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Abstract. In [1], we have introduced a new weighted type of modification
of the classical Kantorovich operator. The advantage of this operator is
that there is no restriction on the parameters of the weight, and the
class of functions is wider than in the earlier version of the weighted
operator (cf. the monograph of Ditzian and Totik [3]). Direct and con-
verse theorems and a Voronovskaya-type relation were proved. Here we
solve the saturation problem of the operator (Theorem 2.1). We follow
the method developed in [3], but the details are much more involved.
A surprising fact emerges in determining the trivial class of saturation
(Theorem 3.1).
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1. Introduction

Since the Bernstein polynomials are not defined for f ∈ Lp([0, 1]), 1 ≤ p <
∞, the Kantorovich polynomials

Kn(f ;x) =

n∑
k=0

pn,k(x)(n+ 1)

∫
Ik

f(u) du, (1.1)

Ik :=

[
k

n+ 1
,
k + 1

n+ 1

]
, pn,k(x) =

(
n

k

)
xk(1− x)n−k, x ∈ [0, 1],

The work of Giuseppe Mastroianni was supported by University of Basilicata (local funds).
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were introduced and studied deeply (see, e.g., [3, p. 115 ff.]). The case of
weighted approximation by Kn operator with the Jacobi weight

w(x) = xα(1− x)β , α, β > −1,

was also investigated (see [3, p. 159]) under the restrictions

−1

p
< α, β < 1− 1

p
(1.2)

on the weight parameters. Here the left side inequalities for the weight pa-
rameters are necessary. In order to remove the right hand side inequalities, we
constructed a weighted generalization of the classical Kantorovich operator

B∗n(f ;x) =
n∑

k=0

∫
Ik
(wf)(t) dt∫
Ik

w(t) dt
pn,k(x), x ∈ [0, 1], (1.3)

where

−1

p
< α, β, 1 ≤ p ≤ ∞

and

f ∈ Lp
w :=

{
{f |wf ∈ Lp(0, 1)}, if 1 ≤ p < ∞,

{f | f ∈ C(0, 1), limx(1−x)→0(wf)(x) = 0}, if p = ∞.

The norm in Lp
w is defined as

‖wf‖p =

⎧⎨
⎩
(∫ 1

0
|(wf)(x)|p dx

)1/p

, if 1 ≤ p < ∞,

sup0≤x≤1 |(wf)(x)|, if p = ∞.

In order to formulate the results of [1], we need the notion of weighted mod-
ulus of smoothness:

ω2
ϕ(f ; t)w,p = sup

0<h≤t
‖wΔ2

hϕ‖Lp([Ch2,1−Ch2])

+ ‖w←−Δ2
hf‖Lp([1−Ch2,1]) + ‖w−→Δ2

hf‖Lp([0,Ch2]),
(1.4)

where
−→
Δ2

hf(x) =f(x)− 2f(x+ h) + f(x+ 2h),
←−
Δ2

hf(x) =f(x)− 2f(x− h) + f(x− 2h),

Δ2
hϕf(x) = f

(
x+ h

ϕ(x)

2

)
− 2f(x) + f

(
x− h

ϕ(x)

2

)
and

ϕ(x) =
√

x(1− x).

(cf. [3, p. 218]).
Also, for f ∈ Lp

w define

E0(f)w,p := inf
c∈R

‖w(f − c)‖p
to be the best approximation of f in weighted Lp

w spaces by constants.
In [1], we proved the following approximation results.
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Theorem 1.1. If f ∈ Lp
w, 1 ≤ p ≤ ∞, then

‖w[f −B∗n(f)]‖p ≤ C

[
ω2
ϕ

(
f ;

1√
n

)
w,p

+
E0(f)w,p

n

]
. (1.5)

Theorem 1.2. If f ∈ Lp
w, 1 ≤ p ≤ ∞, then

‖w[f −B∗n(f)]‖p = O(n−γ/2) ⇔ ω2
ϕ(f ;h)w,p = O(hγ), 0 < γ < 2.

