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Abstract Very recently, both experimental and theo-
retical investigations have shown that micro-structured
surfaces covered with mushroom shaped micropillars
present strongly enhanced adhesive properties if com-
pared to standard flat surfaces made of the same ma-
terial. However, different geometries lead to different
adhesive performance, and finding the optimal solu-
tion has become of utmost importance. In this review
we summarize the main detachment mechanisms of
flat-topped and mushroom-topped soft micro pillars
and show how the geometry of the pillars should be
designed in order to obtain the best adhesive perfor-
mances. We also discuss the effect of air entrapment
at the interface between the pillar and the substrate
and investigate the influence of the non uniform pil-
lar height and thermal fluctuations on pull-off force.
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1 Introduction

Biomimetics has always played a crucial role in sug-
gesting, conceiving and developing breakthrough so-
lutions in mechanical, material and civil engineering,
e.g.: (i) Velcro has been inspired by the hooks of burs,
(ii) lumberjack blades have been inspired by wood-
burrowing beetle, (iii) cat’s eye reflectors have been in-
spired by the cats’ system of reflecting cells, known as
tapetum lucidum, (iv) ‘morphing aircraft wings’, that
change shape according to the speed, have been in-
spired by different bird species, (v) some paints and
window surfaces have been engineered to be self-
cleaning as in the case of lotus leaf, (vi) the cooling
system of the Eastgate Centre building, in Harare, has
been inspired by a termite mound [1]. In the last years,
bio-inspired adhesive structures have drawn great at-
tention from the research community [2–13], due to
their extremely high adhesive performance. In na-
ture, many biological attachment systems (e.g. Gecko
foot pad [14]) are made of hairs which are consti-
tuted mainly of a relatively stiff material, the β-keratin
(elastic modulus E ≈ 1 GPa). In this case, as sug-
gested by some experimental findings and theoretical
investigations [15–26], the compliant fibrillar hierar-
chical geometry of such structures provides them with
amazing adhesive properties. However, examples ex-
ist in Nature, e.g. the attachment pad of the males of
some beetle species from the family Chrysomelidae,
which do not present a hierarchical geometry as Gecko
does, but are simply surfaces covered with mushroom-
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shaped microstructures [27–29]. In such cases [7], the
shape of the terminal plate is crucial for the achieve-
ment of high adhesive strength values of the bio-
inspired artificial surfaces [30]. In particular, experi-
mental observations [7] have shown that mushroom
shaped microstructures [Fig. 1(a, b, c)] strongly out-
perform, in terms of pull-off force, surfaces covered
with miniaturized cylindrical pillar made of the same
material [polyvinylsiloxane (PVS), Young’s modulus
E = 3 MPa].

This property has been very recently exploited to
develop bio-inspired band-aids [31, 32]. However, dif-
ferent mushroom-pillar geometries have led to differ-
ent experimental results [21, 33] and to some differ-
ences if compared to theoretical predictions [30]. In
this review we summarize the main findings, that ex-
plain the origin of the superior performance of mush-
room shaped micropillars. The paper is organized as
follows. In Sect. 2 we present the mechanisms which
govern the detachment of cylindrical micro-pillars. In
Sect. 3 we show that the presence of the plate in
mushroom shaped pillar inhibits one of the detach-
ing modes, leading to a strong increase of the pull-off
force. In Sect. 4 we show how the geometry of the
mushroom-shaped pillar may be optimized to increase
the adhesive performance. In Sect. 5 we discuss the
effect of entrapment of air at the interface on the pull-
off force. In Sect. 6 we present a different detaching
mechanism which may occur on perfectly clean sur-
faces as a consequence of stress aided thermally ac-
tivated defect nucleation. In Sect. 7 we show how the
non uniform micro-pillar height distribution affects the
adhesive performance of the system. In Sect. 8 we pro-
vide concluding remarks and outline future develop-
ments.

2 The cylindrical micropillar

Let us first consider in detail the case of a cylindri-
cal micropillar in contact with a perfectly flat sub-
strate [Fig. 1(d)]. Let us assume the pillar is loaded
with a tractive force P . In principle the detachment
of the pillar from the substrate may be governed by
three different mechanisms depending on the work
of adhesion (also referred to as the Duprè energy
of adhesion) Δγ = γ1 + γ2 − γ12 (where γ1 is the
surface energy of solid 1, γ2 is the surface energy
of solid 2 and γ12 is the surface interaction energy

Fig. 1 A schematic drawing of a single mushroom shaped pil-
lar, (a); a SEM image of microfabricated PVS mushroom shaped
pillars (courtesy of prof. Gorb [33]), (b); the mushroom shaped
pillar, (c); and the cylindrical pillar (d) in contact with a rigid
substrate. The terminal plate in the mushroom shape (c) is the
origin of the enhanced adhesive performance

when the two surfaces are in direct contact), on the
geometry of the pillar, and on Young’s modulus E

of the material: (I) crack propagation from the pil-
lar edge [Fig. 2(a)], (II) propagation of interfacial de-
fects from the inner side [Fig. 2(b)], (III) decohesion
due to the achievement of theoretical contact strength
σIII = Δγ/ρ where ρ ≈ 1–10 nm is the typical range
of van der Waals forces [Fig. 2(c)]. Dimensional ar-
guments for mode I debonding of micro-pillars of ra-
dius R in contact with the substrate, allow to assert that
crack propagation from the edge initiates when the av-
erage tractive stress at the interface exceeds the value

