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Abstract— The free vibration characteristics of a rotating tapered 

Rayleigh beam is analysed in this study. Two approaches to the 

dynamic analysis of a rotating beam. The first proposed 

approach is the discretization “CDM” method, the structure is 

reduced to rigid bars, connected together by means of elastic 

hinges, and lower bound to the true frequencies is obtained. The 

second approach is a variational Rayleigh–Ritz like method, in 

which the vibration modes are expressed as a linear combination 

of orthogonal polynomials. The results are presented for 

Rayleigh beams with rotatory inertia effects and compared with 

existing solution. The parameters for the hub radius, rotational 

speed and taper ratio are incorporated. Numerous numerical 

examples are proposed for the calculation of the free frequencies 

of vibration to vary some parameter of taper of the beams. Good 

agreement with the finite element method is obtained. In the end 

the results are compared with those reported by other authors. 

Keywords- Rotating beam, Rayleigh-Ritz, CDM method. 

I.  INTRODUCTION  

Rotating beam-like structures are widely used in various 
engineering fields such as helicopter blades, robotic 
manipulations, wind turbines and turbo-machinery. The free 
vibration frequencies and mode shapes of such structures have 
been a topic interest, and hence have received considerable 
attention. In the case of non-uniform beams, without 
centrifugal force, the exact solution of the motion equation is 
given by the well-known Bessel functions Auciello and 
Ercolano [1]. In all other cases, and in particular when the 
effects of on the transverse vibrations are taken into account, an 
approximate procedure is necessary. In order to investigate the 
effect of centrifugal force a number of methods based on the 
power series solution have been developed for determination of 
natural frequencies of rotating beams. The differential equation 
with variable coefficients is solved by means of the Frobenius 
series. Following this approach, Wright et al. [2] and Wang et 
al. [3], obtained the free vibrations of uniformly tapered beams 
according to the numbers of the terms of the series. The 
accuracy of the exact solution depends on the number of terms 
included in the Frobenius function ant it goes up with higher 
modes, taper, and rotation speed. 

Gunda et al [4-5] used the finite element analysis method. 
They proposed these new hybrid-type functions to determine 
the free frequencies in both case, without rotation and with 
rotation. Some researched have also used the Dynamic 
Stiffness Method to (DSM) solve the natural frequencies of 
rotating beams. The structure is discretized with beam elements 

of constant section, therefore the considered stiffness is lower 
than the real one. Consequently, lower bound values of the 
frequencies are obtained. Instead, Mei [6] studied the free 
vibration of a rotating tapered Rayleigh beams by the method 
of differentiation (DTM). 

In the case of the beam under axial loads, the free vibration 
analysis of a rotating beam can be undertaken by means of the 
Rayleigh-Ritz procedure with orthogonal test functions. To this 
aim, Boundary Characteristic Orthogonal Polynomials method 
(BCOP), Auciello [7], is used where the test functions are 
chosen in the polynomial set of those functions which respect 
the essential boundary conditions and then normalized by a 
Gram-Schmidt.  

Instead, if the beam is discretized reducing it to a set of 
rigid bars linked together by elastic sections (elastic cells), the 
resulting approximate free frequencies values give a lower 
bound to the exact values; CDM method [10]. Consequently, it 
is possible to obtain a useful lower-upper approximation of the 
free frequencies of vibration. 

In this work, flapwise bending vibration of a rotating 
tapered beam is studied by using the CDM method and 
Rayleigh-Ritz method with orthogonal polynomials method 
[9]. The partial differential equations are obtained through the 
Lagrange equations. The results of the parametric analysis have 
been compared with those known in literature and reported in 
bibliography. 

