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Abstract— In this work the dynamic behavior of beams with 

variable section rotating around an axis is analyses. The natural 

frequency of the flapwise bending vibration is investigate for the 

rotating beam. The model used is respectful of the Euler-

Bernoulli hypotheses and obtains the natural frequencies and 

modes according to the rotation speed. Using the Boundary 

Characteristic Orthogonal Polynomial method is proposed to 

solve the natural frequency of rotating tapered beam at high 

angular velocity. Numerous numerical examples are proposed for 

the calculation of the free frequencies of vibration to vary some 

parameter of taper of the beams. In the end the results are 

compared with those reported by other authors. 

Keywords: Hamilton principle, vibration beams, centrifugal 

force, Rayleigh-Ritz method. 

I. INTRODUCTION

Rotating beam-like structures are widely used in various 
engineering fields, such helicopter blades, robotic 
manipulators, wind turbines and turbo-machinery. The free 
vibration frequencies and mode shapes of such structures have 
been a topic of interest, and hence have received considerable 
attention [1-3]. A rotating beam differs from a non-rotating 
beam in having additional centrifugal stiffness and Coriolis 
effects on its dynamics. These previous studies usually have 
been based on Euler-Bernoulli beam theory and various 
approximate solution techniques have been used to obtain the 
dynamic characteristics of such rotating beams. In order to 
investigate the effect of centrifugal force Yoo and al. [4] used a 
modal formulation to obtain the natural frequencies.  

A number of methods based on the power series solution 
have been developed for determination of natural frequencies 
of rotating tapered beams. The differential equation with 
variable coefficients is solved by means of the Frobenius 
series. Following this approach, Wright et al. [2] and Wang et 
al. [6] obtained the free vibrations of uniformly tapered beams 
according to the numbrs of the terms of the series. The 
accuracy of the exact solution depends on the number of terms 
included in the Frobenius function ant it goes up with higher 
modes, taper, and rotation speed. 

Some researched have also used the Dynamic Stiffness 
Method (DSM), to solve the natural frequencies of rotating 
beams. Benerjee et al. [7] studied the free vibration frequencies 
for tapered beams with various boundary conditions. The 
structure is discretized with beam elements of constant section, 
therefore the considered stiffness is lower than the real one. 
Ozgumus and al. [8] obtained the free vibrations of rotating 

beams by the method of differentiation (DTM), [15]. Gunda et 
al [10] used the linear combination of terms of the functions 
derived from the exact solution of the governing static 
differential equation of a stiff-string and that of a non-rotating 
beam. They proposed these new hybrid-type functions to 
determine the free frequencies in both case, without rotation 
and with rotation. 

In this work, flapwise bending vibration of a rotating 
tapered Bernoulli-Euler beam is studied by using the 
approximate Ritz method. The partial differential equations are 
obtained through the Hamilton energy principle written in the 
test functions space. Further, minimizing the Rayleigh quotient, 
the frequencies equation is also obtained. Worth mentioning 
that the exposed procedure gives upper bounds values of the 
free frequencies. The results of the parametric analysis have 
been compared with those known in literature and reported in 
bibliography. The purpose of this paper is to perform the modal 
analysis of rotating cantilever beams based on the modeling 
method. 

II. MATHEMATICAL FORMULATIONS

Consider a tapered Euler-Bernoulli beam rotating around the z1

axis with a constant speed, Ω,  as shown in Fig. 1. It is assumed 
that, the cross profile of the beam is symmetric. This implies 
that the locus of the centroids and shear centers coincide along 
the span of the beam hence nullifying any bending and torsion 
coupling effects. The material proprieties of the beam are 
isotropic and homogeneous,  

At steady state, the system can be considered conservative and 
its dynamic behavior can be obtained through the Hamilton
principle; 
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t

t
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where L =T-V,  and T, V are respectively the kinetic and the 

potential energy. In the Euler-Bernoulli assumptions their 
explicit forms are given as follows: 
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where E and I(x) are respectively the Young modulus and the 
inertia of the section referred to the x axis and m(x) is the mass 
distribution. The derivatives with respect to the coordinates are 
defined with the related subscript while the time derivatives are 
defined with a dot.  

