
Abstract—In order to guarantee the requested accuracy in 

electromagnetic computations, suitable refinements are requested 

around geometrical discontinuities as holes, ports and other 

openings, due to their impact on the field smoothness. The width 

of refinement region depends on the shape and dimension of the 

openings. The classical Compensation Theorem can provide a 

useful support in evaluating the influence domain because it 

provides the specific effect of the discontinuities. The paper 

discusses a procedure to evaluate the influence domain of the 

holes in electromagnetic structures and assesses its performance 

by analyzing a number of cases relevant in fusion technology 

applications. 

 

Index Terms—Finite element methods, Adaptive mesh 

refinement, Numerical analysis, Fusion reactors. 

I. INTRODUCTION 

In spite of the fast increase in the computer performances, 

electromagnetic analysis of actual devices requires a number 

of relevant approximations regarding, for instance, the 

materials constitutive relationships, as well as the geometry of 

the various parts composing the device [1]. On the other side, 

if accurate solutions are required in a specific part of the 

domain, the actual geometry, at least of the relevant parts, 

should be considered. In such cases, suitable selective 

refinements could lead to a reasonable trade-off between 

accuracy and computational burden. In such cases, the size of 

the region to be refined, e.g. the area around a hole is chosen 

typically on the basis of the expertise of the researchers, with a 

time consuming trial and error approach. 

This paper sketches a procedure to evaluate the Influence 

Domain (ID) of apertures in conducting structures on 

electromagnetic analyses. In order to gain general indications, 

the quite general classes of rectangular and elliptical shaped 

holes are considered. Then, to assess the effectiveness of the 

procedure, an extensive parametric analysis is proposed in the 

specific field of electromagnetic devices for Thermonuclear 

Fusion [2]. 

A reliable help in looking for the holes ID in linear 

electromagnetic systems could come from a suitable 

exploitation of the classical Compensation Theorem (CT). As 

a matter of fact the CT, initially proposed for linear circuits, 

can be generalized for electromagnetic field applications to 

provide the effect of a resistance variation in known linear 

electromagnetic system. 

II. MATHEMATICAL FORMULATION 

The CT is a well known property of linear circuits: it 

allows to effectively determinate the current or voltage 

variation along any branch of a linear a-dynamic circuit, due 

to a resistance or conductance variation in any other branch. 

The application of CT is particularly advantageous in the case 

of parametric analyses, since it requires solving a modified 

circuit, with a single compensation source, localized in the 

perturbed branch.  

The CT can be easily extended to the analysis of static or 

quasi-static fields in linear electromagnetic systems, in the 

case of variations in conductibility profile. Approaches based 

on the CT theorem result particularly effective for 

parametrical and sensitivity analyses of linear electromagnetic 

devices. The extension of CT to electromagnetic fields has 

been proposed in many areas, e.g. for the optimal design [3] or 

Eddy Current Testing applications [4], [5].  

The use of CT is proposed here for determining the ID of 

rectangular and elliptical shaped holes in linear conductive 

superficial electromagnetic structures Ω. As usual in the 

approaches based on the CT theorem, let’s consider the 

following three linear a-dynamic problems: 

• The first problem describes the current map J0(r) in the 

nominal system, driven by the actual sources S and with 

the assigned Boundary Conditions (BC) on ∂Ω; 

• The second one describes the perturbed current map 

J0(r) + ∆J0(r) in the same system, but with a perturbation 

in the conductivity distribution ∆σ in a part ΩD of the 

structure; 

• Finally, the third one describes the current in the same 

system, but driven only by the compensation current 

source JC(r) = -J0(r) ∆σ/σ in ΩD, and vanishing BC on 

∂Ω.  

It is quite easy to demonstrate that the second problem is 

the superposition of the first and the third ones. In this way, 

any variation in the conductance of the first problem can be 

evaluated by solving the third problem, characterized just by a 

compensation source and with homogeneous BC. Of course, 

in the particular case of a hole, ∆σ = σ, and JC(r) = -J0(r). 

The CT is well suited to estimate the ID of a hole; as a 

matter of fact, the ID can be estimated as the region where the 

current pattern of the compensation problem (the third one) is 

significant. 
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Fig. 1. Sketch of conducting domain Ω and of the hole region ΩD 

To guarantee the right flexibility, a Finite Element 

formulation is used here in the numerical computation of ID. 

In the present paper the numerical solutions are computed by 

the 3D integral code CARIDDI [6], [7], well assessed to face 

with the time-domain Maxwell equations in the magneto-

quasi-stationary limit. In CARIDDI the electric vector 

potential T is adopted as unknown in such a way to 

automatically impose the solenoidality of the current density 

field, J, and the continuity of its normal component. 

Moreover, by using the edge elements for the numerical 

expansion of the electric vector potential it’s possible to 

assume a numerical gauge based on the tree–cotree 

decomposition of the edges of the mesh retaining only the last 

ones as discrete unknowns. The final discretized model to be 

solved looks like the one of an Ohmic-inductive network 
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and JC is the impressed (compensation) current density 

localized in the source domain ΩD. Note that R is a 

symmetrical sparse matrix, whose elements Ri,j do not vanish 

only if the i-th and j-th unknowns share the same mesh 

element. On the other hand L is a symmetric full matrix 

because the Li,j coefficients keep in account the long-distance 

interactions between the unknowns.   

III. EXAMPLE OF APPLICATION 

Here, in order to assess the effectiveness of the numerical 

procedure, a simplified representation of a sector of the ITER 

Vacuum Vessel (VV) [2] has been considered. In the first 

problem (nominal configuration) the VV is assumed uniform, 

while in the second and third problem a square hole is 

considered. In the “nominal” configuration, eddy currents are 

induced in the VV passive structure by time varying currents 

in poloidal field coils. Simplified waveforms are considered 

here for the sake of illustration: each current ramp up to values 

in the range (-40÷40) kA in 1 s, and then remain constant, to 

simulate the basic characteristics behavior of current ramp-ups 

in an actual ITER shot. 

The current density computed in the nominal configuration 

was used to estimate the “compensation current” into a square 

hole with an edge of about 7.6 cm in the upper part of a sector 

of the VV, and the compensation problem was solved until 

steady state was achieved. The map of “compensation” 

currents in the VV was then used to estimate the ID of the 

hole, by computing the norm of the current density, 

normalized to the current at hole edge, and drawing its contour 

lines using axis “normalized” to hole size. As an example, if 

an accuracy of 10% is sufficient in the resolution of the 

perturbed problem, than a refinement in a range about 2.5 

times larger than the hole size is sufficient. (Fig. 2) 
 

 
Fig. 2.  Contour lines of the normalized norm (with respect to |Jc|) of the 

current density generated by the compensation source 

IV. OUTLOOK 

In the full paper the procedure to determine the ID will be 

applied to rectangular and elliptical shaped holes, with varying 

sizes and aspect ratios. Different nominal current maps will 

also be considered, to assess the impact of hole alignment with 

respect to nominal current map. The procedure will be applied 

to both steady state and time-varying cases. 
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