II. DERIVATION OF THE MODAL EQUATIONS OF A ROTATING 

CANTILEVER BEAM 

Consider a tapered Rayleigh beam rotating around the z1 
axis with a constant speed as shown in Fig. 1. A generic point 
po the undeformed position is given of the vector 

 [ ]0 0 , ,
T

r x y z= +p  (1) 

If the beam now in deforms as a result of flexure and also 
under tension due to the centrifugal force, the position vector of 
the deformed point would now be given of the P: 

 0 , , , ,
T

x xr x u z w y v y v z wé ù= + + - - + +ë ûp  (2) 
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The velocity of a material point in deformed state is given 
by: 

, ,

0 , ,

( )

( ) ( ) ( )

x x

x x

u y v z w y v

v r x u z w y v

w
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ê ú

x xu y w y( )( ) x xx x
é ùé ù

x xu y v z w y v( )( ) x xx xu y v z w yu y( )( )( )

( )W ´( )v p ( )( )= + W ´= + ( )( )( )
ê ú

( )( )( )( )( )0 , ,( )( )( )( )( )0 , ,0 , ,( )( )

ê ú
ë ûwê úw

 (3) 

where, the derivatives with respect to the coordinates are 
defined with the related subscript while the time derivatives are 
defined with a dot. In the case of structure in which the bending 
effect (flapwise), the axial (stretching) effect are often assumed 
negligible and ignored.  

 

Figure 1. Non-uniform beam; parabolic thickness variation. 

A. Hamilton principle 

At steady state, the system can be considered conservative 
and its dynamic behavior can be obtained through the Hamilton 
principle; 

 
2

1

0
t

t
dtd =ò L               (4) 

where L =T-V,  and T, V are respectively the kinetic and the 

potential energy. In the Euler-Bernoulli assumptions their 
explicit forms are given as follows: 

 

2

0

1
( )

2

L

T m x w dx= ò 2x w dx2  (5)

  

 

2 2
, ,

0 0

1 1
( ) ( ) ,

2 2

L L

xx xV E I x w dx F x w F= + +ò ò  (6) 

where E and I(x) are respectively the Young modulus and 
the inertia of the section referred to the x axis and m(x) is the 
mass distribution. 

The term, axial force due to centrifugal stiffening, F(x) is 
given as 

 
2

0( ) ( )

L

x

x

F A x r x dx Fr= W + +ò . (7) 

Centrifugal force acting on the beam at a distance from the 

origin and is due to the effect of the spin around the axis z. F   

is constant and related to the static inertia, in dynamic 
conditions its contribution is zero. Thus potential energy is 
made of two different terms: one due to bending deformation 
and the other due to centrifugal force deformation. In the 
hypothesis of separation of variables, the transverse 
displacements w(x,t) can be written as follows 

 ( , ) ( )cos ,w x t W x tw=  (8)

where W(x) represents the amplitude of the displacements 

w(x,t). So, the maximum kinetic energy is  

 
2

2

0

( ) ( ) ,
2

L

T A x W x dx
w

r= ò  (9)

where ρ is the mass density and A(x) is the cross-sectional 

area. Therefore, the maximum potential energy can be written 

as: 

 2 2
, ,

0 0

1 1
( ) ( ) .

2 2

L L

xx xV E I x W dx F x W F= + +ò ò  (10)

The Lagrange’s equations for free vibration of a distributed 
parameter are given by 

 0, 1,2....
i i i

d T T U
i n

dt q q q

æ ö¶ ¶ ¶
- + = =ç ÷

¶ ¶ ¶è øi i i

- +ç ÷
q qq qi i ii i ii i iq qi i ii i iq qq qi i ii i iq qq qq q

 (11)

  
where n is the total number of modal coordinates. The 

partial derivatives of T with respect to the generalized 
coordinates are needed. 

III.  “CDM" METHOD 

The beam, under consideration, is discretized reducing it to 
a set of rigid bars, linked together by elastic sections, “cells”. In 
this way, the structure is reduced to a system with finite 
number of degrees of freedom (MDOF). The Lagragian 
parameters can be assumed to be the t rotations of the rigid 
bars, i.e. the generalized coordinates of the rigid-elastic system. 
All the possible configurations are functions of the following 
vector: 

The beam, under consideration, is discretized reducing it to 
a set of rigid bars, linked together by elastic sections (elastic 
cells). In this way, the structure is reduced to a system with 
finite number of degrees of freedom (MDOF). The Lagrange’s 
parameters can be assumed to be the t rotations of the rigid 
bars, i.e. the generalized coordinates of the rigid-elastic system. 
All the possible configurations are functions of the following 
vector: 

