^{(r-1)}, t\right)_{u \varphi^{r-1}, p} t^{-1-1 / p} \in L^{1}$, with $s \geq r \geq 1$ and $1<p<\infty$. Then, with the conditions and notation of Theorem 2 , we have

$$
\left\|\left[f-H_{m, r}(w ; f)\right] u\right\|_{p} \leq \frac{C}{m^{r-1+1 / p}} \int_{0}^{1 / m} \frac{\Omega_{\varphi}^{s}\left(f^{(r-1)}, t\right)_{u \varphi^{s-1}, p}}{t^{1+1 / p}} d t
$$

with $C \neq C(m, f)$.
Proof. We can write

$$
\begin{aligned}
& \left(\sum_{k=1}^{m} \Delta x_{k} \sum_{i=0}^{r-1}\left|\left(f^{(i)}\left(\frac{\varphi}{m}\right)^{i} u\right)\left(x_{k}\right)\right|^{p}\right)^{\frac{1}{p}} \leq C\left(\sum_{i=0}^{r-2} \sum_{k=1}^{m} \Delta x_{k}\left|\left(f^{(i)}\left(\frac{\varphi}{m}\right)^{i} u\right)\left(x_{k}\right)\right|^{p}\right)^{\frac{1}{p}} \\
& \quad+C \frac{1}{m^{r-1}}\left(\sum_{k=1}^{m} \Delta x_{k}\left|\left(f^{(r-1)} \varphi^{r-1} u\right)\left(x_{k}\right)\right|^{p}\right)^{\frac{1}{p}}
\end{aligned}
$$

The first sum is dominated by $C \sum_{i=0}^{r-1} \frac{\left\|f^{(i)} \varphi^{i} u\right\|_{p}}{m^{i}}$, using (1.10) several times, with f and u replaced by $f^{(i)}$ and $\varphi^{i} u$, respectively. The second sum is dominated by

$$
C\left\{\frac{\left\|f^{(r-1)} \varphi^{r-1} u\right\|_{p}}{m^{r-1}}+\frac{1}{m^{r-1+1 / p}} \int_{0}^{1 / m} \frac{\Omega_{\varphi}^{s}\left(f^{(r-1)}, t\right)_{u \varphi^{r-1}, p}}{t^{1+1 / p}} d t\right\}
$$

with $s \geq r$, using again (1.10) with $f^{(r-1)}$ instead of f and $u \varphi^{r-1}$ instead of u.
If $P \in \mathcal{P}_{r m-1}$ is the best approximation polynomial of f, we have

$$
\begin{align*}
\left\|\left[f-H_{m, r}(w, f)\right] u\right\|_{p} \leq & C\left(\sum_{i=0}^{r-1} \frac{\left\|(f-P)^{(i)} \varphi^{i} u\right\|_{p}}{m^{i}}\right. \\
& \left.+\frac{1}{m^{r-1+1 / p}} \int_{0}^{1 / m} \frac{\Omega_{\varphi}^{s}\left((f-P)^{(r-1)}, t\right)_{u \varphi^{r-1}, p}}{t^{1+1 / p}} d t\right) \tag{2.11}
\end{align*}
$$

The general term of the sum in the r.h.s. of (2.11) obeys the following inequality:

$$
\frac{\left\|(f-P)^{(i)} \varphi^{i} u\right\|_{p}}{m^{i}} \leq C \frac{E_{r m-1-i}\left(f^{(i)}\right)_{u \varphi^{i}, p}}{m^{i}} \leq C \frac{E_{(r-1) m}\left(f^{(r-1)}\right)_{u \varphi^{r-1}, p}}{m^{r-1}}
$$

whence

$$
\sum_{i=0}^{r-1} \frac{\left\|(f-P)^{(i)} \varphi^{i} u\right\|}{m^{i}} \leq \frac{C}{m^{r-1+1 / p}} \int_{0}^{1 / m} \frac{\Omega_{\varphi}^{s}\left(f^{(r-1)}, t\right)_{u \varphi^{r-1}, p}}{t^{1+1 / p}} d t .
$$