Theorem 1.3. For f ′′ ∈ C[0, 1] we have

lim
n→∞n[B∗n(f ;x)− f(x)] =

⎧⎪⎨
⎪⎩

α+1
α+2f

′(0), if x = 0,
1−2x

2 f ′(x) + x(1−x)
2 f ′′(x), if 0 < x < 1,

−β+1
β+2f

′(1), if x = 1.

(1.6)

2. The saturation class

Theorem 1.2 excludes the case γ = 2, which means the saturation. Here we
consider this situation.

Theorem 2.1. Let 1 < p < ∞, and

−1 < −1

p
< α, β 
= 1− 1

p
.

Then

‖w[f −B∗n(f)]‖p = O

(
1

n

)

if and only if f is differentiable, f ′ ∈ ACloc and ‖wϕ2f ′′‖p < ∞.

Remark 2.2. The case when α and/or β is equal to 1 − 1
p is excluded, and

remains unsolved. This situation is similar to the unsettled case p = 1 for the
weighted ordinary Kantorovich polynomials (cf. [3], p. 176).

For the proof we need a few lemmas.

Lemma 2.3. We have

Γ(n+ α)

nαΓ(n)
= 1 +O

(
1

n

)
, n ∈ N+, −1 < α ∈ R

where the constant in the remainder on the right hand side depends on α.

Proof. Using the Stirling formula with remainder

Γ(x) =
√
2πxx− 1

2 e−x+ θx
12x , 0 < θx < 1, x > 0
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(cf. [7], Section 12.33, p. 253), we obtain

Γ(n+ α)

nαΓ(n)
=
(n+ α)n+α− 1

2 e−n−α+
θn+α

12(n+α)

nαnn− 1
2 e−n+ θn

12n

=
(
1 +

α

n

)n+α− 1
2

e−α+O( 1
n ) = e−α

(
1 +

α

n

)n
(
1 +O

(
1

n

))

=e−α+n log(1+α
n )

(
1 +O

(
1

n

))
= eO(

1
n )

(
1 +O

(
1

n

))

=1 +O

(
1

n

)
. �

Lemma 2.4. For any g ∈ C2(0, 1) with compact support in (0, 1) and wf ∈
L1(0, 1) we have

n

∣∣∣∣
∫ 1

0

w(x)[B∗n(f, x)− f(x)]g(x) dx

∣∣∣∣ ≤ cg‖wf‖1

where cg depends only on g.

Remark 2.5. This remarkable inequality was proved by Ditzian and May [2],
Lemma 5.3, in case of the unweighted original Kantorovich operator. The
weighted case is stated in Ditzian and Totik [3], (10.6.2). There is no proof
given, just a reference to [2] (in fact, the Lp norm on the right hand side could
be replaced by L1 norm). We will see below that the proof in the weighted
case (for our operator) is quite involved, which is probably the case for the
original weighted Kantorovich operator as well.

Proof. We have∫ 1

0

w(x)B∗n(f, x)g(x) dx =

∫ 1

0

w(x)

n∑
k=0

∫
Ik

w(t)f(t) dt∫
Ik

w(t) dt
pnk(x)g(x) dx.

Here let

g(x) = g(t) + g′(t)(x− t) +
1

2
g′(ξ)(x− t)2, ξ ∈ (t, x).