 [ ]1 2, , ...
T

tj j j=c  (12)

and the vertical components of the nodal displacements are 
given by the following expressions:  

 1 2 1 10, , , .i i i t i t tw w l w l w lj j j+= = - = - = -
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In matrix form, being A the displacements matrix, it is 

possible to write:  

 ,=w Ac  (13) 

while, the nodal rotations, in the approximate form, can be 

written as follows: 

 1, 2, 2 , 1,0, , , ,x x i x i t x tw w w wj j j+= = = =  (14) 

 ,x =w Rc , (15) 

Similarly, the relative rotations between the two faces of the 

elastic cells are given by: 

 1 1 2 2 1 1 1, , , 0i i i tj j j j j j j j j- +D = D = - D = - D =
  

 

or, 

 .= BcDj  (16) 

The rectangular matrices A, R and B have t+1 rows and t 

columns, and each term can be calculated according to Fig.2.  

 

 
Figure 2. Discretization “CDM” method.  

With the proposed method, the mass of the beam is 
properly concentrated at the nodal point of the rigid segments. 
Therefore, the mass distribution becomes: 
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In the Rayleigh hypothesis it is necessary to consider the 
inertia effect of the section respect to axis y. Being Iy, the 

moment of inertia with respect to the axis y, it can be 
conveniently written: 
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 (18)

A. Kinetic energy  

Substituting eqs (13-16) into eq. (5) one obtained the 

kinetic energy of rotating becomes: 
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21 1
.

2 2

T T T T TT é ù= + + Wë ûc A m A R mR c c R mR c
21 1

.
2 2

T T T T T21 11 11 11 11 11 11 11 1

2 2

1 1T T T TT T T T1 11 11 11 11 11 1
ë û2 22 2
é ùé ùR c c R mR c

T T T T TT T T T T2
c A= + + W= + + W

1 1T T T TT T T TT T T T1 1T T T T1 11 1T T T TT T T TT T T T1 11 11 11 1
é ùé ùé ùé ùé ùé ùé ùT T T TT T T TT T T TT T T TT T T T  (19)

 
From the preceding relationship it is underlined that kinetic 

energy is furnished by the sum of the really due term to the 
speed, ċ, anymore and the dependent share from the rotatory 
motion around z1. The effect of the rotatory given of the 
reduction of the rigidity of the structure, eq. (19) is written: 

 21 1
.

2 2

T T TT = + Wc Mc c R mR c
21 1

.
2 2

T T T21 11 11 1T T TT T T1 11 1
c Mc c R mR c

T T TT T T2= + W= +
1 1T T TT T TT T T1 11 11 1

 (20)

B. Strain energy 

Quite often it is possible to neglect both the axial and the 
shear deformation effects, limiting one to the bending 
deformations. In such hypothesis, at each “cell”, the following 

relation between the relative rotation 
 ijD  and the moment Mi 

can be written, as follows: 

 
i i iM k j= D  (21)

In the rigid-elastic formulation, relation (6) must be 
expressed as functions of the rotations of the rigid bars and the 
following relationship is easily obtained: 

 
1 1

2 2

T T T

xV = +
f

c B k B c c F c , (22)

where the cells stiffness ki, according to the present 
discretization, can be written as: 

 

1 1

( 1)

( 1)

1 ( 1)

2 ,

2 ( 2,... ),

2 .

y

yi y i

i

yi y i

t y t

t
k EI

L

I It
k E i t

L I I

t
k EI

L

+

+

+ +

=

= =
+

=
 (23)

t+1 

r0   

1 2 

t 

i 

φi 

i+1 

1 2 

t 

 
φ

t
 

wi+1 

L 

L/t 

w
t+1

 

 

 

  

  

kfi 

  

k
f1

 

SECTION

19. Industrial and Civil Engineering

 