Moreover, the following obvious inequality holds for the second term in the r.h.s. of (2.11):

$$
\begin{aligned}
& \frac{1}{m^{r-1+1 / p}} \int_{0}^{1 / m} \frac{\Omega_{\varphi}^{s}\left((f-P)^{(r-1)} ; t\right)_{u \varphi^{r-1}, p}}{t^{1+1 / p}} d t \\
& \leq \frac{1}{m^{r-1+1 / p}} \int_{0}^{1 / m} \frac{\Omega_{\varphi}^{s}\left(f^{(r-1)}, t\right)_{u \varphi^{r-1}, p}}{t^{1+1 / p}} d t \\
& \quad+\frac{1}{m^{r-1+1 / p}} \int_{0}^{1 / m} \frac{\Omega_{\varphi}^{s}\left(P^{(r-1)}, t\right)_{u \varphi^{r-1}, p}}{t^{1+1 / p}} d t:=A+B .
\end{aligned}
$$

Now

$$
\begin{aligned}
B & \leq \frac{C}{m^{r-1+1 / p}} \int_{0}^{1 / m} t^{s-1-1 / p} d t\left\|\left[P^{(r-1)}\right]^{(s)} u \varphi^{r+s-1}\right\|_{p} \\
& \sim \frac{1}{m^{r-1}} \frac{1}{m^{s}}\left\|\left[P^{(r-1)}\right]^{(s)} u \varphi^{r+s-1}\right\|_{p} \\
& \leq \frac{1}{m^{r-1+1 / p}} \int_{0}^{1 / m} \frac{\Omega_{\varphi}^{s}\left(f^{(r-1)}, t\right)_{u \varphi^{r-1}, p}}{t^{1+1 / p}} d t
\end{aligned}
$$

where the last inequality follows from [5, p. 100], considering that $P^{(r-1)}$ is a polynomial approximating $f^{(r-1)}$ with the order as its best approximating polynomial in the proper metric (we shall call $P^{(r-1)}$ the quasi best approximant).

The proof is complete.

2.2. Hermite-Fejér interpolation

As is well known, we can write

$$
H_{m, r}(w, f)=F_{m, r}(w, f)+G_{m, r}(w, f), \quad r>1,
$$

where $F_{m, r}$ is the Hermite-Fejér interpolation polynomial of higher order defined, for $1 \leq k \leq$ m, by

$$
\left\{\begin{array}{l}
F_{m, r}\left(w, f, x_{k}\right)=f\left(x_{k}\right), \\
F_{m, r}(w, f)^{(i)}\left(x_{k}\right)=0, \quad i=1, \ldots, r-1
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
G_{m, r}\left(w, f, x_{k}\right)=0 \\
G_{m, r}(w, f)^{(i)}\left(x_{k}\right)=f^{(i)}\left(x_{k}\right) \quad i=1, \ldots, r-1
\end{array}\right.
$$

If $r=1$, then $F_{m, 1}(w, f)=L_{m}(w, f)$; now, we define $G_{m, 1}(w, f) \equiv 0$. The behaviour of the polynomial $F_{m, r}(w, f)$ is given by the following.

Theorem 3. Conditions (2.2) are equivalent to

$$
\begin{equation*}
\left\|u F_{m, r}(w ; f)\right\|_{p} \leq C\left\|u F_{m, r-1}(w ; f)\right\|_{p}, \quad C \neq C(m, f), \tag{2.12}
\end{equation*}
$$

for any $f \in C^{0}(-1,1)$ and $p \in(1, \infty)$.
Moreover, under assumptions (2.10), if $\Omega_{\varphi}(f, t)_{u, p} t^{-1-1 / p} \in L^{1}$,

$$
\begin{equation*}
\left\|\left[f-F_{m, r}(w ; f)\right] u\right\|_{p} \leq \frac{C}{m^{1 / p}} \int_{0}^{1 / m} \frac{\Omega_{\varphi}(f, t)_{u, p}}{t^{1+1 / p}} d t \tag{2.13}
\end{equation*}
$$