σI = CE∗
(

8

π

δ

R

)λ

(1)

where E∗ = E/(1 − μ2), μ = 0.5 is Poisson’s ratio,
δ = Δγ/E∗ is the adhesion length, λ is the order of
stress singularity [34] at the edge of the pillar and de-
pends on the corner angle θ and on the boundary con-
ditions at the interface (no-slip, partial-slip, no fric-
tion). In the case of cylindrical pillars θ = π/2 and
assuming sticking friction at the interface one has λ =
0.4 for incompressible materials [34]. The dimension-
less quantity C is a constant factor which mainly de-
pends on the geometry and on the frictional state at the
interface. In the case of a cylindrical pillar indenting an
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Fig. 2 Debonding of a cylindrical pillar may occur because of crack propagation from the pillar edge (a), nucleation and propagation
of interfacial defects (b), decohesion due to the achievement of the theoretical contact strength (c). Map of debonding mechanisms of
a cylindrical pillar (d). The quantities aC = 1

2 πE∗ρ2/Δγ and RC = (8/π)E∗ρ2/Δγ are respectively a reference defect size and a
reference pillar radius

elastic half-space (θ = π ) and no friction at the inter-
face, one has λ = 1/2 and C = 1. Equation (1) can be
easily derived by observing that at the edge of the con-
tact the stress σij ≈ r−λ [34] where r is the distance
from the edge. Therefore the critical stress σI ≈ R−λ.
However σI must also depends on E∗ and Δγ , hence
invoking Buckingham’s theorem [35, 36] one can
write σI /E

∗ ≈ (δ/R)λ, from which Eq. (1) follows.
The strength of stress singularity at the edge is iden-
tified by the stress intensity factor K defined through
the relation σij = K(2πr)−λfij (ϕ), where fij (ϕ) is a
non-dimensional function of material parameters, cor-
ner angle, λ, and polar co-ordinate ϕ. Dimensional ar-
guments allow also to assert that K ≈ σ0(πR)λ where
σ0 is the far field applied stress. Therefore mode I de-
tachment will occur when K reaches the critical inten-
sity

Kc = 1

2
ασI (πR)λ = 1

2
αCE∗(8δ)λ

= 1

2
αCE∗1−λ(8Δγ )λ (2)

where α is a constant of order unity. Equation (2) al-
lows us to define an effective energy release rate G as

G = 21/λ

4α1/λC1/λ

K1/λ

2E∗1/λ−1
(3)

so that the critical condition for crack propagation
from the edge of the pillar can be written in the usual
Griffith form G = Δγ . Of course in the case of a rigid
cylindrical pillar in frictionless adhesive contact with

an elastic half-space (λ = 1/2) one obtains the usual
definition G = K2

I /(2E∗), with α = C = 1.
Note that Eq. (1) is confirmed by more accurate cal-

culations [37], which have been carried out within the
framework of the Dugdale-Barenblatt cohesive zone.
These calculations show that, for elastic cylindrical
pillars in sticking contact with a flat rigid substrate,
the critical mode I debonding stress is

σI ≈ B

(
σth

E∗

)1−2λ

E∗
(

δ

R

)λ

(4)

which is the same as Eq. (1) except for a factor of or-
der unity (σth/E

∗)1−2λ, that is independent of the pil-
lar geometry, where σth is the interfacial theoretical
strength.

Now let us consider that, since the exponent λ de-
pends on the real geometry and on the real boundary
conditions (e.g. no-slip, partial slip, no friction) at the
interface, its value is not easy to estimate. Therefore,
in what follows we will assume λ ≈ 0.5. This assump-
tions limit nowise the general validity of our treatment
and main conclusions. So we assume that the mode I
pull-off stress, needed to separate an elastic cylindrical
pillar in adhesive contact with a rigid substrate, is

σI ≈ E∗
(

8

π

δ

R

)1/2

=
(

8E∗Δγ

πR

)1/2

(5)

As already mentioned, there is also a second
debonding mechanism, i.e. the growth of interfacial
cracks [Fig. 2(b)], which may occur because defects
are often already present at the interface. In this case
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Fig. 3 Stress distribution in case of a cylindrical pillar (a) and for a mushroom shaped pillar, for three different thickness of the plate,
thin (b), medium (c) and thick (d). The presence of the plate eliminates the stress singularity of the cylindrical pillar at r ≈ R. Stress
peak in the mushroom pillar at r ≈ R will gradually vanish as the plate thickness t is increased up to its optimal value (c)

the change of adhesion energy ΔUad = πa2Δγ and
elastic energy ΔUel ≈ −(4σ 2a3)/(3E∗). To calculate
the critical pull-off stress σII , consider that the change
of total energy needed to generate a defect of radius a

is

ΔUtot ≈ −4

3

σ 2a3

E∗ + πa2Δγ (6)

