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Recent theoretical and experimental studies have shown that mushroom shaped micro-pillars exhibit

strongly enhanced adhesive performance in comparison to other pillar shapes. However, in the presence

of interfacial impurities (e.g. solid particles or air bubbles) the adhesive strength could drastically drop.

In this paper we theoretically investigate the effect of the entrapment of micro-bubbles of air at the

interface between the mushroom shaped micro-pillar and a rigid substrate on the adhesive

performance. We calculate the critical pull-off stress as a function of the initial volume of the entrapped

air, and compare these results with those obtained when, instead of air, small external solid particles are

entrapped at the interface. Our results show that the presence of entrapped air is more critical since it

strongly reduces the suction effect. The critical stress, indeed, is about 35–40% smaller than the value

observed in the case of solid particles, thus resulting in a considerable reduction of the adhesive

performance of the mushroom shaped pillar.
1 Introduction

Microstructured adhesive surfaces, inspired by some biological

attachment systems present in Nature (e.g. Gecko foot pad),

often exhibit extremely high adhesive performance.1–11 The secret

of this amazing behavior is mainly related to their fibrillar hier-

archical geometry that makes these structures very compliant [i.e.

they store a negligible amount of repulsive elastic energy;

however they are usually constituted mainly of a relatively stiff

material, the b-keratin (elastic modulus E z 1 GPa)] and splits

the contact with the underlying surface in a very large number of

very small spots.12–23 However, examples exist in Nature, e.g. the

attachment pad of the males of some beetle species from the

family Chrysomelidae, which do not present a hierarchical

geometry as in the case of Geckos, but are surfaces covered with

mushroom-shaped microstructures.24–26 In such cases the shape

of the terminal plate is crucial for the achievement of high

adhesive strength values of the bio-inspired artificial surface.27–30

In particular, experimental observations26,31,32 have shown that

mushroom shaped microstructures [Fig. 1(a)] strongly outper-

form, in terms of adhesive properties, surfaces covered with

miniaturized flat-punches [Fig. 1(b)] made of the same material

(polyvinylsiloxane (PVS), Young’s modulus E ¼ 3 MPa).

Recently the authors27,28 have clarified the physical mechanism
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which provides mushroom shaped micro-pillars with superior

adhesive performance if compared to simple flat punch shaped

micro-pillars. Optimal mushroom shapes, in particular, usually

detach because of the propagation of existing interfacial defects,

e.g. dust particles or solid impurities (mode II debonding).27,28,32

Flat punch shaped micropillars or non-optimized mushroom

shaped micropillars may present, on the contrary, much lower

adhesive performance since they usually debond because of crack

propagation from the external perimeter towards the inner

region of the pillar (mode I mechanism).27,28 However, even on

perfectly clean surfaces, where the adhesive strength of the pillar

is expected to be very large, micro–nano-bubbles of air might

form during the initial approach of the micropillar to the

substrate. These bubbles may remain entrapped at the inter-

face33,34 and strongly reduce the adhesive performance of the

system. In this paper, we focus on this aspect of micro-pillar

adhesion. With this scope in mind, we first calculate the inter-

facial energy of the system, and then we determine the equilib-

rium conditions depending on the applied tractive stress and

initial size of the entrapped air bubble. We show that the system

may exhibit stable or unstable equilibrium states separated by an

energy barrier DUB. By increasing the external applied tractive

stress the energy barrier DUB constantly decreases and vanishes

at the critical stress (the so-called pull-off stress) scr, which

destabilizes the air bubble and causes the detachment of the

pillar. Comparing this critical debonding stress scr to the one

caused by the presence of solid defects (of same size) at the

interface we find a reduction of about 35–40%, which therefore

must be taken into account when assessing the performance of

these microstructured adhesives.
This journal is ª The Royal Society of Chemistry 2012
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Fig. 1 A SEM image of microfabricated PVS mushroom shaped pillars

(courtesy of prof. Gorb): LP, contact plate lip; NR, narrow neck; SH,

pillar shaft, (a); a SEM image of a microstructured surface with flat

punch (adapted from ref. 8), (b).