Then∫ 1

0

w(x)B∗n(f, x)g(x) dx =
n∑

k=0

∫
Ik

w(t)f(t)g(t) dt∫
Ik

w(t) dt

∫ 1

0

w(x)pnk(x) dx

+O(‖g′‖C)
n∑

k=0

∫
Ik

w(t)|f(t)|
∣∣∣∫ 1

0
w(x)pnk(x)(x− t) dx

∣∣∣ dt∫
Ik

w(t) dt

+O(‖g′′‖C)
n∑

k=0

∫
Ik

w(t)|f(t)| ∫ 1

0
w(x)pnk(x)(x− t)2 dx dt∫
Ik

w(t) dt

= : A1 +A2 +A3.
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Estimation of A1. By assumption, assume that g(x) is supported in the in-
terval [a, b] ⊂ (0, 1). Then we get

A1 =
∑

an≤k≤bn

∫
Ik

w(t)f(t)g(t) dt∫
Ik

w(t) dt

∫ 1

0

w(x)pnk(x) dx.

Using the beta integral∫ 1

0

xα(1− x)β dx =
Γ(α+ 1)Γ(β + 1)

Γ(α+ β + 2)
(2.1)

we obtain by Lemma 2.3∫ 1

0

w(x)pnk(x) dx =

(
n

k

)∫ 1

0

xk+α(1− x)n−k+β dx

=

(
n

k

)
Γ(k + α+ 1)Γ(n− k + β + 1)

Γ(n+ α+ β + 2)

=
(n+ 1)α+β+1Γ(n+ 1)

Γ(n+ α+ β + 2)

Γ(k + α+ 1)

(k + 1)αΓ(k + 1)

× Γ(n− k + β + 1)

(n− k + 1)βΓ(n− k + 1)

(k + 1)α(n− k + 1)β

(n+ 1)α+β+1

=

(
1 +O

(
1

n

))
(k + 1)α(n− k + 1)β

(n+ 1)α+β+1
, an ≤ k ≤ bn.

On the other hand,∫
Ik

w(x) dx =
1

n+ 1

(
k + θ

n+ 1

)α (
n− k + 1− θ

n+ 1

)β

, 0 < θ < 1. (2.2)

Thus ∫ 1

0
w(x)pnk(x) dx∫
Ik

w(x) dx
=

(
1 +O

(
1

n

))(
k + 1

k + θ

)(
n− k + 1

n− k − θ + 1

)β

= 1 +O

(
1

n

)
,

and

A1 =
∑

an≤k≤bn

(
1 +O

(
1

n

))∫
Ik

w(t)f(t)g(t) dt

=

∫ b

a

w(t)f(t)g(t) dt+O

(
1

n

)∫ b

a

w(t)|f(t)g(t)| dt

=

∫ 1

0

w(t)f(t)g(t) dt+O

(‖g‖C
n

)
‖wf‖1,

i.e.,∫ 1

0

w(x)[B∗n(f, x)− f(x)]g(x) dx = O

(‖g‖C
n

)
‖wf‖1 +A2 +A3. (2.3)
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Estimation of A2. Using again (2.1),∣∣∣∣
∫ 1

0

w(x) pnk(x)(x− t) dx

∣∣∣∣
=

(
n

k

) ∣∣∣∣Γ(k + α+ 2)Γ(n− k + β + 1)

Γ(n+ α+ β + 3)
− t

Γ(k + α+ 1)Γ(n− k + β + 1)

Γ(n+ α+ β + 2)

∣∣∣∣
=

(
n

k

)
Γ(k + α+ 1)Γ(n− k + β + 1)

Γ(n+ α+ β + 2)

∣∣∣∣ k + α+ 1

n+ α+ β + 2
− t

∣∣∣∣
≤ c

n

(n+ 1)α+β+1Γ(n+ 1)

Γ(n+ α+ β + 2

Γ(k + α+ 1)

(k + 1)αΓ(k + 1)

× Γ(n− k + β + 1)

(n− k + 1)βΓ(n− k + 1)

(k + 1)α(n− k + 1)β

(n+ 1)α+β+1

≤c
(k + 1)α(n− k + 1)β

nα+β+2
, t ∈ Ik, k = 0, 1, . . . , n.