Proof. Proceeding as in the proof of Theorem 1, we let

$$
q_{m-1}=\frac{F_{m, r}(w ; f)-F_{m, r-1}(w ; f)}{p_{m}(w)^{r-1}} .
$$

Then we can write

$$
F_{m, r}(w ; f)=F_{m, r-1}(w ; f)+q_{m-1} p_{m}^{r-1}(w) .
$$

In addition, using [17],

$$
\left|p_{m}(w, x) \sqrt{(w \varphi)(x)}\right| \leq C, \quad|x| \leq 1-\frac{c}{m^{2}} .
$$

By (2.4) and (2.2), we get

$$
\begin{aligned}
\left\|q_{m-1} p_{m}^{r-1}(w) u\right\|_{p} & \sim\left\|q_{m-1} \frac{u}{(\sqrt{w \varphi})^{r-1}}\right\|_{p} \\
& \sim\left(\sum_{k=1}^{m} \Delta x_{k}\left|\left(q_{m-1} \frac{u}{(\sqrt{w \varphi})^{r-1}}\right)\left(x_{k}\right)\right|^{p}\right)^{1 / p} .
\end{aligned}
$$

Since

$$
\begin{aligned}
\left|q_{m-1}\left(x_{k}\right)\right|= & \left|\frac{F_{m, r-1}\left(w ; f ; x_{k}\right)^{(r-1)}}{(r-1)!\left[p_{m}^{\prime}\left(w, x_{k}\right)\right]^{r-1}}\right| \sim\left(\frac{\varphi\left(x_{k}\right)}{m}\right)^{r-1}\left(\sqrt{w \varphi\left(x_{k}\right)}\right)^{r-1} \\
& \times\left|F_{m, r-1}\left(w, f ; x_{k}\right)^{(r-1)}\right|
\end{aligned}
$$

the sum is equivalent to

$$
\left(\sum_{k=1}^{m} \Delta x_{k}\left|F_{m, r-1}\left(w ; f ; x_{k}\right)^{(r-1)}\left(\frac{\varphi\left(x_{k}\right)}{m}\right)^{r-1} u\left(x_{k}\right)\right|^{p}\right)^{1 / p} .
$$

Now, using [8, formula (2.19)] and the Bernstein theorem, the last sum is less than $C \| F_{m, r-1}$ ($w ; f$) u $\|_{p}$. So formula (2.12) follows.

Conversely, if (2.12) is true for any function $f \in C^{0}(-1,1)$, it will be true for a continuous function \bar{g}_{m} such that $\bar{g}_{m}\left(x_{k}\right) \neq 0$ and $\bar{g}_{m}^{(i)}\left(x_{k}\right)=0, k=1, \ldots, m, i=1, \ldots, r-1$; that is,

$$
\left\|F_{m, r}\left(w ; \bar{g}_{m}\right) u\right\|_{p} \leq C\left\|F_{m, r-1}\left(w ; \bar{g}_{m}\right) u\right\|_{p}
$$

By definition,

$$
F_{m, r}\left(w ; \bar{g}_{m}\right)=H_{m, r}\left(w ; \bar{g}_{m}\right)
$$

and

$$
F_{m, r-1}\left(w ; \bar{g}_{m}\right)=H_{m, r-1}\left(w ; \bar{g}_{m}\right)
$$

Therefore,

$$
\left\|H_{m, r}\left(w ; \bar{g}_{m}\right) u\right\|_{p} \leq C\left\|H_{m, r-1}\left(w ; \bar{g}_{m}\right) u\right\|_{p} ;
$$

that is, we have (2.1) with $f=\bar{g}_{m}$. Therefore, condition (2.2) follows.
To estimate the error, we observe that, if P_{m} is a quasi best approximant polynomial of $f \in L_{u}^{p}$, then we have

$$
f-F_{m, r}(w ; f)=\left(f-P_{m}\right)+\left[P_{m}-F_{m, r}\left(w ; P_{m}\right)\right]-\left[F_{m, r}\left(w ; f-P_{m}\right)\right]
$$

Now, by iterating (2.12), we have $\left\|F_{m, r}(w ; f)\right\|_{p} \leq C\left\|L_{m}(w ; f) u\right\|_{p}$, and it follows that

$$
\begin{aligned}
\left\|\left(f-P_{m}\right) u\right\|_{p}+\left\|F_{m, r}\left(w ; f-P_{m}\right) u\right\|_{p} & \leq\left\|\left(f-P_{m}\right) u\right\|_{p}+\left\|L_{m}\left(w ; f-P_{m}\right) u\right\|_{p} \\
& \leq \frac{C}{m^{1 / p}} \int_{0}^{1 / m} \frac{\Omega_{\varphi}(f, t)_{u, p}}{t^{1+1 / p}} d t
\end{aligned}
$$