Enforcing the condition ∂(ΔUtot)/∂a = 0 one can cal-
culate for any given defect size a the critical stress σII :

σII ≈
(

π

2

ΔγE∗

a

)1/2

(7)

Among the three different failure mechanisms (mode I,
mode II and mode III) only the one corresponding
to the minimum value of the critical stresses σI , σII

and σIII = Δγ/ρ could actually take place. A map of
the debonding mechanisms can be proposed, as shown
in Fig. 2(d), where the quantities aC = 1

2πE∗ρ2/Δγ

and RC = (8/π)E∗ρ2/Δγ are respectively a refer-
ence defect size, and a reference pillar radius. Let us
observe that for soft cylindrical micropillars (e.g. PVS
pillar [28]) assuming Δγ ≈ 16 mJ/m2, μ = 0.5, E =
3 MPa, and recalling that the range of van der Waals
forces is about ρ ≈ 1 nm one obtains aC = 0.39 nm
and Rc = 0.63 nm, so that mode III debonding can-
not occur in real cases where the pillar radius is of
order several micrometers. Figure 2(d) also shows that
cylindrical micropillars will detach by following the
mode II mechanism only in the very seldom case of
very large defects or impurities at the interface. In
fact only when a/aC > R/RC , i.e. only if a/R >

aC/RC = π2/16 ≈ 0.62, the stress σII is smaller
than σI . Hence, cylindrical soft micropillars must nec-
essarily detach by following mode I debonding. As-

suming as in [28] that the pillar has a diameter 2R ≈
15 mm one obtains a pull-off stress σI ≈ 4.6 kPa, and
consequently a pull-off force Fout = 0.8 N in perfect
agreement with experimental findings [28].

3 The mushroom shaped pillar

Some studies [7, 28] have shown that if a very compli-
ant annular plate is added to the base of the cylindri-
cal pillar the pull-off stress is unexpectedly strongly
increased. This suggests that a different debonding
mechanism should occur. Let us first observe that, the
presence of the plate, if optimally designed (see also
Sect. 4), may eliminate the stress singularity at r ≈ R

[Fig. 3(a)]. However, for too thin plates a large stress
peak will still be present at the interface [see Fig. 3(b)],
which may facilitate the formation and propagation of
cracks from the edge r ≈ R of the central pillar. The
stress peak at r ≈ R will gradually vanish if the plate
thickness t is increased up to an optimal value [see
Fig. 3(c)], at which the stress distribution becomes al-
most uniform below the pillar and smoothly decreases
until it vanishes at the plate perimeter r = Re [38].
In this case the uniform stress acts on a region of ra-
dius Rσ ≈ 1.1R [38]. If the thickness of the plate is in-
creased further [see Fig. 3(d)] then the stress singular-
ity may appear again at r = Re and the mushroom pil-
lar will behave as a bigger and less performing cylin-
drical pillar. To confirm this behavior, we have carried
out a Finite Element Analysis of the optimized mush-
room shaped pillar, using the commercial code AN-
SYS. The results are shown in Fig. 4, in terms of di-
mensionless interfacial normal stress distribution un-
derneath the plate σ̃ = σ/E∗, plotted against the ratio
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Fig. 4 The dimensionless normal stress distribution σ̃zz as a
function of the ratio r/R, for an optimal mushroom shaped pillar

Fig. 5 Map of debonding mechanisms for an optimally de-
signed mushroom shaped pillar. Detachments in this case must
be governed by mode II or mode III debonding, depending on
which one of them is energetically more favorable

between the distance from the pillar center r and the
internal radius R. As expected, the stress singularity
at the edge of the plate is almost completely disap-
peared, even more the interfacial normal stress almost
completely vanishes as the external contact perime-
ter is approached. Hence, the main role of the plate is
to prevent mode I debonding from happening, thanks
to the suppression of the stress singularity at the pil-
lar edge. Therefore, in the case of optimally designed
mushroom shaped micro-pillars, the most critical con-
ditions are actually established under the central pil-
lar at r < R, and detachment must follow mode II
or mode III mechanisms, depending on which one of
them is energetically more favorable. The debonding
map is then modified as shown in Fig. 5, from which
it follows that in the specific case of PVS samples
under investigation (Δγ ≈ 16 mJ/m2, E∗ = 4 MPa,

Fig. 6 Small dirt particles of about 3–5 µm in size contami-
nate the interface between the mushroom-shaped pillar and the
substrate [33], (a). The presence of impurities at the interface
determines a decrement of plate-substrate contact area, but, as
our calculations show, does not compromise the plate stability,
i.e. cannot cause defect propagation (b)

aC = 0.39 nm), mode II should be the real debond-
ing mechanism as indeed confirmed experimentally in
[21]. This actually means that since mode II debond-
ing is independent of the pillar size but depends on the
defect size [see Eq. (7)], the pull-off force should be
exactly the same both for thin and wide pillars, pro-
vided that the defect size is also the same in the two
cases. This is indeed in perfect agreement with the ex-
perimental results presented in Refs. [28, 39]. A last
consideration about the defect shape must be done.
Some experimental observations have shown that de-
fects at the interface may assume the shape of sim-
ply connected closed regions with a size much smaller
than the radius R of the pillar (see Fig. 6).