Thus by (2.2) and by
∫ 1

n+1

0 w(x) dx ≥ c
nα+1 ,∣∣∣∫ 1

0
w(x)pnk(x)(x− t) dx

∣∣∣∫
Ik

w(x) dx
≤ c

n
, t ∈ Ik, k = 0, 1, . . . , n. (2.4)

Hence

A2 = O

(‖g′‖C
n

) n∑
k=0

∫
Ik

w(x)|f(x)| dx = O

(
1

n

)
‖g′‖C‖wf‖L1 . (2.5)

Estimation of A3. We have, again by (2.1),∫ 1

0

w(x)pnk(x)(x− t)2 dx =

(
n

k

)[
Γ(k + α+ 3)Γ(n− k + β + 1)

Γ(n+ α+ β + 4)

−2t
Γ(k + α+ 2)Γ(n− k + β + 1)

Γ(n+ α+ β + 3)
+ t2

Γ(k + α+ 1)Γ(n− k + β + 1)

Γ(n+ α+ β + 2)

]

=

(
n

k

)
Γ(k + α+ 1)Γ(n− k + β + 1)

Γ(n+ α+ β + 2)

[
(k + α+ 1)(k + α+ 2)

(n+ α+ β + 2)(n+ α+ β + 3)

−2t
k + α+ 1

n+ α+ β + 2
+ t2

]
.

Here

[. . . ] ≤t

∣∣∣∣t− k + α+ 1

n+ α+ β + 2

∣∣∣∣+ k + α+ 1

n+ α+ β + 2

∣∣∣∣t− k + α+ 2

n+ α+ β + 3

∣∣∣∣
≤c(k + 1)

n2
≤ c

n
, k = 0, 1, . . . , n,

and the rest follows like in case of A2, yielding

A3 = O

(
1

n

)
‖g′′‖C‖wf‖L1

. (2.6)
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Collecting the estimates of (2.3), (2.5) and (2.6), we obtain the statement of
the lemma. �

Lemma 2.6. We have

B∗n(t− x, x) =
1− 2x

2n
+O

(
1

n2ϕ(x)2

)
, 0 < x < 1 (2.7)

and

B∗n((t− x)2, x) =
ϕ(x)2

n
+O

(
ϕ(x)

n3/2

)
, 0 ≤ x ≤ 1. (2.8)

Proof. Using the reproduction property
n∑

k=0

k

n

(
n

k

)
xk(1− x)n−k = x

of the Bernstein polynomials we get

B∗n(t− x, x) =

n∑
k=0

∫
Ik
(t− x)w(t) dt∫
Ik

w(t) dt
pnk(x)

=

n∑
k=0

∫
Ik

(
t− k

n

)
w(t) dt∫

Ik
w(t) dt

pnk(x)

(2.9)

Here, using the integral mean value theorem∫
Ik

(
t− k

n

)
w(t) dt∫

Ik
w(t) dt

=
w(ξk)

w(ηk)

∫
Ik

(
t− k

n+1

)
dt∫

Ik
dt

− k

n(n+ 1)

=

(
ξk
ηk

)α (
1− ξk
1− ηk

)β
1

2(n+ 1)
− k

n(n+ 1)

=
1

n+ 1

[
1 +O

(
1

k

)]α [
1 +O

(
1

n− k

)]β (
1

2
− k

n

)

=

[
1

n+ 1
+O

(
1

k(n− k)

)](
1

2
− k

n

)
,

ξk, ηk ∈ Ik, k = 1, . . . , n− 1.

Substituting this into (2.9), we obtain

B∗n(t− x, x) =

∫
I0
tw(t) dt∫

I0
w(t) dt

(1− x)n

+

n−1∑
k=1

[
1

n+ 1
+O

(
1

k(n− k)

)](
1

2
− k

n

)
pnk(x)

+

∫
In
(t− 1)w(t) dt∫
In

w(t) dt
xn =

1

n+ 1

n∑
k=0

(
1

2
− k

n

)
pnk(x)

+O

(
n−1∑
k=1

pnk(x)

k(n− k)
+

xn + (1− x)n

n

)
=

1− 2x

2(n+ 1)
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+O

(
1

n2ϕ(x)2

n+2∑
k=0

(
n+ 2

k + 1

)
xk+1(1− x)n−k+1 +

xn + (1− x)n

n

)

=
1− 2x

2(n+ 1)
+O

(
1

n2ϕ(x)2
+

xn + (1− x)n

n

)
.

