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Abstract 

The dynamic behavior of beams with varying cross section and 

partially immersed in liquid is examined by means of a direct 

integration approach of the equation of motion. The proposed 

structural model is quite useful as a simplified model of 

structures with complex geometries and unusual load conditions. 

The Euler-Bernoulli hypothesis is assumed to be valid, 

henceforth the solutions can be expressed in term of Bessel 

functions, while the press are frequency-dependent. The problem 

is solved by employing an ad hoc transformation of the equation 

of motion, and the orthogonality conditions of the eigenfunctions 

are computed. Numerous numerical examples are proposed for 

the calculation of the free frequencies of vibration to vary some 

parameter of taper of the beams. 
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I. INTRODUCTION 

The dynamic behavior of structures submerged in liquid 
been discussed by various authors, mainly adopting the 
simplified model of a cantilever beam with constant cross 
section and tip mass [1]. As suggested in [2], the influence of 
the liquid is taken into account in the equation of motion by 
augmenting the mass density, so influencing the beam 
flexibility. With this device, the usual general solutions can be 
retained. On the other hand, from a more practical point of 
view, the largest part of engineering structures has a more 
complex geometry, and they can be more appropriately studied 
as beams with varying cross section [3,4]. 

In offshore engineering, since the dynamic behaviors of the 
structures such as piles and towers, surrounded by water, can 
be predicted from a cantilever beam carrying a tip mass with 
reasonable accuracy, the literature concerned is plenty. For 
example, Uscilowska et al. [5] and Oz [7] have calculated the 
values of the natural vibration frequencies for a uniform tower 
offshore, partially immersed in a fluid. The column under 
consideration has been modeled as a distributed parameter 
cantilever with the lumped mass at the top and in the analysis 
the rotary inertia of the lumped mass has been taken into 
account. In order to investigate the effect of liquid, Auciello 
[6], used exact formulation to obtain the free frequencies for 
tapered beam carrying an eccentric tip mass with mass moment 
of inertia. Following this approach, Wu and al [8,9], extend the 
result for tapered beam with complex geometry, instead , De 

Rosa et al. in [10] studied the tapered beam supported by a 
translational and rotational springs. 

In this paper, the exact deduction of the free vibration 
frequencies is given for beams with slightly varying cross 
section. In fact, the Euler-Bernoulli hypotheses are retained, 
and consequently the exact solutions can be expressed in terms 
of Bessel functions whereas the presence of the liquid leads to 
an increment of the mass density of the submerged part of the 
beam. Due to particular location of the applied mass, the 
boundary conditions are frequency-dependent. The frequency 
equations and mode shapes are obtained by formulating 
equations of motion for each of two span beams of the column. 
Both the rotary inertia and eccentric of the tip mass are taken 
into account, so that the boundary condition become frequency 
dependent. 

The roots of the transcendental frequency equations have 
been obtained by means of the improved conventional 
analytical (closed-form) solution; in the analysis the influence 
of the various parameters is examined and some of the results 
are presented in tabular and graphical form. 

   

Figure 1.  Configuration of a rotating, non-uniform, cantilever beam. 

II. MATHEMATICAL FORMULATIONS 

The slope of the hanging in the submerged beam is 
supposed to be negligible, so that the resulting structural model 
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is given by a “cone” partially immersed, in which the cross 

section is a function of a tapered parameter, 11
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The equations of the problem can be simplified if two 
different reference systems are employed. The first one has 
origin at the base of the beam, and the second one has origin at 
the section of the free liquid surface (see Fig. 1). Consequently, 
area and moment of inertia of the cross section can be written 
as: 
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 The variables can be separated, and the transverse 
displacements can be written as: 

 

( ) ( ) ( ) ( )1 1 1 1 2 2 2 2, , , ,j t j tw x t W x e w x t W x eω ω= =  (5,6) 

where ω is the natural frequency and j=(-1)
0.5

. 

By neglecting the effects of shear deformation and rotary 
inertia using the Euler-Bernoulli hypotheses and the above 
expression, the equation of the motions are given by: 
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where E is Young’s modulus, ρ1 and ρ2 are the masses 
density of the two parts of the beam; i.e. ρ2=ν ρ1. The 
derivatives with respect to the coordinates are defined with the 
related superscript (‘).  

Eqns (1-4) can be conveniently introduced into the 
equations of motion, and taken into account that  
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where the following non-dimensional quantities have been 
defined: 
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Therefore, according to Watson [12], the solution of the Eqns. 
(10) takes the forms; (Auciello et al. [3-4]) 
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where  

 

0.5 0.5
1 1 1 2 2 22 , 2 .a q u a q u= =  (13) 

In Eqns (12), J2 and Y2 denote the 2
nd

 order Bessel function of 
first and second kind, respectively, I2 and K2 denote the 2

nd
 

order modified Bessel function of first and second kind, 
respectively, while Cij (i=1,2; j=1,..4), are the integration 
constants determined by the following boundary conditions. 

To this end, it is convenient to express the geometrical 
parameters in anon-dimensional form: 
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where M is the applied tip mass and JM is its rotary inertia. The 
whole mass of the beam mt, is written as:  
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III. THE BOUNDARY CONDITION 

The frequency equation is deduced from the boundary 

conditions at the beam ends and at the section of the free 

liquid surface. As a function of u1 and u2 they can be imposed 

as:   
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At the abscissa of the applied tip mass, at  
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The following recurrent formulae for the functions  Jn , Yn , Kn  
[12]; 
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can be inserted, along with the eqns. (12) into the boundary 
conditions, and a homogeneous system for the constants Cij is 
deduced. The matrix A of the coefficients, look like: 
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with the terms given in Appendix. 