Fig. 2 The void formation at the interface of a mushroom shaped pillar

of diameter D (cross-sectional area A ¼ pD2/4) and a rigid flat substrate.

The pillar is subjected to an external tensile stress s. The non-contact area

is circular with radius a. The void formation process involves different

steps: the variation of elastic energy from (a) to (b) is sV1/2, whereas the

variation of elastic energy from (c) to (d), due to the action of bubble

pressure p, is (V � V1)p/2. A schematic view of the elastic energy change

is represented in (e). Because of linear elasticity one also has V1 ¼ ks,

V ¼ k(s + p), and V � V1 ¼ kp, with k ¼ 8a3/(3E*).
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2 The total interfacial energy of the system

In order to carry out the analysis we need to precisely calculate

the total energy change of the system when a bubble of air is

present at the interface. We assume that the bubble of air is

much smaller than the diameter and height of the pillar so that

one can treat the pillar as an elastic half-space in contact with a

rigid flat surface. Assuming isothermal conditions and a

constant uniform asymptotic tractive stress s, the equilibrium of

the system can be sought by requiring that the total free energy

at the interface (i.e. the total interfacial Gibbs energy) is

stationary. Given the defect size and assuming the material

linear elastic, the calculation of the energy change of the system

must consider four different contributions (see also Appendix A

for a different derivation): (i) the contribution to the interfacial

elastic energy due to the asymptotic applied uniform tractive

stress s, (ii) the contribution to the interfacial elastic energy due

the air pressure p, (iii) the internal energy of the air bubble, and

(iv) the variation of surface energies due to the presence of van

der Waals forces. Let us focus on the first two contributions (see

Fig. 2). In the former case [Fig. 2(a) and (b)] the variation of

elastic energy which occurs as the interfacial stress on the

circular patch of fixed radius a is released from the uniform

asymptotic value s to zero is

ðDUelÞ1 ¼ U1 �U0 ¼ � 1

2
sV1 (1)

In the second case [Fig. 2(c) and (d)], the increase of air bubble

pressure from zero to p causes a further increase of the volume of

the bubble from the value V1 to the value V. As a consequence

the interfacial elastic energy this time increases the quantity

ðDUelÞ2 ¼
1

2
pðV � V1Þ (2)

The total variation of the elastic energy is then

DUel ¼ � 1

2
sV1 þ 1

2
pðV � V1Þ (3)

Now observe that, because of linear elasticity, the volume

of the void is proportional to the uniform applied stress, i.e. V1 ¼
ks, V ¼ k(s + p), and V � V1 ¼ kp,35 where k ¼ 8a3/(3E*) and

E* ¼ E/(1 � v2), E being Young’s modulus and v Poisson’s ratio.

As a consequence one obtains
This journal is ª The Royal Society of Chemistry 2012
DUel ¼ 1

2
ð p� sÞV ¼ � 4a3

3E�
�
s2 � p2

�
(4)

Besides the elastic energy one should also consider the contri-

bution to the total energy due to the change of adhesion energy

DUad¼pa2Dg (DgbeingDupr�e energyofadhesionanda the radius

of the detached area35) and the contributionof the free energyUAof

the entrapped air under isothermal conditions. Assuming the ideal

gas law, i.e. pV ¼ nRT (where n is the number of moles, R the

ideal gas constant andT the absolute temperature), and isothermal

conditions, we writeUA ¼ �nRTln(V/V0)¼�p0V0ln(V/V0), with

p0 and V0 the initial pressure and volume of the bubble

which has been entrapped during the approach of the pillar to

the rigid flat and clean substrate. To characterize the initial

size of the bubble (i.e. the number of moles of entrapped air)

we may define an initial equivalent hemispherical void size

with radius a0 satisfying the relation V0 ¼ (2/3)pa0
3. Summing

up the different energy contributions the total energy change

becomes

DUtot ¼ � 4a3

3E�
�
s2 � p2

�þ pa2Dg� p0V0lnðV=V0Þ (5)
Soft Matter, 2012, 8, 7904–7908 | 7905
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Fig. 3 The dimensionless total energy D ~U tot as a function of the radius