Here evidently

(1− x)n + xn

n
<

1

n2ϕ(x)2
, 0 < x < 1,

and (2.7) is proved.
We now prove (2.8). We have

B∗n((t− x)2, x) =

n∑
k=0

∫
Ik
(t− x)2w(t) dt∫

Ik
w(t) dt

pnk(x)

=

n∑
k=0

∫
Ik

(
t− k

n

)2
w(t) dt∫

Ik
w(t) dt

pnk(x)

+ 2
n∑

k=0

(
k

n
− x

) ∫
Ik

(
t− k

n

)
w(t) dt∫

Ik
w(t) dt

pnk(x)

+

n∑
k=0

(
x− k

n

)2

pnk(x).

(2.10)

Here the first sum is evidently O(1/n2), and the last sum is ϕ(x)2

n . For esti-
mating the remaining middle sum we use∫

Ik

(
t− k

n

)
w(t) dt∫

Ik
w(t) dt

= O

(
1

n

)
, k = 0, . . . , n

to get

2
n∑

k=0

(
k

n
− x

) ∫
Ik

(
t− k

n

)
w(t) dt∫

Ik
w(t) dt

pnk(x) = O

(
1

n

) n∑
k=0

∣∣∣∣kn − x

∣∣∣∣ pnk(x)
= O

(
1

n

)(
n∑

k=0

(
k

n
− x

)2

pnk(x)

)1/2

= O

(
ϕ(x)

n3/2

)
which completes the proof of (2.8). �

Lemma 2.7. For any g ∈ C2(0, 1) with compact support in (0, 1) and wf ∈
L1(0, 1) we have

lim
n→∞ 2n

∫ 1

0

w(x)[B∗n(f, x)− f(x)]g(x) dx

=

∫ 1

0

f(x)[−(w(x)(1− 2x)g(x))′ + (w(x)ϕ(x)2g(x))′′] dx.
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Proof. Assume first that f(x) ∈ C2[0, 1], and expand f into a quadratic
Taylor series:

f(t) = f(x) + f ′(x)(t− x) +
1

2
f ′′(x)(t− x)2 +R(t, x), (2.11)

where

R(t, x) :=
1

2
[f ′′(ξ)− f ′′(x)](t− x)2, ξ ∈ (t, x).

Applying the operator B∗n and using Lemma 2.6 we get

B∗n(f, x)− f(x) =f ′(x)B∗n(t− x, x) +
f ′′(x)
2

B∗n((t− x)2, x) +B∗n(R(t, x), x)

=f ′(x)
[
1− 2x

2n
+O

(
1

n2

)]
+

f ′′(x)
2

[
ϕ(x)2

n
+O

(
1

n3/2

)]
+B∗n(R(t, x), x),

where x ∈ [a, b] ⊂ (0, 1) ([a, b] is the support of g). Hence

|2n[B∗n(f, x)− f(x)]−[f ′(x)(1− 2x) + f ′′(x)ϕ(x)2]|

≤ n|B∗n(R(t, x), x)|+O

(
1√
n

)
, x ∈ [a, b].