INTERDISC
IP

LIN
A

R
Y

C
O

N
FERENCE

EIIC

The 2nd Electronic International Interdisciplinary Conference

http://www.eiic.cz/

Electronic International Interdisciplinary Conference

September, 2. - 6. 2013

- 441 -



Substituting eqs (20-23) into eq. (11) obtained the equation 
of motion and the free frequencies have calculated by solving 
the eingevalues problem given by the following algebraic 
system: 

 
2( ) 0T T

x+ -W + =
f

B k B F R mR c M c( ) 0( )( )( )( )( )( ) . (24) 

IV. RAYLEIGH-RITZ METHOD 

The Ritz extension of the Rayleigh method is one of the 
convenient procedures for evaluating the modes of vibration. In 
the approximate formulation the transversal displacements are 
assumed in term of generalized coordinate q. The transversal 
displacements are assumed to be linear combination of n 
independent functions which satisfy the boundary equations. If 
functions ϕi are chosen respecting the geometrical constraints 
the displacements can be written  

 ( , ) ( ) ( ) ,T
i iw x t x q tf= = qF  (25) 

where ϕi(x) represents the assumed modal functions (test 
function). 

Substituting (26) in eq (5) the kinetic energy is 
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1
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2

1
.
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x x x x

T A x dx

I x dx

r

r

= +

é ù+ W +ë û

ò

ò

q q

q q q q

T Tx dxT T= +x dxT T
q qx dx dx dx dT T

.dxé ùT T T TT T T T

ë û
T T T TT T T

ë ûë ûx x x xx x xx x x xx x x, , , ,

F F

F F F F

 (26)  

Therefore, the strain energy, eq (6) can be written as: 

 

0 0

1 1
( ) .

2 2

L L

T T T T
x x x x x x xV E I x dx F= +ò òq q q q, , , ,F F F F  (27) 

The single terms of the equation of Lagrange, written in 
operation of the generalized coordinates q, is given by the 
following 
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Equations  of the motion is: 

 
( ) ( )A R f RW+ + + - =M M q K K K q 0(q K(A R fA R f(+ ++ + (A R fA R fA R f(  (28)   

 

or 

 

 

2( ) 0w- =K M q , (29) 

where: 

 
, .f R A RW= + - = +K K K K M M M  (30,31)

A. Nondimensional analysis 

In order to compare the results with those reported in the 
literature it is useful to introduce the functions G(x) and H(x) 
that define, in general terms, the geometric characteristics of 
the structure 

 0 0( ) ( ), ( ) ( ),A x A G x I x I H x= =  (32,33)

where A0 and I0, are respectively the area and moment of 
inertia of the section at x = 0.  

Introducing the following parameters 
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Therefore the eigenvalue problem can be placed in the 

following non-dimensional form 

 
4( ) 0ij i ij iK M ql- = . (34)
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K H d
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é ù
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ê úë û

ò
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 (35)

 

1 1

, ,

0 0

( ) ( )ij i j i jM G d G dx xx f f x x f f x= +ò ò , (36)

As well known, the polynomial functions are chosen 
respecting both essential and normality conditions. The 
geometric conditions are: 

 0, 0, at 0
W

W x
x

¶
= = =

¶
, (37,38)  

From (25) the first polynomial ϕ1 can be obtained. After, by 
means of the Gram-Schmidt normalization, all the other 
requested functions can be obtained by Mathematica program. 

V. FREE VIBRATION RESULTS 

A. Tapered beam 

Let us assume now that the variation of the cross section of 
the beam is given by the equations (23). In the case of tapered 
beams, the cross section area and moment of inertia are 
represented by the following expressions: 

 . (39) 

where the α and β parameters define the variation of height 
and base of the beam cross section along its span. As already 
said, in the literature few papers exist which deal with the 

( ) ( ) ( )

( ) ( )
1

3

1

1 1

( ) 1 1y y

A A

I I

x a x b x

x a x b x

= - -

= - -
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tapered Rayleigh beam theory, so that the Authors – for the 
sake of comparisons.  