Therefore, let us assume that a circular particle is
found under the plate [see Fig. 6], it produces a cir-
cular defect of radius a and height h. Let us anal-
yse the stability of the defect. This time the propa-
gation of the defect will occur at constant height h

since the size of the external particle does not change
during propagation, hence the only contribution to the
change of total energy will come from the change of
elastic and adhesion energies. To calculate the change
of elastic energy, consider that the external particle
exerts on the plate a detaching force F given by
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F = 16πDh/a2 [40, 41], where D = E∗t3/12. This
gives ΔUel = 1

2Fh, whereas the adhesion energy is
ΔUad = πa2Δγ . Thus, the change of total energy is

ΔUtot = 8πD

(
h

a

)2

+ Δγπa2 (8)

As before, enforcing the condition ∂ΔUtot/∂a = 0 the
size of the detached area at equilibrium can be calcu-
lated as

aeq =
(

8Dh2

Δγ

)1/4

(9)

and the corresponding detaching force at equilibrium
becomes Feq = 4π

√
2DΔγ , which remarkably does

not depend on the size of the defect, i.e. external impu-
rities underneath the plate, will always exert the same
detaching force independent of their size. Observing
that ∂2ΔUtot/∂a2 is always positive it follows that the
presence of the plate stabilizes defects at the plate-
substrate interface, i.e. defects under the plate cannot
propagate but stay there. We also observe that this re-
sult is in agreement with Glassmaker’s work [42], who
showed that the presence of a terminal film connecting
the ends of the pillars reduces the amount of energy
available to propagate the interfacial defects.

4 Shape optimization

Let us consider the pillar shape [33] shown in
Figs. 1(a)–(b). FEM calculations have been carried out
for the simplified geometry represented in Fig. 7(a).
The grid [Fig. 7(b)] has been specifically generated
in order to have higher elements density both at the
inner radius Ri of the pillar (where interfacial stress
peaks may occur) and at the outer perimeter of the pil-
lar (where stress square-root singularities appear for
non optimized geometries).

The pillar is considered to fully adhere to the flat
rigid substrate, and sticking friction, observed in some
experiments [21], is taken into account by properly
constraining all the nodes of the adhering surface. An
external normal load P = πR2

i σ0 is, then, applied to
the free end of the pillar, and the interfacial normal σzz

and shear σzr stresses have been determined by means
of FEM calculations. Both stress distributions show a
singular behavior close to the external perimeter of the
contact. The strength of such singularities is quantified
by the corresponding stress intensity factors [43] KI

Fig. 7 A CAD model of the mushroom shaped pillar shown in
Fig. 1, (a); and the FEM grid, (b)

and K II . The pull-off stress is calculated by enforcing
the generalized Griffith condition [43] G = Δγ , i.e. by
requiring that G is equal to the work of adhesion Δγ .
The stress intensity factors KI and K II can be cal-
culated by recalling that they are proportional to the
externally applied stress σ0 and depend, given the ma-
terial properties, only on the shape of the pillar [44].
Therefore, once fixed the external applied stress σ0, a
single Finite Element analysis is sufficient [44] to cal-
culate the reduced normal and tangential stress distri-
butions (σzz/σ0, σzr/σ0) at the interface and the stress
intensity factors. The FE analysis has been carried out
with the aid of the commercial software ANSYS [45].

As a first example, we have carried out calculation
for the micropillar shown in Fig. 1(b) whose geometry
has been taken from Ref. [33]. In particular the exter-
nal diameter of the thin plate is De = 2Re ≈ 40 µm,
the internal diameter is Di = 2Ri ≈ 25 µm and the
thickness s of the plate is s = 2 µm. Calculations
have shown [44] that this type of geometry is sub-
optimal. Indeed, the reduced normal and shear inter-
facial stress distributions σzz/σ0 and σzr/σ0, as func-
tions of the ratio r/Ri , present an unwanted singular
behavior at the external edge of the thin plate. The
critical stress σI needed to activate mode I debond-
ing mechanism [30] is, then, determined by enforc-
ing the condition for crack propagation which yields
σI = CE∗[8δ/(πRi)]λ, i.e.