(2.12)

Because of the continuity of f ′′, to every ε > 0 there exists a δ > 0 such that
|f ′′(ξ)− f ′′(x)| < ε whenever |ξ − x| < δ. Thus

n|B∗n(R(t, x), x)| ≤nε

2

∑
|k−nx|≤nδ/2

∫
Ik
(t− x)2w(t) dt∫

Ik
w(t) dt

pnk(x)

+ ‖f ′′‖C
∑

|k−nx|>nδ/2

pnk(x)

since in the first sum

|ξ − x| ≤ |t− x| ≤
∣∣∣∣t− k

n

∣∣∣∣+
∣∣∣∣kn − x

∣∣∣∣ ≤
(
1

n
+

δ

2

)
≤ δ, t ∈ Ik

provided that n ≥ 2/δ. Hence using (2.8)

n|B∗n(R(t, x), x)| ≤nε

2
B∗n((t− x)2, x) + 16n

‖f ′′‖C
n4δ4

×
∑

|k−nx|>nδ

(k − nx)4pnk(x)

≤O(ε) +O

(
1

nδ4

)
= O(ε), x ∈ [a, b]

provided that n ≥ 1
εδ4 . This together with (2.12) shows that

lim
n→∞ 2n[B∗n(f, x)− f(x)] = f ′(x)(1− 2x) + f ′′(x)ϕ(x)2
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uniformly in x ∈ [a, b]. Multiplying by w(x)g(x) and integrating over [a, b] we
obtain by integration by parts

lim
n→∞ 2n

∫ b

a

w(x)[B∗n(f, x)− f(x)]g(x) dx

=

∫ 1

0

w(x)[f ′(x)(1− 2x) + f ′′(x)ϕ(x)2]g(x) dx

=

∫ 1

0

f(x)[−(w(x)(1− 2x)g(x))′ + (w(x)ϕ(x)2g(x))′′] dx

which proves the lemma for f ∈ C2[0, 1]. In other words, we have proved that
the sequence of linear functionals

an(f) := 2n

∫ 1

0

w(x)[B∗n(f, x)− f(x)]g(x) dx, n = 1, 2, . . . (2.13)

converges to the linear functional

a(f) :=

∫ 1

0

f(x)[−(w(x)(1− 2x)g(x))′ + (w(x)ϕ(x)2g(x))′′] dx

in the space of twice continuously differentiable functions, which is dense in
the weighted L1(0, 1) space. Moreover the functionals (2.13) are bounded by
Lemma 2.4. Hence the convergence in the whole weighted space L1(0, 1). �
Proof of Theorem 2.1. If

f ′ ∈ ACloc and ‖wϕ2f ′′‖p < ∞, (2.14)

then ω2
ϕ(f ; t)w,p = O(t2) (this follows from (6.1.7) and (6.1.1) of [3]), whence

by Theorem 1.1

‖w[f −B∗n(f)]‖p = O

(
1

n

)
. (2.15)

This proves the direct statement.
In order to prove the converse, assume (2.15). Then, by Lemma 2.7,

it follows that f is differentiable, f ′ is locally absolutely continuous, and f
satisfies the linear second order differential equation

(1− 2x)f ′(x) + ϕ(x)2f ′′(x) =
h(x)

w(x)
a.e. (2.16)

where h ∈ Lp(0, 1) (for details, see [3], pp. 177-178). By symmetry, it will
be sufficient to prove the boundedness of the norm in (2.14) in the interval
[0, 1/2].
Case 1: −1/p < α < 1−1/p. Then the situation is exactly the same as in case
of weighted ordinary Kantorovich polynomials, and the proof on pp. 177-178
of [3] applies; we omit the repetition of the arguments there.
Case 2: α > 1 − 1/p. Then we have to modify the arguments of the cited
proof. The solution of the differential equation (2.16) can be given in the
form

f(x) =

∫ 1/2

x

1

ϕ(u)2

∫ 1

u

h(τ)

w(τ)
dτ du+ c1 + c2 log

x

1− x
,
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where c1, c2 are constants. Hence

f ′′(x) =
1− 2x

ϕ(x)4

∫ 1

x

h(u)

w(u)
du+

h(x)

ϕ(x)2w(x)
− c2(1− 2x)

ϕ(x)4
,

and thus

w(x)ϕ(x)2f ′′(x) = h(x) +
(1− 2x)w(x)

ϕ(x)2

∫ 1

x

h(u)

w(u)
du− c2(1− 2x)w(x)

ϕ(x)2
.