In the Table I, for α=0.5 and rH=1/30 data, the values 
obtained are reported. As shown, the natural frequencies 
obtained by applying the CDM method are always lower 
bounds to the values determined by the R-R method. 

TABLE I.  COMPARISON OF NATURAL FREQUENCIES; TAPERED BEAMS 

“WEDGE BEAM”. 

b=0   
C.D.M. 

    

R-R 
method 

  

a=0,5 g=0 g=5 g=10 g=0 g=5 g=10 

l1 3,8177 6,7332 11,4838 3,8181 6,7391 11,4978 

l2 18,1601 21,7123 29,8974 18,1688 21,7362 29,9639 

l3 46,2759 49,8385 59,1543 46,3265 49,9288 59,3794 

l4 86,9716 90,4926 100,1831 87,1368 90,7623 100,8026 

l5 139,0892 142,4541 151,9492 139,4866 143,0885 153,3487 

 

In Figure 3, setting rH=1/30, δ=β=0 and α=0,5, the free 
frequencies values of tapered beam are obtained by varying the 

angular speed g. As shown, when the speed increases, the curve 
of fundamental frequencies tends, in asymptotic way, to the 
straight line of the angular speeds. In the Rayleigh beam case, 
for the higher modes of vibrations, the effect of taper has a 
relevant  impact. In fact for the higher modes, the shape of 
cross-section beam has a relevant influence on the free 
frequencies results 

 

Figure 3. Natural frequencies for tapered Rayleigh beam α=0,5, and 
rH=1/30. 

The natural frequencies calculated by Jackson et al. [8], as 
reported in Tab. II,  

TABLE II.   TAPERED BEAMS “WEDGE BEAM”; JACKSON [8]. 

b=0   

Jackson 

[8]   

a=0,5 g=0 g=5 g=10 

l1 3,82109 6,7356 11,4856 

l2 18,2245 21,7911 30,0232 

l3 46,5757 50,1876 59,6737 

l4 87,7974 91,4413 101,5422 

l5 140,8192 144,4462 154,7865 

 

It can be noted as the frequencies calculated with the DTM 

method are strongly influenced by the angular speed ,g . Those 
calculated with the proposed methods provide numerical 
solutions not dependent on geometric and kinematic 
parameters. 

 

Figure 4. Variation of the nondimensional frequencies with respect to the 

taper ratio, α, for the five lowest modes of the beam with g=0, 
β=0 and δ=0. 

In the Rayleigh beam case, for the higher modes of 
vibrations, the effect of taper has a relevant  impact. Infact for 
the higher modes, the shape of cross-section beam has a 
relevant influence on the free frequencies results. In Fig. 4, the 
curve of the first five fundamental frequencies are reported and 

for the different values of taper parameter, a. 

In the case rH=1/10 (slenderness ratio) and considering the 
same Rayleigh beam, a different behaviour can be observed. 

The resonance phenomenon occurs for g = 62.40 (tuned 
angular speed), which represents the intersection between the 
curve relative to the fundamental frequencies, and the line of 

the angular speeds g=ω, see Figure 5. If the δ parameter (named 
hub radius) is allowed to increase, the centrifugal force leads to 
an increase of the extension deformation of the beam, so that  
the fundamental frequencies migrate away from the line of 
speeds and the resonance phenomenon does not occur.  

This conclusion has a practical usefulness in analyzing the 
rotors, where the control devices are of paramount importance.  
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Figure 5. Natural frequencies for tapered Rayleigh beam α=0,5, and 
rH=1/10. 

B. Tapered beam; parabolic thickness variation. 

This section is concerned with the transverse vibration of 
the non-uniform beam of constant breadth and depth 
proportional to the square of the axial co-ordinate. In particular, 
the geometry of the structure is given: 

 ( )2
0 0( ) 1 ( 1) , ( ) ,h h b bx a x x= + - =  (40) 

 

the area and the inertia assume the form  

 

( )
( )

2
0

3
2

0

( ) 1 ( 1)

( ) 1 ( 1) .