σI = 1

K̃eq
E∗

(
Δγ

πRiE∗

)λ

(10)
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where (K̃eq) ≈ 0.2 is a shape factor related to the
pillar geometry. Recalling that E = 3 MPa, ν = 0.5
and Δγ ≈ 16 mJ/m2, and assuming λ = 0.5, the
calculated critical stress is (σI )FP ≈ 0.33 MPa. We
may compare these results with the measurements re-
ported on the same microstructures [see Fig. 1(b)] by
Gorb et al. [33], where a surface with diameter d =
2.9 mm is covered with the mushroom-shaped pillars
and presents a coverage factor α = 40 % [Fig. 1(b)].
They measured on clean surfaces a pull-off force
Fout ≈ 350 mN, whereas our estimated pull-off force
is Fout = α(d2/4R2

e )πσIR
2
i ≈ 340 mN in very good

agreement with the experimental value. Of course the
presence of impurities or defects at the interface may
change the scenario and, in particular, may switch the
debonding mechanism from mode I to mode II [30]
and determine a reduction of the critical debonding
stress.

The above results [see Eq. (10)] show that the crit-
ical stress for mode I debonding rapidly increases as
the shape factor K̃eq decreases. In principle σI should
diverge when the shape factor K̃eq goes to zero, i.e.
when the stress singularity at the pillar edge vanishes.
In this case, for soft materials [30], the mode II mech-
anism should become the dominant one. Noticing that,
on smooth and clean surfaces, the mode II debonding
mechanism is activated by stress aided thermal fluc-
tuations (see Sect. 7 and Ref. [30]), this should lead
to very high adhesive forces. However the presence
of stress peaks at the interface weakens the adhesion
of the pillar to the substrate and should be avoided.
Therefore, an optimally designed mushroom pillar
should prevent the formation of stress intensification at
the interface. This can be achieved, by properly engi-
neering the geometry of the terminal plate and, in par-
ticular, by choosing the dimensionless quantities s/Ri

and Re/Ri to guarantee an almost uniform stress dis-
tribution in the central part of the pillar 0 < r < Ri and
a vanishing stress at the edge of the contact.

The FE analysis hereafter presented, has been car-
ried out to investigate the influence of the two param-
eters Re/Ri and s/Ri on the stress distribution under
the plate.

Figure 8 shows the reduced normal stress distri-
bution σzz/σ0 at the interface between the mushroom
shaped pillar and the rigid substrate, as a function of
r/Ri , for three different values of Re/Ri , i.e. Re/Ri =
2 (a), Re/Ri = 3 (b) and Re/Ri = 4 (c). Results con-
firm what has been qualitatively discussed in Sect. 3.

Indeed calculations show that, thick plates present a
stress singularity at the edge of the contact. On the
other hand, for very thin plates a stress peak appears
at r = Ri . The physical reason behind this is very sim-
ple. When the thickness of the plate is very thin, the
presence of the plate itself negligibly modify the stress
distribution which would be observed if the plate were
completely absent. But, flat cylindrical pillars present
a stress singularity at r = Ri .

Thus, thin plates will be only able to slightly
smoothen the stress singularity, without making the
peak disappear. On the other hand, very thick plates
behave as larger cylindrical pillars of radius Re and
the stress singularity will then appear at r = Re. The
plate thickness is therefore the very crucial quantity
that must be controlled to optimize the adhesive per-
formance of the system. However, for Re/Ri = 2
[Fig. 8(a)] it is not very easy to find the optimal
value of s/Ri that guarantees zero stress at r = Re

and avoids the stress peak at r = Ri , a good value is
s/Ri = 0.2. For larger values of Re/Ri [Fig. 8(b)–(c)]
this optimal choice can be identified with s/Ri ≈ 0.3.
In conclusion the optimized geometry should be char-
acterized by s/Ri ≈ 0.2–0.3 and values of Re/Ri ≥ 2
and preferably close to 3. Values of Re/Ri much larger
than 3 should be avoided since they might reduce the
coverage factor of the surface and worsen the perfor-
mance of the whole adhesive.

Recalling that for a cylindrical micropillar of ra-
dius Ri the mode I debonding stress is (σI )FP =
[1/(K̃eq)FP]E∗[Δγ/(πE∗Ri)]λ, we can easily calcu-
late for the case of a mushroom shaped pillar with in-
ternal radius Ri the stress enhancement factor

σI

(σI )FP
= (K̃eq)FP

K̃eq
(11)

which provides a measure of how much the presence
of the terminal plate is beneficial in enhancing the
adhesive performance. Figure 9 shows, under the as-
sumption λ ≈ 0.5, the debonding maps for different
type of micropillars: (i) cylindrical pillar, (ii) the non-
optimized mushroom shaped pillar, and (iii) the op-
timized mushroom shaped pillar. We recall that the
mode III debonding mechanism shown in Fig. 9 is due
to the achievement of the theoretical contact strength
σIII = Δγ/ρ where ρ ≈ 1 nm is the typical range of
van der Waals forces (for more details see Ref. [30]).
In Fig. 9, the quantities aC = 1