Figure 1. Configuration of a rotating, non-uniform, cantilever beam. 

The term 

21
( ) ( ) ( )

2

L

x

F x m x r x dx F= Ω + +�   (4) 

is the centrifugal force acting on the beam at a distance from 

the origin and is due to the effect of the spin around the axis z. 

The term F  is constant and related to the static inertia, in 

dynamic conditions its contribution is zero. 

Thus potential energy is made of two different terms: one 

due to bending deformation and the other due to centrifugal 

force deformation.  

In the hypothesis of separation of variables, the transverse 

displacements w(x,t) can be written as follows 

( , ) ( )cos ,w x t W x tω=
 (5) 

where W(x) represents the amplitude of the displacements 

w(x,t). So, the maximum kinetic energy is  

2
2

max

0

( ) ( ) ,
2

L

T A x W x dx
ω

ρ= �  (6)  

where � is the mass density and A(x) is the cross-sectional 

area. Therefore, the maximum potential energy can be written 

as: 
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L L

xx xV E I x W dx F x W F= + +� �  (7) 

Equating Tmax with Vmax, by means of the Rayleigh

quotient, the natural frequencies can be obtained by the 

following 

2 max

max

.
V

T
ω =  (8) 

Because the maximum amplitude for the displacements has 

been assumed, the frequencies obtained in (8) are higher than 

the exact ones. From a theoretical point of view this means 

that a constraint has been added with the obvious consequence 

of an increase of the global stiffness of the system. Obviously 

upper bound values will be obtained. 

In the approximate formulation the transversal 

displacements are assumed to be linear combination of n 

independent functions which satisfy the boundary equations. If 

functions �i are chosen respecting the geometrical constraints 

the displacements can be written  

1
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n
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j j

J

W x q x j nϕ
=

= = =� � q , (9) 

where ( ),i xϕ  are orthogonal functions and q is the 

generalized displacements vector. Substituting (9) in eq. (8), 

the Rayleigh  ratio has the following form 
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Imposing the stationary conditions (1) with respect to the 

qi , the homogeneous system in the unknown qj is obtained  
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0, 1..... ,

j
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j n

q

ω∂
= =

∂
 (10) 

and consequently the eigenvalue problem : 

2( ) 0,ij i ij iK M qω− =  (11) 

 where Kij and Mij are given as  

, , , ,
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ij i xx j xx i x j xK E I x dx F x dxϕ ϕ ϕ ϕ= +� �   (12) 

0

( )

L

ij i jM A x dxρ ϕ ϕ= � . (13) 

III. ADIMENSIONAL ANALYSIS

In order to compare the results with those reported in the 

literature it is useful to introduce the functions G(x) and H(x)

that define, in general terms, the geometric characteristics of 

the structure 
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0 0( ) ( ), ( ) ( ),A x A G x I x I H x= =  (14,15) 

where A0 and I0, are respectively the area and moment of 

inertia of the section at x = 0.  
Applying the following non-dimensional parameters 
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ρ
ξ δ γ ρ λ ω

Ω
= = = = , (16) 

the terms in (12) and (13) can be rewritten as  

1 1

2
, , , ,

0 0

( ) ( )ij i j i jK H d F dξξ ξξ ξ ξξ ϕ ϕ ξ γ ξ ϕ ϕ ξ= +� �  (17)    (16) 

1

0

( )ij i jM G dξ ϕ ϕ ξ= � . (18) 

Therefore the eigenvalue problem can be placed in the 

following non-dimensional form  

4( ) 0ij i ij iK M qλ− = . (19) 

As well known, the polynomial functions are chosen 

respecting both essential and normality conditions. The 

geometric conditions are: 

Cantilever beam

0, 0, at 0
W

W ξ
ξ

∂
= = =

∂
, (20) 

 The first polynomial �1 can be obtained. After, by means 

of the Gram-Schmidt normalization, all the other requested 

functions can be obtained by Mathematica program. 