A A

I I

x a x

x x a

= + -

= + -
 (41) 

 
In Tab III, the first five natural frequencies for rotating 

parabolic non-uniform Euler beam (rH=1/1000), α=5, are 
presented for various angular speed, γ and hub ratios, δ. 

TABLE III.  COMPARISON OF FIRST FIVE NATURAL FREQUENCIES; 
PARABOLIC THICKESS VARIATION (EULER BEAM). 

a=5  d=0  d=5 
 g=0 l1 2.2608    

  l2 30.0559    

  l3 110.7650    

  l4 230.4959    

  l5 395.3289    

g=12 l1 12.5806  33.4471 

  l2 50.0796  106.4972 

  l3 137.4859  234.4189 

  l4 260.9709  397.4638 

  l5 428.5189  605.8781 

g=100 l1 100.9850  276.5721 

  l2 301.1600  769.3038 

  l3 550.2041  1320.2100 

  l4 854.6310  1968.2940 

  l5 1223.8710  2735.9000 

VI. CONCLUSIONS 

In this paper the stability and dynamic analysis of rotating 
Rayleigh beam.  Two different numerical approaches have 
been used and compared, namely the CDM method and the 

Rayleigh-Ritz method with polynomial functions. Both 
approaches lead to numerically stable algorithms and the 
numerical results are in excellent agreement. All the symbolic 
and numerical computations have been performed using 
Mathematica. 

REFERENCES 

[1] N.M. Auciello and A. Ercolano, “Exact solution for the transverse 
vibration of a beam a part of which is a wedge and other part is a 
uniform beam.” Int. J.  Solids Struct, 1997, 34, pp. 2115-2129. 

[2] A.D. Wright,  C.E. Smith, R.W. Thresher and J.L.C. Wang,  “Vibration 
modes of centrifugally stiffened beams, J. Appl. Mech. 1982, 49 (2), pp. 
197-201. 

[3] G. Wang and N.M. Wereley, “Free vibration analysis of rotating blades 
with uniform tapers”, Int. J. AIAA, 2004, 42,  pp. 2429-2437. 

[4] J.B. Gunda and R. Ganguli, “New rational interpolation functions for 
finite element analysis of rotating beams”, Int. J. Mech. Sci., 2008,  50 
(3), pp. 578-588. 

[5] J.B. Gunda, R.K. Gupta and R. Ganguli, “Hybrid stiff-string-polynimial 
function for vibration analysis of high spped rotating beams”. Comp. & 
Struct. 2009, 87, pp. 254-265. 

[6] C. Mei, “Application of differential transformation technique to free 
vibration analysis of a centrifugally stiffened beam”, Comput. Struct. 
2008,  86, pp. 1280-1284.  

[7] N.M. Auciello, “On the transverse vibrations of non-uniform beams with 
axial loads and elastically restrained ends”, Int. J. Mech. Sci., 2001, 43, 
pp. 193-208. 

[8] D.R. Jackson and S.O. Oyadiji, “Free vibration analysis of rotating 
tapered Rayleigh beams using the differential transformation method”, 
Proceeding of the ASME Int. Des. Engin. Tech. Conference & Comput., 
San Diego USA, 2009. 

[9] N.M. Auciello, “The effect of rotatory inertia on the frequency and 
normal modeequations of non-uniform rotating beams”.  Convegno di 
meccanica computazionale - GIMC 2012 – Rossano Calabro 25-27 
Giugno, 2012. 

[10] N.M. Auciello and M. Lippiello, “Vibration analysis of rotating non-
uniform Rayleigh beams using “CDM” method”. The 1 st Global Virtual 
Conference 2013 - Goce Delchev University Macedonia & THOMSON 
Ltd. Slovakia April 8. - 12., 2013. 

0 20 40 60 80 100
0

20

40

60

80

100

62.40 

SECTION

19. Industrial and Civil Engineering

 

INTERDISC
IP

LIN
A

R
Y

C
O

N
FERENCE

EIIC

The 2nd Electronic International Interdisciplinary Conference

http://www.eiic.cz/

Electronic International Interdisciplinary Conference

September, 2. - 6. 2013

- 444 -