2πE∗ρ2/Δγ and RC =
E∗ρ2/[πΔγ (K̃eq)2

FP] are respectively a reference de-
fect size, and a reference pillar radius. Assuming, as
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Fig. 8 The reduced normal stress distribution σzz/σ0 as a
function of r/Ri , for Re/Ri = 2, (a); Re/Ri = 3, (b); and
Re/Ri = 4, (c). For Re/Ri = 2 (or smaller) and 0.2 < s/Ri < 1
the stress increases at the external perimeter of the plate. For
thinner plates (s/Ri < 0.2), on the contrary, a stress peak ap-
pears at the internal radius Ri . At larger values of Re/Ri it is
possible to find optimal configurations with s/Ri ≈ 0.2–0.3. In
this case the singularity at the r = Re almost disappears as well
as the stress peak at r = Ri (Color figure online)

Fig. 9 The map of debonding mechanisms for a cylindrical
pillar, (a); the modified map for a non-optimized mushroom
shaped pillar, (b); the debonding map of an optimized mush-
room shaped pillar, (c). The quantities aC = 1

2 πE∗ρ2/Δγ and

RC = E∗ρ2/[πΔγ (K̃eq)2
FP] are a reference defect size and a

reference pillar radius respectively
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before, Δγ ≈ 16 mJ/m2, ν = 0.5, E = 3 MPa, and
recalling that ρ ≈ 1 nm we calculate aC = 0.39 nm
and RC = 2 nm. For the mushroom shaped pillar [see
Fig. 9(b)], the real debonding mechanism, given the
defect size, depends on ratio σI /(σI )FP. In particu-
lar, for a possible optimal pillar shape Re/Ri ≈ 3 and
s/Ri ≈ 0.3, we calculate σI /(σI )FP ≈ 0.32 × 103, so
that the mode I debonding will occur for pillars of ra-
dius Ri ≥ [σI /(σI )FP]2 × RC = 0.2 mm, i.e. for op-
timally designed mushroom shaped micro-pillars with
Ri ≈ 10 µm and Re/Ri ≈ 3 mode I debonding mecha-
nism cannot take place [see Fig. 9(c)]. Our predictions
are confirmed by some experimental results [21].

Therefore we may propose a design rule of mush-
room shaped micro-pillars. Indeed, on basis of our
analysis the optimal pillar should be fabricated in such
a way to fulfill the following geometrical constraints:
2 ≤ Re/Ri ≤ 3 and s/Ri ≈ 0.2–0.3.

5 Interfacial entrapped air

Often during the approach of the adhesive to the sub-
strate, air bubbles may remain entrapped at the inter-
face. This may lead to a strong reduction of the ad-
hesive performance, which need to be investigated. In
order to carry out the analysis the total energy change
of the system when a bubble of air is present at the in-
terface must be precisely calculated. We assume that
the bubble of air is much smaller than the diameter
and height of the pillar so that one can treat the pil-
lar as an elastic half-space in contact with a rigid flat
surface. Assuming isothermal conditions and a con-
stant uniform asymptotic far field tractive stress σ , the
equilibrium of the system can be sought by requiring
that the total free energy at the interface (i.e. the in-
terfacial Gibbs energy) is stationary. Given the defect
size and assuming a linear elastic material, the calcula-
tion of the energy change of the system must consider
four different contributions (see also [46] for a differ-
ent derivation): (i) the contribution to the interfacial
elastic energy due to the asymptotic applied uniform
tractive stress σ , (ii) the contribution to the interfacial
elastic energy due the air pressure p, (iii) the internal
energy of the air bubble, (iv) the variation of surface
energies due to the presence of van der Waals forces.
Let us consider the system shown in Fig. 10 where the
bottom (initially flat) surface of an elastic half-space
is glued to a rigid plate except on a circular region of

Fig. 10 The displacement, gap and stress distributions involved
in the calculation of the free interfacial energy

radius a. Let us displace the rigid plate of a quantity
u0 (see Fig. 10) so that a small void is formed at the
interface. Assume that the air pressure in the void is p.

To calculate the elastic energy of the system, let
us first observe that the contact problem may have an
equivalent formulation in terms of interfacial elastic
energy, i.e. in terms of the amount of elastic energy
stored at the interface as a consequence of local inter-
facial deformations [47]. Accordingly, the elastic in-
terfacial energy is [47]

E = 1

2

∫
d2x σzz(x)

[
uz(x) − 〈

uz(x)
〉]

(12)

where x is the in-plane position vector, σzz(x) is the
non uniform normal interfacial stress, uz(x) is the lo-
cal normal displacement of the surface, and 〈u(x)〉 is
the average displacement at the interface (the sym-
bol 〈·〉 is the average operator). Considering that be-
cause of force balance the uniform stress σ at infinity
is σ = 〈σzz(x)〉 one can rephrase Eq. (12) as

E = 1

2

∫
d2x

[
σzz(x) − σ

]
uz(x) (13)

Now let us define (see Fig. 10) the gap distribution
v(x) as v(x) = u0 − uz(x). Of course v(x) 	= 0 on the
circular region of radius a, whereas it vanishes else-
where. Using v(x) and considering that σzz(x) = −p

for |x| < a, Eq. (13) becomes

E = 1

2
(p + σ)V (14)



1828 Meccanica (2013) 48:1819–1833

where V = ∫
d2x v(x) is the volume of the air bubble.