(see (1.11)). In order to estimate $\left\|\left[P_{m}-F_{m, r}\left(w ; P_{m}\right)\right] u\right\|$, we notice that, since $H_{m, r}(w ; f)=$ $F_{m, r}(w ; f)+G_{m, r}(w ; f)$, with $G_{m, r}(w ; f)\left(x_{k}\right)=0$ and $G_{m, r}(w ; f)^{(i)}\left(x_{k}\right)=f^{(i)}\left(x_{k}\right), i=$ $1, \ldots, r-1$, we have $P_{m}-F_{m, r}\left(w ; P_{m}\right)=G_{m, r}\left(w ; P_{m}\right)$.

Therefore, using the same arguments as in the proof of Theorem 1, we set

$$
A(x)=\frac{G_{m, r}\left(w ; P_{m} ; x\right)-G_{m, r-1}\left(w ; P_{m} ; x\right)}{\left[p_{m}(w ; x)\right]^{r-1}} \in \mathbb{P}_{m-1}
$$

and

$$
G_{m, r}\left(w ; P_{m} ; x\right)=G_{m, r-1}\left(w ; P_{m} ; x\right)+\left[p_{m}(w ; x)\right]^{r-1} A(x)
$$

Since

$$
A\left(x_{k}\right) \frac{P_{m}^{(r-1)}\left(x_{k}\right)-G_{m, r-1}^{(r-1)}\left(w ; P_{m} ; x_{k}\right)}{(r-1)!\left[p_{m}^{\prime}\left(w ; x_{k}\right)\right]^{r-1}}
$$

under assumptions (2.2), we easily get

$$
\left\|G_{m, r}\left(w ; P_{m}\right) u\right\|_{p} \leq C\left\{\left\|G_{m, r-1}\left(w ; P_{m}\right) u\right\|_{p}+\left\|P_{m}^{(r-1)}\left(\frac{\varphi}{m}\right)^{r-1} u\right\|_{p}\right\}
$$

Under assumptions (2.10), we can iterate, obtaining

$$
\left\|G_{m, r}\left(w ; P_{m}\right) u\right\|_{p} \leq C\left\{\left\|G_{m, 2}\left(w ; P_{m}\right) u\right\|_{p}+\sum_{i=2}^{r-1}\left\|P_{m}^{(i)}\left(\frac{\varphi}{m}\right)^{i} u\right\|_{p}\right\}
$$

Since

$$
\begin{aligned}
\left\|G_{m, 2}\left(w ; P_{m}\right) u\right\|_{p} & =\left\|L_{m}\left(w ; \frac{P_{m}^{\prime}}{p_{m}^{\prime}(w)}\right) p_{m}(w) u\right\|_{p} \\
& \sim\left\|L_{m}\left(w ; \frac{P_{m}^{\prime}}{p_{m}^{\prime}(w)}\right) \frac{u}{\sqrt{w \varphi}}\right\|_{p} \\
& \sim\left(\sum_{k=1}^{m} \Delta x_{k}\left|P_{m}^{\prime}\left(x_{k}\right) \frac{\varphi\left(x_{k}\right)}{m} u\left(x_{k}\right)\right|^{p}\right)^{1 / p} \\
& \sim\left\|P_{m}^{\prime}\left(\frac{\varphi}{m}\right) u\right\|_{p}
\end{aligned}
$$

we get

$$
\begin{aligned}
\left\|G_{m, r}\left(w ; P_{m}\right) u\right\|_{p} & \leq C \sum_{i=1}^{r-1}\left\|P_{m}^{(i)}\left(\frac{\varphi}{m}\right)^{i} u\right\|_{p} \\
& \leq r C\left\|P_{m}^{\prime}\left(\frac{\varphi}{m}\right) u\right\|_{p} \\
& \leq \frac{C}{m^{1 / p}} \int_{0}^{1 / m} \frac{\Omega_{\varphi}(f, t)_{u, p}}{t^{1+1 / p}} d t
\end{aligned}
$$