of the detached area ~a, for three different values of the initial radius ~a0,

given the same value of dimensionless stress ~s ¼ 0.035 (blue, red and

green curves). Increasing ~a0 determines a decrease of the energy barrier

D ~UB between the stable and unstable equilibrium states. The solid black

curve represents the total energy as a function of ~a when the pillar is

subjected to the environment pressure only, i.e. ~s¼�~p0, and for ~a0¼ 100.

Note that in this case there is only one equilibrium condition at ~a ¼ �a

which is necessarily stable.

Fig. 4 The dimensionless total energy D ~U tot as a function of the radius

of the detached area ~a, for four different values of the applied stress ~s,

and for ~a0 ¼ 150. Increasing ~s determines a decrease of the energy barrier

D ~UB between the stable and unstable equilibrium states until it vanishes

and the air bubble is destabilized.
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Besides eqn (5) we need two additional equations:

pV ¼ p0V0 (6)

and

V ¼ 8a3

3E
� ðsþ pÞ (7)

Eqn (6) and (7) allow us to calculate the quantity V and p as a

function of the radius a of the non-contact circular area.

Therefore, the total energy change DUtot given by eqn (5) finally

depends only on the applied constant stress s and the size of the

voids a. By following a similar approach as in JKR theory,38

requiring that vDUtot/va|s ¼ 0 allows one to calculate the values

of a at equilibrium, given the applied uniform stress s. The

critical pull-off stress scr, which destabilizes the defect and

causes the detachment of the pillar from the rigid flat substrate,

is determined by requiring that at equilibrium the relation

v2DUtot/va
2|s ¼ 0 is also satisfied.

The above equations can be rephrased in a dimensionless

form. To this end let us define the adhesion length d ¼ Dg/E*

and the dimensionless quantities ~s¼ s/E*, ~p¼ p/E*, ~a¼ a/d, and
~V ¼ V/d3. The dimensionless total energy change of the system

is therefore

D ~U tot ¼
�
DUtot

d3E
�

�
¼ � 4

3
~a3
�
~s2 � ~p2

�þ p~a2 � ~p0 ~V 0ln

� ~V
~V 0

�
(8)

where

~V ¼ 8

3

�
~sþ ~p

�
~a3 (9)

and

~p ~V ¼ ~p0 ~V0 (10)

Solving eqn (9) and (10) gives

~p ¼ 1

2

0
@� ~sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~s2 þ p~p0

�
~a0
~a

�3
s 1

A (11)

~V ¼ 4

3
~a3

0
@~sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~s2 þ p~p0

�
~a0
~a

�3
s 1

A (12)

3 The critical stress and the critical air bubble size

We assume that the environment pressure is 1 bar, so that the

initial pressure of the entrapped air bubble is 0.1 MPa. We also

notice that the asymptotic applied stress s ¼ s0 � p0, where s0 ¼
F/A is the external applied average stress, F the applied load and

A the cross-sectional area of the pillar. Fig. 3 shows the total

dimensionless energy change D ~U tot as a function of the dimen-

sionless radius ~a, for different values of the initial dimensionless

size ~a0 of the void. In our calculations we have used s ¼ 0.2 MPa

(i.e. s¼ 0.3 MPa), Dgz 16 mJ m�2, E¼ 3MPa and v¼ 0.5. The

figure shows that for any value of ~a0, two equilibrium conditions

exist, i.e. the stable state (energy minimum) and the unstable state

(energy maximum). However, as expected, when the asymptotic
7906 | Soft Matter, 2012, 8, 7904–7908
applied stress is zero or even negative only a stable equilibrium

state must be present (see the black line in Fig. 3 with ~a0 ¼ 100

and ~s¼�~p0, i.e. ~s0¼ 0). When an external stress s > 0 is applied,

an energy barrier must be exceeded in order to destabilize the

system. The energy barrier D ~UB is defined as the difference

between the energy value of the unstable equilibrium state and

the energy value of the stable equilibrium state. From Fig. 3,

given the same applied stress, one observes that the energy

barrier D ~UB decreases as the initial radius ~a0 of the bubble (i.e.

its initial volume) is increased. When D ~UB ¼ 0, i.e. when

vDUtot/va|s¼ 0 and v2DUtot/va
2|s¼ 0, the critical defect size (~a0)cr

is found which prevents the pillar from adhering to the substrate.