The total Helmholtz free interfacial energy F is then
the sum of the elastic interfacial energy, the free in-
ternal energy UA = −p0V0 ln(V/V0) of the entrapped
air, and the surface energy, i.e.

F (V , a) = E (V , a) + UA(V ) + πa2Δγ (15)

From thermodynamics one concludes that under iso-
thermal conditions and constant bubble volume V the
equilibrium of the system corresponds to the station-
ary values of the energy F . However, in our anal-
ysis we, instead, keep constant the asymptotic load
〈σ(x)〉 = σ . In this case the equilibrium of the sys-
tem corresponds to the stationary values of the inter-
facial Gibbs energy G(σ, a). Following the standard
approach of thermodynamics [48], we obtain G(σ, a)

by enforcing a Legendre transformation, i.e.

G(σ, a) = F (V , a) − ∂F
∂V

∣∣∣∣
a

V (16)

Observing that ∂E /∂V |a = p + σ and ∂UA/∂V |a =
−p, one yields the required expression for the interfa-
cial Gibbs energy G , i.e.

G(σ, a) = ΔUtot = 1

2
(p − σ)V + UA + πa2Δγ (17)

Beside Eq. (17) two additional equations are needed

pV = p0V0 (18)

and

V = 8a3

3E∗ (σ + p) (19)

Equations (18), (19) allow to calculate the quantity
V and p as a function of the radius a of the non con-
tact circular area. Therefore, the total energy change
ΔUtot given by Eq. (17) finally depends only on the
applied constant stress σ and the size of the voids a.
By following a similar approach as in JKR theory [49],
requiring that ∂ΔUtot/∂a|σ = 0 allows to calculate the
values of a at equilibrium, given the applied uniform
stress σ . The critical pull-off stress σcr , which destabi-
lize the defect and causes the detachment of the pillar
from the rigid flat substrate, is determined by requiring
that at equilibrium the relation ∂2ΔUtot/∂a2|σ = 0 is
also satisfied.

The above equations can be rephrased in a dimen-
sionless form. To this end let us define the adhesion
length δ = Δγ/E∗ and the dimensionless quantities

Fig. 11 The dimensionless total energy ΔŨtot as a function of
the radius of the detached area ã, for three different values of the
initial radius ã0, given the same value of dimensionless stress
σ̃ = 0.035 (blue, red and green curves). Increasing ã0 deter-
mines a decrease of the energy barrier ΔŨB between the stable
and unstable equilibrium states. The solid black curve represents
the total energy as a function of ã when the pillar is subjected to
the environment pressure only, i.e. σ̃ = −p̃0, and for ã0 = 100.
Notice that in this case there is only one equilibrium condition
at ã = ā which is necessarily stable (Color figure online)

σ̃ = σ/E∗, p̃ = p/E∗, ã = a/δ, Ṽ = V/δ3. The di-
mensionless total energy change of the system is there-
fore ΔŨtot = ΔUtot/(δ

3E∗), where Ṽ = (8/3)(σ̃ +
p̃)ã3 and p̃Ṽ = p̃0Ṽ0.

We assume that the environment pressure is 1 bar,
so that the initial pressure of the entrapped air bubble is
also p0 = 0.1 MPa. We also notice that the asymptotic
applied stress σ is σ = σ0 − p0, where σ0 = P/A is
the external applied average stress, P the applied load
and A the cross section area of the pillar. Figure 11
shows the total dimensionless energy change ΔŨtot as
a function of the dimensionless radius ã, for differ-
ent values of the initial dimensionless size ã0 of the
void. In our calculations we have used σ = 0.2 MPa
(i.e. σ0 = 0.3 MPa), Δγ ≈ 16 mJ/m2, E = 3 MPa and
ν = 0.5. The figure shows that for any value of ã0, two
equilibrium conditions exist, i.e. the stable state (en-
ergy minimum) and the unstable state (energy max-
imum). However, as expected, when the asymptotic
applied stress is zero or even negative only a stable
equilibrium state must be present (see the black line
in Fig. 11 with ã0 = 100 and σ̃ = −p̃0, i.e. σ̃0 = 0).
When an external stress σ > 0 is applied, an energy
barrier must be exceeded in order to destabilize the
system. The energy barrier ΔŨB in this case is defined
as the difference between the energy value of the un-
stable equilibrium state and the energy value of the sta-
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Fig. 12 The dimensionless total energy ΔŨtot as a function of
the radius of the detached area ã, for four different values of
the applied stress σ̃ , and for ã0 = 150. Increasing σ̃ determines
a decrease of the energy barrier ΔŨB between the stable and
unstable equilibrium states until it vanishes and the air bubble is
destabilized (Color figure online)

ble equilibrium state. From Fig. 11, given the same ap-
plied stress, one observes that the energy barrier ΔŨB

decreases as the initial radius ã0 of the bubble (i.e. its
initial volume) is increased. When ΔŨB = 0, i.e. when
∂ΔUtot/∂a|σ = 0 and ∂2ΔUtot/∂a2|σ = 0, the critical
defect size (ã0)cr is found which prevents the pillar
from adhering to the substrate.