The proof is completed.
Remark 1. For the sake of simplicity, we took the Jacobi zeros as interpolation points. Nevertheless, the stated theorems hold for a wider class of nodes. Among others we may use the
zeros of orthonormal polynomials related to generalized Jacobi weights [1,15,17], to generalized Ditzian-Totik weights [8], to Badkov weights [2], or to the weights considered in [15]. Also, the weight u of the norm can be one of the previously mentioned weights, but, if u has some inner zeros, then the Ditzian-Totik φ-modulus has to be replaced by a modulus defined in [3] (see also [9-12]).

This means that, if

$$
\mathcal{B}_{u}^{s}=\left\{f^{(s)} \in L_{u}^{p}: \Omega_{\varphi}^{k}\left(f^{(s)}, t\right)_{u, p} t^{-1-1 / p} \in L^{1}, s, k \geq 1\right\},
$$

we obtain the following.
For a wide class of interpolation nodes, the L_{u}^{p}-convergence of the sequence

$$
\left\{H_{m, r}(w, f), f \in \mathcal{B}_{u}^{r-1}\right\}
$$

implies the L_{u}^{p}-convergence of the sequence

$$
\left\{L_{m}(w, f), f \in \mathcal{B}_{u}^{0}\right\}
$$

and this last is equivalent to the L_{u}^{p}-convergence of the sequence of Hermite-Fejér polynomials $\left\{F_{m, r}(w, f), f \in \mathcal{B}_{u}^{0}\right\}$.

Acknowledgment

The second author was partially supported by the University of Basilicata (local funds).

Appendix

Here, we give a new relatively simple proof for Theorem A of [8].
Proof. a. We prove that conditions (1.9) imply (1.8).
Let $A_{m}=\left[-1+c / m^{2}, 1-c / m^{2}\right]$. Then, by the Remez inequality [11], we have

$$
\begin{aligned}
& \left\|L_{m}(w ; f) u\right\|_{p} \leq\left\|L_{m}(w ; f) u\right\|_{L^{p}\left(A_{m}\right)}=\sup _{\|g\|_{q}=1} A(g), \\
& A(g)=\int_{A_{m}} L_{m}(w ; f, x) u(x) g(x) d x .
\end{aligned}
$$

Hence

$$
\begin{aligned}
A(g) & =\sum_{k=1}^{m} \frac{f\left(x_{k}\right) u\left(x_{k}\right)}{u\left(x_{k}\right) p_{m}^{\prime}\left(w, x_{k}\right)} \int_{A_{m}} \frac{p_{m}(w, x)}{x-x_{k}} u(x) g(x) d x \\
& \leq c \sum_{k=1}^{m}\left|(f u)\left(x_{k}\right)\right| \Delta x_{k} \frac{\sqrt{(w \varphi)\left(x_{k}\right)}}{u\left(x_{k}\right)}\left|\Gamma_{m}\left(g, x_{k}\right)\right|,
\end{aligned}
$$

where, for arbitrary $Q \in \mathcal{P}_{l m}(l \geq 1$, integer $)$,

$$
\Gamma_{m}(g, t)=\int_{A_{m}} \frac{p_{m}(w, x) Q(x)-p_{m}(w, t) Q(t)}{x-t} \frac{(g u)(x)}{Q(x)} d x \in \mathcal{P}_{2 m-2} .
$$

Consequently,

$$
\begin{aligned}
A(g) & \leq C\left(\sum_{k=1}^{m} \Delta x_{k}\left|(f u)\left(x_{k}\right)\right|^{p}\right)^{1 / p}\left(\sum_{k=1}^{m} \Delta x_{k}\left|\frac{\sqrt{w \varphi}\left(x_{k}\right)}{u\left(x_{k}\right)} \Gamma_{m}\left(w, x_{k}\right)\right|^{q}\right)^{1 / q} \\
& =C\left(\sum_{k=1}^{m} \Delta x_{k}\left|(f u)\left(x_{k}\right)\right|^{p}\right)^{1 / p} B(g) .
\end{aligned}
$$