As shown before, the weak formulation of the problem 

contains implicitly the so called natural conditions. Obviously 

all natural and essential conditions can be considered in the 

test functions but in this case these functions will be 

polynomials of higher degree. As consequence, the computer 

time requested for the integrals in (17-18) would increase 

without having an appreciable higher precision. 

IV. FREE VIBRATION RESULTS

Geometry of the structure is given through the introduction 

of two functions G (�) and H (�) which supply the tapering 

laws: 

( )

( )
0

0

( )

( ) .

A A G

I I H

ξ ξ

ξ ξ

=

=
 (21) 

If the tapering is defined by a linear variation of both the 

height and the thickness of the beam the geometric functions, 

are 

( ) ( )0 0( ) 1 , ( ) 1 ,h h b bξ α ξ ξ β ξ= − = −  (22) 

Consequently the area and the inertia assume the form  

( )( ) ( )

( ) ( ) ( )
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3
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( ) 1 1

( ) 1 1 .

A A A G

I I I H

ξ α ξ β ξ ξ

ξ α ξ β ξ ξ

= − − =

= − − =

 (23) 

To varying of � and �, the various geometric conditions 

reported in bibliography can be compared. In particular, for 

�=�, the geometric distribution is given by 

( )

( )

0

2

0

( ) 1

( ) 1 ,

n

n

A A

I I

ξ α ξ

ξ α ξ
+

= −

= −
 (24) 

where � is the tapering coefficient and n is respectively, 1

or 2. 

TABLE I. COMPARISON OF FIRST FIVE NATURAL FREQUENCIES;
UNIFORM BEAM.

α=0      α=0     

δ=0 γ=5 λ1 6.44950 δ=1 γ=5 λ1 8.9403

  λ2 25.4461    λ2 29.3528

   λ3 65.2050    λ3 69.7607

   λ4 124.5660    λ4 129.5800

   λ5 203.6220    λ5 208.9110

          

  γ=12 λ1 13.17020   γ=12 λ1 19,72150

   λ2 37.6031    λ2 51,0701

   λ3 79.6145    λ3 98,5268

   λ4 140.5340    λ4 163,7240

   λ5 220.5360    λ5 246,7160

                

δ=2 γ=5 λ1 10.8616 δ=5 γ=5 λ1 15.2012

   λ2 32.7642    λ2 41.2249

   λ3 73.9844    λ3 85.1837

   λ4 134.3660    λ4 147.5860

   λ5 214.0410    λ5 228.5820

            

  γ=12 λ1 24.54910   γ=12 λ1 35.2082

   λ2 6.4464    λ2 84.9141

   λ3 113.7890    λ3 149.7830

   λ4 183.3260    λ4 230.2920

    λ5 269.7410     λ5 326.9570

Uniform beam 

Assuming � = 0, the simplest case of the constant section 
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beam is recovered. Free frequencies are obtained using 

respectively 8 polynomial functions. With N = 8 the procedure 

supplies frequencies in full agreement with the exact solution. 

Comparing the values obtained a really small difference on the 

first frequency can be observed. The results, for cantilever 

beam, reported in Tab. I and compared with the free vibration 

calculated by Wang and Wereley [6], Hodges and Rutkowsky 

[1]. As usual, the differences gradually increase for the higher 

frequencies. This depends from the rotational parameters too, 

in particular from the angular speed that is related to �. For 

γ=12, δ=0 values are exactly identical to those calculated in 

[6] and [1].  For �=5 and �=12, the differences on the first five 

frequencies are under the 2%. 