Given the initial defect size ~a0, one may also analyze what

happens when the applied stress s is increased. In particular,

Fig. 4 shows that, for a fixed value of the radius ~a0 (we have

considered a0 ¼ 0.6 mm, i.e. ~a0 ¼ 150), when the applied stress s

increases an unstable equilibrium state appears, which is again

separated from the corresponding stable equilibrium by an
This journal is ª The Royal Society of Chemistry 2012
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Fig. 6 The dimensionless external critical stress ~s0cr ¼ ~s0 + ~p0 as a

function of the air bubble or solid particle size �a (see text for more

details). The blue curve refers to the air bubble case, the black curve to the

interfacial solid particle case.
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energy barrier D ~UB. As the stress ~s is further increased, the

energy barrier D ~UB decreases and vanishes at a certain stress

level ~scr (the so-called critical pull-off stress) at which the air

bubble of initial size ~a0 is destabilized and the pillar detaches

from the substrate.

In Fig. 5 both the stable and the unstable equilibrium values ~aeq
of the air bubble size are shownas functions of the applied stress ~s,

for different values of ~a0. The upper branches represent the

unstable states; the lower branches are the stable states. By

increasing the stress ~s, the two values of ~aeq tend to approach each

other, until they coincide at ~s¼ ~scr. The dash-dotted line in Fig. 5

gives the critical stress ~scr for different values of the initial radius

~a0 of the bubble, of course larger entrapped bubbles, i.e. larger

values of ~a0 lead to a reduction of the critical pull-off force ~scr.
4 Solid defects vs. air bubbles

In many cases solid defects (dust particles, impurities, etc.) may

be present at the interface between the adhering pillar and the

substrate. In such cases, the authors have shown recently27,28 that

mushroom shaped pillars usually detach because of the propa-

gation of these interfacial defects (mode II debonding mecha-

nism) when the stress level becomes sII ¼ [pDgE*/(2aS)]
1/2, where

aS is the solid defect size. It is, hence, interesting to compare this

critical value sII with the critical pull-off stress scr obtained in the

case of a bubble of air entrapped at the interface. The compar-

ison must be carried out assuming that, at ~s ¼ �~p0 (i.e. ~s0 ¼ 0),

the (dimensionless) size �a of the air bubble at equilibrium is

identical to the (dimensionless) solid defect size, i.e. �a¼ ~aS. Fig. 6

compares the critical stress ~s0cr ¼ ~scr + ~p0 in the two cases as a

function of the radius �a. We observe that in the case of air bubble

the debonding stress ~s0cr is always significantly smaller than the

one obtained in the case of solid defects with a reduction of about

35–40% over the entire range of defect size considered in the

calculation, i.e. �a ¼ ~aS ¼ 0.4–4 mm. Indeed, micro-air bubbles

weaken the adhesive link between the pillar and the rigid

substrate more than the presence of external particles, since their

gas pressure exerts an additional debonding force and reduces

the suction effect which contributes to keep the pillar in contact

with the substrate. This represents a practical problem during

fast attaching–detaching of these kinds of microstructures, since

in this case the entrapment of air can hardly be avoided.
Fig. 5 The dimensionless stable and unstable equilibrium values ~aeq as

functions of the external applied stress ~s, for different initial radii ~a0 of

the air bubble. As the load is increased, the upper (unstable) ~aeq values

and the lower (stable) ~aeq values approach each other until they coincide

in correspondence of the critical stress ~scr (dash-dotted line).