By the Marcinkiewicz inequality, we get

$$
\begin{aligned}
B(g) & \leq\left\|\frac{\sqrt{w \varphi}}{u} \Gamma_{m}(g)\right\|_{L^{q}\left(A_{m}\right)} \\
& \leq\left\|\frac{\sqrt{w \varphi}}{u}\left(\left|H\left(p_{m}(w) u g\right)\right|+\left|p_{m}(w) Q H\left(\frac{u g}{Q}\right)\right|\right)\right\|_{L^{q}\left(A_{m}\right)} \\
& :=J_{1}+J_{2},
\end{aligned}
$$

where

$$
(H f)(t)=\lim _{\varepsilon \rightarrow 0^{+}} \int_{|x-t|>\varepsilon} \frac{F(x)}{x-t} d t
$$

is the Hilbert transform. Now, if σ is a Jacobi weight, then $\|H(f) \sigma\|_{p} \leq C\|f \sigma\|_{p}$, iff $\sigma \in L^{p}$ and $\sigma^{-1} \in L^{q}$. Therefore,

$$
J_{1} \leq C\left\|\frac{\sqrt{w \varphi}}{u} p_{m}(w) u g\right\|_{q} \leq C\|g\|_{q}
$$

Using that $0<c(m) \leq \sqrt{w \varphi} \leq d(m)$ in A_{m}, we can choose Q such that $Q \sim \sqrt{w \varphi}$ in A_{m}. So

$$
\begin{aligned}
J_{2} & \leq\left\|\frac{\sqrt{w \varphi}}{u} p_{m}(w) Q H\left(\frac{u g}{Q}\right)\right\|_{L^{q}\left(A_{m}\right)} \\
& \leq C\left\|\frac{\sqrt{w \varphi}}{u} H\left(\frac{u g}{Q}\right)\right\|_{L^{q}\left(A_{m}\right)} \\
& \leq C\left\|\frac{\sqrt{w \varphi}}{u} \frac{u g}{Q}\right\| \sim\|g\|_{q} .
\end{aligned}
$$

b. We prove that (1.8) implies (1.9).

Let us assume that (1.8) holds for all $f \in C^{0}(-1,1)$ and $u \in L^{p}$. Let τ_{m} be a piecewise linear function such that $\tau_{m}\left(x_{k}\right)=0$ if $x_{k} \notin[-\eta, \eta], \eta<1 / 2$, and $\tau_{m}\left(x_{k}\right)=\left|f\left(x_{k}\right)\right| \operatorname{sgn} p_{m}^{\prime}\left(w ; x_{k}\right)$, if $x_{k} \in[-\eta, \eta]$ (see [13]). Then (1.8) must hold with τ_{m} in place of f. Moreover, since $x-x_{k}<2$ and $\left\|u p_{m}(w)\right\|_{p} \geq C\|u / \sqrt{w \varphi}\|_{p}$, we have

$$
\begin{aligned}
\left\|L_{m}\left(w, \tau_{m}\right) u\right\|_{p} & \geq\left\|L_{m}\left(w, \tau_{m}\right) u\right\|_{L^{p}\{|x|>\eta\}} \\
& \geq C\left\|\frac{p_{m}(w) u}{2}\right\|_{L^{p}\{|x|>\eta\}} \sum_{x_{k} \in[-\eta, \eta]} \frac{\left|\tau_{m}\left(x_{k}\right) u\left(x_{k}\right)\right|}{\left|p_{m}^{\prime}\left(w, x_{k}\right)\right| u\left(x_{k}\right)} \\
& \geq C\left\|\frac{u}{\sqrt{w \varphi}}\right\|_{L^{p}\{|x|>\eta\}} \sum_{x_{k} \in[-\eta, \eta]} \frac{\left|\left(\tau_{m} u\right)\left(x_{k}\right)\right|}{\left|p_{m}^{\prime}\left(w, x_{k}\right) u\left(x_{k}\right)\right|} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \left\|\frac{u}{\sqrt{w \varphi}}\right\|_{L^{p}\{|x|>\eta\}} \sum_{x_{k} \in[-\eta, \eta]} \frac{\Delta^{1 / p} x_{k}\left|\left(\tau_{m} u\right)\left(x_{k}\right)\right|}{\left|p_{m}^{\prime}\left(w, x_{k}\right) u\left(x_{k}\right) \Delta^{1 / p} x_{k}\right|} \\
& \leq C\left(\sum_{x_{k} \in[-\eta, \eta]} \Delta x_{k}\left|\left(\tau_{m} u\right)\left(x_{k}\right)\right|^{p}\right)^{1 / p},
\end{aligned}
$$