The flapwise bending natural frequencies variation are 

shown in Figure 2. The lower three natural frequencies are 

plotted for three case of hub radius ratio, �. The dimensionless 

natural frequencies increase as the angular speed (γ) increase, 

and the increasing rates becomes larger as the hub radius ratio 

(�) becomes larger. This results from the centrifugal inertia 

force which increases as the angular speed and the hub radius 

increase.  

  

Figure 2. Flapwise bending natural frequency variation. 

In order to show the relevance of the rotary displacements, 

the first three modes, for �=0, are reported in Fig. 3, 

respectively for � = 0, �=12 and �=100. As can be seen the 

dashed lines represent the mode shapes of the beam with no 

rotational motion while the dot-dashed line and the solid line 

represent those of the beam with rotational motion. Noticeable 

difference exists between the three sets of lines. If speed 

increases, the effect of centrifugal force becomes more 

evident. In this case, an increase of the positive tension and a 

reduction of the vibration period can be observed. The tension 

term will increase and consequently become dominant at very 

high rotation speed. 

  

Noticeable difference exists between the third sets of lines. 

Information about mode shapes variation (e.g. position of 

nodal points) may be utilized usefully for the control of a 

rotating beam. 

Figure 3. Flapwise bending mode shape variation due to rotation; uniform 

beam. 

- Double Tapered beam � = �  

This is the case of a beam that tapers linearly in one plane 

according to the relation in (23). For � =0.5 and �=0 variation 

of the natural frequencies with respect to the rotational speed 

parameter � have been reported. The results have been 

compared with those obtained using the Dynamic Stiffness 

Method (DSM); Banerjee et al. [7]. 

In Tab.II, assuming � = 0.5, free frequencies were reported 

for both n = 1 “wedge beam” and n = 2 “cone beam”.  

The values are then compared with the solution proposed 

in [7]. 
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TABLE II. COMPARISON OF FIRST FIVE NATURAL FREQUENCIES. 

δ=0 α=0.5        

   n=1   n=2   

   Present [7]  Present [7] 

        

γ=1 λ1 3.98662 3.98662 4.76405 4.76405

  λ2 18.4740 18.4740  19.6803 19.6803

  λ3 47.4173 47.4173  48.7073 48.7073

  λ4 90.6039 90.6039  91.9409 91.9409

  λ5 148.1560 148.1560 149.5180 149.5180

         

γ=4 λ1 5.87876 5.87877 6.47262 6.47262

  λ2 20.6852 20.6851  21.5749 21.5749

  λ3 49.6456 49.6456  50.5939 50.5938

  λ4 92.8730 92.8730  93.8415 93.8415

  λ5 150.4540 150.4540 151.4310 151.4310

         

γ=10 λ1 11.5015 11.5015 11.9415 11.9415

  λ2 30.1827 30.1827  30.0299 30.0299

  λ3 60.5639 60.5639  60.0399 60.0399

  λ4 104.6120 104.6120  103.8100 103.8100

  λ5 162.6770 162.6770 161.7010 161.7010

        

γ=100 λ1 101.3890    101.793   

  λ2 232.9540 220.319   

  λ3 368.1380   344.948   

  λ4 509.3910   475.396   

  λ5 659.1540    613.529   

The Tab.III provides frequencies to varying of both 

angular velocity of rotation � and hub radium ratio (�).  

TABLE III. COMPARISON OF FIRST FIVE NATURAL FREQUENCIES;
TAPERED BEAM. 