We have to show that the Lp norm of this function in [0, 1/2] is finite. We
get

w(x)ϕ(x)2|f ′′(x)| ≤ |h(x)|+2β+1xα−1

∫ 1

x

|h(u)|
uα

du+2c2x
α−1, 0 < x < 1/2.

Here the first and third terms are in Lp(0, 1). For the second term we apply
Hardy’s inequality to get∫ 1

0

x(α−1)p

(∫ 1

x

|h(u)|
uα

du

)p

dx ≤ c(p, α)

∫ 1

0

|h(x)|p dx < ∞

(see [4], Theorem 330). Hence Case 2, and thus the theorem is proved. �

Remark 2.8. It is interesting to observe that while in Case 1 the log-function
was eliminated (see the above quoted proof from [3]), in Case 2 it was part
of the function representing the saturation class. This peculiar role of the
log-function will be seen in the next section as well.

3. The trivial class

When an operator is saturated with order O(εn), then the class of functions
which are approximated with order o(εn) are called the trivial class of sat-
uration. This class, in general, consists of some simple functions (constants,
linear functions), and actually the operator reproduces them. Surprisingly,
as we will see, this is not the case with our weighted Kantorovich operator,
at least for some values of the parameters.

To begin with, we state the following result.

Theorem 3.1. Let 1 ≤ p ≤ ∞, γ := min (α, β) > 1− 1/p and

ψ(x) = log
x

1− x
.

Then

‖w[ψ −B∗n(ψ)]‖p = O

(
log n

nγ+1/p

)
= o

(
1

n

)
.

Remark 3.2. We have seen in the previous section that this log-function plays
an important role in connection with Kantorovich type operators. Theorem
3.1 says that for some values of the parameters this nontrivial function can be
better approximated by our operator than elements of the saturation class.
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Proof. We consider the case 1 ≤ p < ∞; for p = ∞ the proof can be easily
established from the arguments below.

First we estimate the Lp norm on the intervals [0, 1/n] and [1− 1/n, 1].
By symmetry, it is sufficient to consider [0, 1/n]. Since x logp 1

x increases for
small x, we get∫ 1/n

0

w(x)pψ(x)p dx ≤c

∫ 1/n

0

xαp logp x dx

≤ logp n

n

∫ 1/n

0

xαp−1 dx ≤ c logp n

nαp+1
.

Similarly, since |B∗n(ψ, x)| ≤ c log n,

∫ 1/n

0

w(x)p|B∗n(ψ, x)|p dx ≤ c logp n

nαp+1
.

Next we have to estimate the Lp norm on the interval [1/n, 1/2] (the case of
interval [1/2, 1−1/n] is similar). We consider the quadratic Taylor expansion

ψ(t) =ψ(x) + ψ′(x)(x− t) +
1

2
ψ′′(x)(x− t)2 +R(x, t)

=ψ(x) +
1

ϕ(x)2
(x− t)− 1− 2x

2ϕ(x)4
(x− t)2 +R(x, t)

where

R(x, t) =
1

2
[ψ′′(ξ)− ψ′′(x)](x− t)2, ξ ∈ (x, t), (3.1)

and use Lemma 2.6 when applying the operator B∗n:

B∗n(ψ, x)− ψ(x) =
1

ϕ(x)2
B∗n(x− t, x)− 1− 2x

2ϕ(x)4
B∗n((x− t)2, x) +B∗n(R, x)

=
1

ϕ(x)2

[
1− 2x

2n
+O

(
1

n2ϕ(x)2

)]

− 1− 2x

2ϕ(x)4

[
ϕ(x)2

n
+O

(
ϕ(x)

n3/2

)]
+B∗n(R, x)

=O

(
1

(nx)3/2
+ |B∗n(R, x)|

)
,

1

n
≤ x ≤ 1

2
.