and necessarily

$$
\left\|\frac{u}{\sqrt{w \varphi}}\right\|_{L^{p}\{|x|>\eta\}}\left(\sum_{x_{k} \in[-\eta, \eta]}\left[\frac{1}{\Delta^{1 / p} x_{k}\left|p_{m}^{\prime}\left(w, x_{k}\right) u\left(x_{k}\right)\right|}\right]^{q}\right)^{1 / p} \leq C .
$$

The last sum is equivalent to

$$
\left(\sum_{x_{k} \in[-\eta, \eta]} \Delta x_{k}\left|\frac{\sqrt{(w \varphi)\left(x_{k}\right)}}{u}\right|^{q}\right)^{1 / p} \sim\left(\int_{-\eta}^{\eta}\left|\frac{\sqrt{(w \varphi)(x)}}{u(x)}\right|^{q} d x\right)^{1 / q} \sim 1,
$$

and therefore

$$
\frac{u}{\sqrt{w \varphi}} \in L^{p} .
$$

For the L^{q}-condition, we consider the function $\widetilde{\tau}_{m}(x)$ such that $\widetilde{\tau}_{m}\left(x_{k}\right)=0$ for $x \in[-\eta, \eta]$ and

$$
\tilde{\tau}_{m}\left(x_{k}\right)=\left|f\left(x_{k}\right)\right| \operatorname{sgn} p_{m}^{\prime}\left(w, x_{k}\right), \quad x \notin[-\eta, \eta] .
$$

We have

$$
\begin{aligned}
\left\|L_{m}\left(w ; \tilde{\tau}_{m}\right) u\right\|_{p} & \geq\left\|L_{m}(w ; \widetilde{\tau}) u\right\|_{L^{p}(-\eta, \eta)} \\
& \geq\left\|p_{m}(w) u\right\|_{L^{p}(-\eta, \eta)} \sum_{x_{k} \notin[-\eta, \eta]} \frac{\left|\left(\widetilde{\tau}_{m} u\right)\left(x_{k}\right)\right|}{\left|p_{m}^{\prime}\left(w, x_{k}\right)\right| u\left(x_{k}\right)} .
\end{aligned}
$$

The L^{p}-norm is ~ 1, and

$$
\sum_{x_{k} \notin[-\eta, \eta]} \frac{\left|\left(\tilde{\tau}_{m} u\right)\left(x_{k}\right)\right| \Delta^{1 / p} x_{k}}{\Delta^{1 / p} x_{k}\left|p_{m}^{\prime}\left(w, x_{k}\right)\right| u\left(x_{k}\right)} \leq c\left(\sum_{x_{k} \in[-\eta, \eta]}\left|\left(\widetilde{\tau}_{m} u\right)\left(x_{k}\right)\right|^{p}\right)^{1 / p},
$$

from which

$$
\left(\sum_{x_{k} \notin[-\eta, \eta]}\left[\frac{1}{\Delta^{1 / p} x_{x_{k}}\left|p_{m}^{\prime}\left(w, x_{k}\right)\right| u\left(x_{k}\right)}\right]^{q}\right)^{1 / q} \leq C
$$

The last sum is equivalent to

$$
\left(\int_{|x|>\eta}\left|\frac{\sqrt{w \varphi(x)}}{u(x)}\right|^{q} d x\right)^{1 / q},
$$

from which we get the L^{q}-condition.