α=1   δ=0    δ=5   

   n=1 n=2  n=1 n=2

 γ=0 λ1 5.31510 8,71930      

  λ2 15.2072 21,1457      

  λ3 30.0198 38.4538      

  λ4 49.7633 60.6801      

  λ5 74.4400 87.8340      

           

γ=12 λ1 12.5846 14,7417  33.3232 36,9264

  λ2 27.0213 29.8678  62.5629 62,9212

  λ3 44.3132 48.4782  92.9544 90,3908

  λ4 65.5339 71.4349  125.3550 120,4300

  λ5 91.1435 99.0363  160.3440 153,6610

           

γ=100 λ1 102.4330 104.243  321.4320 349,7010

  λ2 208.0900 194.746  595.2460 580,6361

  λ3 308.6180 278.455  865.5160 804,7162

  λ4 408.4140 360.997  1134.9400 1026.7510

  λ5 508.5510 443.885  1404.2000 1248.1020

- Beam with parabolic thickness variation 

This section is concerned with the transverse vibration of 

the non-uniform beam shown in Fig. 4, a beam of constant 

breadth and depth proportional to the square of the axial co-

ordinate. 

Figure 4. Non-uniform beam; parabolic thickness variation. 

In particular, the geometry of the structure is given: 

( )2
0 0( ) 1 ( 1) , ( ) ,h h b bξ α ξ ξ= + − =  (25) 

the area and the inertia assume the form  

( )

( )

2
0

3
2

0

( ) 1 ( 1)

( ) 1 ( 1) .

A A

I I

ξ α ξ

ξ ξ α

= + −

= + −
 (26) 

TABLE IV. COMPARISON OF FIRST FIVE NATURAL FREQUENCIES;
PARABOLIC THICKESS VARIATION. 

α=5   δ=0  δ=5 

     

 γ=0 λ1 2.2608    

  λ2 30.0559    

  λ3 110.7650    

  λ4 230.4959    

  λ5 395.3289    

      

γ=12 λ1 12.5806  33.4471

  λ2 50.0796  106.4972

  λ3 137.4859  234.4189

  λ4 260.9709  397.4638

  λ5 428.5189  605.8781

       

γ=100 λ1 100.9850  276.5721

  λ2 301.1600  769.3038

  λ3 550.2041  1320.2100

  λ4 854.6310  1968.2940

  λ5 1223.8710  2735.9000

In Tab IV, the first five natural frequencies for rotating 

parabolic non-uniform beam, �=5, are presented for various 

r 

h1h(x) 

z, w 

h0

x

L

�

z1
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angular speed, � and hub ratios, �. 

If � = 0 as � increases the first natural frequency of the 

beam tends to the angular velocity (� ≡ �), causing the 

phenomenon of resonance, which is usually referred to as 

“angular speed turner”. An increase of parameter � results in 

an increase in the fundamental frequency of the beam for 

which the phenomenon of “turner angular speed” doesn’t 

occur. 

Figure 5. Angular speed and flapwise bending; �=5, r=0. 

The effect of the parameter �, has a deep impact even on 

the free frequencies results. For values of γ≠0, the centrifugal 
force influences the dynamic behavior of beam: the free 
frequencies increase to increase, for increasing values of the 

rotation, γ. From a practical point of view, greater values of the 
angular velocity lead to greater centrifugal forces, and in turn 
to stiffener beams. By increasing the extensional deformation, 
one gets increasing values of the natural frequencies of 
vibration. 

V. CONCLUDING REMARKS

The Hamilton principle is used to solve the free vibration 
problem of a rotating non-uniform beam based on the Euler 

beam theory. The effects of angular speed, γ and  hub radius, �, 
parameters are discussed in detail. The natural frequencies 
increase for increasing angular speed. That is due to the 
increase of the beam stiffness, and it is due to the increase of 
centrifugal force. In particular, the effect is evident on higher 
mode shapes. The advantage of the procedure used is the 
generality of polynomial functions which only need to satisfy 
the essential conditions. The numerical examples have been 

completely carried through by means of the powerful symbolic 
software.   

Also, it is demonstrated in the numerical routines that, the 
use of the Boundary Characteristic Orthogonal Polynomial 
technique is quite simple and converges quickly to the exact 
solution with very minimal computation effort and resources. 
This investigation is also intended to form the foundation for 
the application of the Euler theory to other rotating beam 
problems. 
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