This journal is ª The Royal Society of Chemistry 2012
5 Conclusions

In this paper, we investigate the influence of interfacial micro-

bubbles of air on the adhesive properties of micro-mushroom-

shaped pillars. We show that, in the absence of an applied load,

the micro-bubble remains in stable equilibrium. However as soon

as an external tractive stress is applied to the pillar, an unstable

equilibrium condition appears. This means that a critical pull-off

stress exists which destabilizes the air bubble and causes the

complete detachment of the pillar from the substrate. We have

calculated this critical pull-off stress and showed how it depends

on the initial volume of entrapped air. Of course, increasing the

amount of entrapped air leads to a significant reduction of the

pull-off stress. Interestingly our results have highlighted that the

air bubbles at the interface are more critical than the presence of

interfacial solid defects of the same size. It follows that to achieve

the highest adhesive performance the approach of the pillar to

the substrate must be carried out very carefully, to avoid

entrapment of air at the interface.
A The free energy at the interface

Here we present a different and thermodynamically rigorous

derivation of eqn (5). To this purpose let us consider the system

shown in Fig. 7 where the bottom (initially flat) surface of an

elastic half-space is glued to a rigid plate except for a circular

region of radius a. Let us displace the rigid plate of a quantity u0
(see Fig. 7) so that a small void is formed at the interface. Assume

that the air pressure in the void is p. Our scope is to calculate the

elastic energy of the system. To this end let us first observe that

one of the authors has shown36 that the contact problem may

have an equivalent formulation in terms of interfacial elastic

energy, i.e. in terms of the amount of elastic energy stored at the

interface as a consequence of local interfacial deformations.

Accordingly, the elastic interfacial energy is36

E ¼ 1

2

ð
d2xszzðxÞ

�
uzðxÞ � huzðxÞi

�
(13)

where x is the in-plane position vector, szz(x) is the non-uniform

normal interfacial stress, uz(x) is the local normal displacement of

the surface, and hu(x)i is the average displacement at the inter-

face (the symbol h i is the average operator). Considering that
Soft Matter, 2012, 8, 7904–7908 | 7907
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Fig. 7 The displacement, gap and stress distributions involved in the

calculation of the free interfacial energy.
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because of force balance the uniform stress s at infinity is

s ¼ hszz(x)i one can rephrase eqn (13) as

E ¼ 1

2

ð
d2x

�
szzðxÞ � s

�
uzðxÞ (14)

Now let us define (see Fig. 7) the gap distribution v(x) as

v(x) ¼ u0 � uz(x). Of course v(x) s 0 on the circular region of

radius a, whereas it vanishes elsewhere. Using v(x) and consid-

ering that szz(x) ¼ �p for |x| < a, eqn (14) becomes

E ¼ 1

2
ð pþ sÞV (15)

where V ¼ Ð
d2xv(x) is the volume of the air bubble. The total

Helmholtz free interfacial energy F is then the sum of the elastic

interfacial energy, the free internal energy UA ¼ �p0V0ln(V/V0)

of the entrapped air, and the surface energy, i.e.

F (V,a) ¼ E (V,a) + UA(V) + pa2Dg (16)

From thermodynamics one concludes that under constant

bubble volume V the equilibrium of the system corresponds

to the stationary values of the energy F . However, in our

analysis we, instead, keep the asymptotic load constant

hs(x)i ¼ s. In this case the equilibrium states of the system

correspond to the stationary values of the interfacial Gibbs

energy G(s,a). Following the standard approach of thermody-

namics,37 we obtain G(s,a) by enforcing a Legendre trans-

formation, i.e.

Gðs; aÞ ¼ F ðV ; aÞ � vF
vV

				
a

V (17)

Observing that vE /vV|a ¼ p + s and vUA/vV|a ¼�p, one yields

the required expression for the interfacial Gibbs energy G, i.e.

Gðs; aÞ ¼ 1

2
ð p� sÞV þUA þ pa2Dg (18)

which is the same as the one obtained in eqn (5).
7908 | Soft Matter, 2012, 8, 7904–7908
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