The condition  
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given the frequency characteristic equation in p.  

The root of eqns. (27) can be calculated, in principle, with 
various iterative numerical procedures, even if the classical 
bisection approach and even the related methods as for 
example the “False position method” can have serious 
instability problems. In order to avoid such drawbacks, the 
Aiken approach [13] has been employed, so that even the 
convergence rate is speeded up. The terms of the series 

{ }
0

ˆ
n n

p
∞

=
are replaced by the sequence  

 

( )2

1

2 1

ˆ
2

n n
n n

n n n

p p
p p

p p p

+

+ +

−
= −

− +
 (28) 

 

wich converge more rapidly to the root p. 

IV. THE EINGENFUNCTIONS  

As already said, the presence of the tip mass leads to a non-
adjoint problem, where the ω

2
 parameter is necessarily 

included into the boundary conditions. This difficulty can be 
overcome by properly manipulating the equations of motions. 
First of all, let us define: 
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and the corresponding boundary conditions of a Clamped-
Free beam: 
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together,  with usual continuity conditions at x1=a L. 

In this way, a classical self-adjoint problem is recovered, 
with a different orthogonality condition for eigensolutions. In 
fact, from eqns. (33,34), taken (31,32) into account, for 
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The terms on the left hand side can be integrated by parts: 
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and  
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Finally, explaining the terms of equation (37) we obtain the 
orthogonality condition: 
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If d=0, a=0 and a=L this condition coincide with the 
Morgan condition in [9]. Side by side with the well-known 
Gram–Schmidt procedure, eqn. (40) allows the deduction of an 
orthonormal bases for the configuration space [14]. 

V. RESULTS AND DISCUSSION 

As a first numerical example, the first three frequencies 
have been calculated for a partial immersed beam with constant 
cross section for various values of the non-dimensional 
parameters. The results are given in Table I, where the 
corresponding values are obtained employing the method of the 
transfer matrix approach by Chang et al. [1] and Uściłowska et 
al. [5]; reported in italics. 

TABLE I.  COMPARISON OF FIRST THREE NATURAL FREQUENCIES; d=0, 
ν=0.887. 

ε k  µ a p1 p2 p3 

0 0 1 0 1.28589 4.15381 7.35122 

 0 2 0.5 1.10878 4.05978 7.20006 

 �1/2 2 0.5 0.91261 1.74004 4.89985 

   1 0.91147 1.73393 4.84047 

1 �1/2 2 0.25 1.49465 2.32176 5.98984 

   0.5 1.40460 2.32130 5.92173 

   0.75 1.40427 2.31948 5.83678 

   1 1.40324 2.31730 5.82744 
 

The results are in excellent agreement. It is worth noting 
that as the parameter a increases, the free frequencies diminish, 
and a takes into account the submerged part of the structure. 
This is evident for the fundamental frequencies, whereas the 
effect becomes less noticeable for higher vibration modes. 
From a practical point of view, it is readily seen that the 
influence of the applied mass is predominant on the other 
parameters and it completely, and it completely characterize 
the structure behavior.  

In Table II, the first five free frequencies are given for a 
tapered beam and for various taper ratio ε. The particular case 
ε=0 given the values for constant cross section and cross 
sectional area A, for increasing ε values we have a reduction of 
the beam flexibility.  

TABLE II.  COMPARISON OF FIRST FIVE NATURAL FREQUENCIES; d=0, 
ν=0.887. 

ε p1 p2 p3 p4 p5 

0 1.12086 2.14826 5.05136 8.13794 11.2748 

0.1 1.15866 2.19817 5.16323 8.32617 11.5382 

0.2 1.19044 2.24609 5.27026 8.50649 11.7904 

0.3 1.21706 2.29234 5.37307 8.67994 12.0328 

0.4 1.23928 2.33708 5.47221 8.84735 12.2665 

0.5 1.25774 2.38045 5.56810 9.00941 12.4925 

1 1.31062 2.57877 6.00991 9.75602 13.5314 

 

However, the whole method holds for beams with small 
taper ratio ε. If ε becomes too large, it is necessary to take into 
account the shear deformability and the rotary inertia of the 
cross section, and the Timoshenko model should be used.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  First three shape modes of an offshore tower with fixed base; d=0, 

km=0 for various parameters µ. 
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In Figure 2 the first three vibration modes are illustrated for 
ε=0, µ=0, µ=0.5 and µ=1. It is interesting to note that, as the applied 
mass increases, the tip displacements become smaller, while the 
intermediate displacements increase noticeably. Therefore, the 
presence of the mass is particularly important the higher modes. 

In Figure 3, setting ε=0, a=1/2, d=0 and km=0, the free 
frequencies values of tapered beam are obtained by varying the 

parameter µ. As shown, when the parameter µ increases, the 
frequencies tends a asymptotic way. 

  

Figure 3.  First three frquencies for various parameters µ; ε=0, a=0,5, d=0 
and km=0. 

VI. CONCLUSIONS 

An analytical approach is proposed for the free vibration 
analysis of a partially immersed beam with variable cross 
section and tip mass. The influence of the liquid is taken into 
account by increasing the mass density of the immerged part of 
the beam, whereas the presence of the tip mass leads to a non 
self-adjoint problem, which must be properly addressed by 
defining a different orthogonality condition. The numerical 
example show an excellent agreement with some previously 
deduced results. The present paper represents an useful tool of 
investigation in order to study the dynamic behaviour of the 
immersed tapered beam. Moreover, it can be used to control 
and optimize the tapered beams. 
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APPENDIX  
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