We obtain from (3.1)

|R(x, t)| ≤
(∣∣∣∣ 1x2

− 1

t2

∣∣∣∣+
∣∣∣∣ 1

(1− x)2
− 1

(1− t)2

∣∣∣∣
)
(x− t)2

=c

(
1

x2ϕ(t)2
+

1

xϕ(t)4

)
|x− t|3

:=R1(x, t) +R2(x, t),
1

n
≤ x ≤ 1

2
.
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Here ∫
Ik

R1(x, t)w(t) dt∫
Ik

w(t) dt
≤ c

x2

(n+ 2)(n+ 1)

(k + 1)(n− k + 1)

(∣∣∣∣x− k

n+ 2

∣∣∣∣
3

+
1

n3

)
(
t ∈ Ik, 1 ≤ k ≤ n,

1

n
≤ x ≤ 1

2

)
.

The latter inequality extends easily to k = 0; namely then

R1(x, t) ≤ c

x2t
(x− t)3 ≤ cx

t
, t ∈ I0,

1

n
≤ x ≤ 1

2
.

Thus

B∗n(R1, x) ≤ c

x2

[
n∑

k=0

∣∣∣∣x− k

n+ 2

∣∣∣∣
3 (

n+ 2

k + 1

)
xk(1− x)n−k +

1

n3x

]

≤ c

x3

n+2∑
k=0

∣∣∣∣x− k

n+ 2

∣∣∣∣
3

pn+2,k+1(x) +
c

(nx)3
,

1

n
≤ x ≤ 1

2
.

Here by Cauchy–Schwarz inequality

n+2∑
k=0

∣∣∣∣x− k

n+ 2

∣∣∣∣
3

pn+2,k+1(x)

≤
{

n+2∑
k=0

(
x− k

n+ 2

)2

pn+2,k+1(x)

n+2∑
k=0

(
x− k

n+ 2

)4

pn+2,k+1(x)

}1/2

≤c
(x
n

)3/2

,
1

n
≤ x ≤ 1

2

(cf. [5], p. 16). Thus

B∗n(R1, x) ≤ c

(nx)3/2
,

1

n
≤ x ≤ 1

2
,

whence∫ 1/2

1/n

w(x)p|B∗n(R1, x)|p dx ≤ c

n3p/2

∫ 1

1/n

x(α−3/2)p dx ≤ c
logp n

nαp+1
.

Using similar arguments, the same estimate can be obtained for R2(x, t).
Collecting all the above estimates we obtain the statement of the theorem. �

Finally, we formulate the statement about the trivial class of saturation.

Theorem 3.3. Let 1 < p < ∞. We have

‖w[f −B∗n(f)]‖p = o

(
1

n

)

if and only if (i) f(x) is constant, when −1/p < γ = min (α, β) < 1− 1/p ;
(ii) f(x) = c1 + c2ψ(x), when γ > 1 − 1/p (where c1, c2 are arbitrary con-
stants).
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Proof. The direct statements follow from Theorem 3.1 and the fact that
constants are reproduced by B∗n.

The converse statement in (a) follows from the corresponding part of the
proof of Theorem 2.1. Namely, suppose e.g. that −1/p < α < 1− 1/p. Then
in the quoted proof the function h(x) is identically zero, and also c2 = 0.
Similarly, in (b) again h(x) is identically zero, and f(x) = c1 + c2ψ(x), for
which

f ′(x) =
c2

ϕ(x)2
∈ ACloc, f ′′(x) = −c2(1− 2x)

ϕ(x)4
,

and

‖wϕ2f ′′‖pp ≤ cp2

∫ 1

0

x(α−1)p(1− x)(β−1)p dx < ∞. �
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