References

[1] V. Badkov, Convergence in the mean and almost everywhere of Fourier series in polynomials orthogonal on an interval, Math. USSR-Sb. 24 (1974) 223-256.
[2] V.M. Badkov, Asymptotic and extremal properties of orthogonal polynomials with singularities in the weight, Tr . Mat. Inst. Steklova 198 (1992) 41-88 (in Russian);
Proc. Steklov Inst. Math. (1) (1994) 37-82 (198). Translation.
[3] M.C. De Bonis, G. Mastroianni, M.G. Russo, Polynomial approximation with special doubling weights, Acta Sci. Math. (Szeged) 69 (1-2) (2003) 159-184.
[4] B. Della Vecchia, G. Mastroianni, P. Vértesi, Boundedness of Lagrange and Hermite operators, in: M.W. Muller, M. Felten, D.H. Mache (Eds.), Approximation Theory, Proc. IDoMAT 95, in: Mathematical Research, vol. 86, Akademic-Verlag, Berlin, 1995, pp. 53-69.
[5] Z. Ditzian, V. Totik, Moduli of Smoothness, in: Springer Series in Computational Mathematics, vol. 9, SpringerVerlag, 1987.
[6] L. Fermo, Embedding theorems for functions with inner singularities, Acta Sci. Math. (Szeged) 75 (3-4) (2009) 347-373.
[7] V.H. Hristov, Best onesided approximations and mean approximations by interpolation polynomials of periodic functions, Math. Balkanica (N.S.) 3 (3-4) (1989) 418-429.
[8] G. Mastroianni, M.G. Russo, Lagrange interpolation in weighted Besov spaces, Constr. Approx. 15 (1999) 257-289.
[9] G. Mastroianni, V. Totik, Jackson type inequalities for doubling and A_{p} weights, Rend. Circ. Mat. Palermo (2) I (Suppl. No. 52) (1998) 83-99. Proceedings of the Third International Conference on Functional Analysis and Approximation Theory, Vol. I (Acquafredda di Maratea, 1996).
[10] G. Mastroianni, V. Totik, Jackson type inequalities for doubling weights II, East J. Approx. 5 (1999) 101-116.
[11] G. Mastroianni, V. Totik, Weighted polynomial inequalities with doubling and A^{∞} weights, Constr. Approx. 16 (2000) 37-71.
[12] G. Mastroianni, V. Totik, Best approximation and moduli of smoothness for doubling weights, J. Approx. Theory 110 (2001) 180-199.
[13] G. Mastroianni, P. Vértesi, Mean convergence of Lagrange interpolation on arbitrary system of nodes, Acta Sci. Math. (Szeged) 57 (1-4) (1993) 429-441.
[14] G. Mastroianni, P. Vértesi, Weighted L_{p} error of Lagrange interpolation, J. Approx. Theory 82 (3) (1995) 321-339.
[15] G. Mastroianni, P. Vértesi, Some applications of generalized Jacobi weights, Acta Math. Hungar. 77 (4) (1997) 323-357.
[16] A. Máté, P. Nevai, Necessary conditions for mean convergence of Hermite-Fejér interpolation, in: A Tribute to Paul Erdős, Cambridge Univ. Press, Cambridge, 1990, pp. 317-330.
[17] P. Nevai, Mean convergence of Lagrange interpolation III, Trans. Amer. Math. Soc. 282 (1984) 669-698.
[18] P. Nevai, P. Vértesi, Mean convergence of Hermite-Fejér interpolation, J. Math. Anal. Appl. 105 (1985) 26-58.
[19] J. Szabados, A.K. Varma, On higher order Hermite-Fejér interpolation in weighted L_{p}-metric, Acta Math. Hungar. 58 (1-2) (1991) 133-140.
[20] P. Vértesi, Y. Xu, Weighted L_{p} convergence of Hermite interpolation of higher order, Acta Math. Hungar. 59 (3-4) (1992) 423-438.
[21] P. Vértesi, Y. Xu, Mean convergence of orthogonal Fourier series and interpolating polynomials, Acta Math. Hungar. 107 (1-2) (2005) 119-147.
[22] Y. Xu, Mean convergence of generalized Jacobi series and interpolating polynomials, II, J. Approx. Theory 76 (1) (1994) 77-92.

[^0]: * Corresponding author.

 E-mail addresses: biancamaria.dellavecchia@uniroma1.it (B. Della Vecchia), giuseppe.mastroianni@ unibas.it, mastroianni.csafta@unibas.it (G. Mastroianni), szili@ludens.elte.hu (L. Szili), vertesi@renyi.hu (P. Vértesi).