Given the initial defect size ã0, one may also an-
alyze what happens when the applied stress σ is in-
creased. In particular, Fig. 12 shows that, for a fixed
value of the radius ã0 (we have considered a0 =
0.6 µm, i.e. ã0 = 150), when the applied stress σ in-
creases an unstable equilibrium state appears, which
is again separated from the corresponding stable equi-
librium by an energy barrier ΔŨB . As the stress σ̃ is
further increased, the energy barrier ΔŨB decreases
and vanishes at a certain stress level σ̃cr (the so called
critical pull-off stress) at which the air bubble of initial
size ã0 is destabilized and the pillar detaches from the
substrate.

It is interesting now to compare the critical stress
in case of solid defects of size aS (dust particles, im-
purities, etc.) σII = [πΔγE∗/(2aS)]1/2 with the criti-
cal pull-off stress σcr obtained in the case a bubble of
air entrapped at the interface. The comparison must be
carried out assuming that, at σ̃ = −p̃0 (i.e. σ̃0 = 0),
the (dimensionless) size ā of the air bubble at equi-
librium is identical to the (dimensionless) solid de-
fect size, i.e. ā = ãS . Figure 13 compares the criti-
cal stress σ̃0cr = σ̃cr + p̃0 in the two cases as a func-
tion of the radius ā. We observe that, in the case of

Fig. 13 The dimensionless external critical stress σ̃0cr =
σ̃0 + p̃0 as a function of the air bubble or solid particle size ā

(see text for more details). The blue curve refer to the air bubble
case, the black curve to the interfacial solid particle case (Color
figure online)

air bubble, the debonding stress σ̃0cr is always signif-
icantly smaller than the one obtained in the case of
solid defects with a reduction of about 35–40 % over
the entire range of defect size considered in the calcu-
lation, i.e. ā = ãS = 0.4–4 µm. Indeed, micro-air bub-
bles weaken the adhesive link between the pillar and
the rigid substrate more than the presence of exter-
nal particles, since their gas pressure exerts an addi-
tional debonding force and reduce the suction effect
which contributes to keep the pillar in contact with the
substrate. This represents a practical problem during
fast attaching-detaching of this kind of microstructure,
since in this case the entrapment of air can hardly be
avoided.

6 The influence of non uniform pillar height
distribution

Cylindrical or mushroom-shaped micropillars have
been employed to fabricate microstructured highly-
adhesive glue-free surfaces. However, during the fabri-
cation process it is very complicated to exactly control
the height of each single pillar, i.e. some pillars will be
taller and other smaller than the nominal height (see
Fig. 14).

Here we analyse the effect of non uniform pillar
height distribution. Referring to Fig. 14 we assume
that the nominal pillar height is l, then the height h

of the pillar can be written as h = l + z, where we as-
sume that the distances z are distributed according to
a Gaussian probability density distribution

p(z) = 1√
2π〈z2〉 exp

(
− z2

2〈z2〉
)

(20)
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Fig. 14 A microstructured surface covered with mush-
room-shaped pillars. Some pillars are taller and others smaller
than the nominal height. The nominal pillar height is l, the ac-
tual height h of the pillar can be written as h = l + z

where 〈 〉 is the statistical average operator, and 〈z2〉
is the mean square distance. Now assume that, after
preloading, all pillars come into contact with the sub-
strate. Therefore, assuming that the substrate is located
at a distance s from the mean plane z = 0, we can cal-
culate the force needed to elongate the fibre as

F = πR2E
s − z

l + z
(21)

where R is the circular radius of the pillar cross sec-
tion. Observe that the force F increases with s − z up
to the limiting pull-off value Fout = πR2

σ σII at which
the pillar will detach from the substrate. Also observe
that if the quantity s − z is less than zero then a com-
pressive (negative) force will act on the pillar, and this
compressive force will increase as s − z is decreased
down to a limiting (negative) load FB , which causes
the elastic buckling of the pillar

FB = −π2EJ/
[
2(l + z)

]2 (22)

where J = πR4/4. We assume that below this value
the pillar is not able to support the load. Thus, we
can calculate, as a function of s, the range of dis-
tances z, that will contribute to the total force act-
ing on the microstructured surface. By requiring that
FB < F < Fout, one obtains zmin(s) < z < zmax(s)

where

zmin(s) = l

(
s

l
− R2

σ

R2

σII

E

)(
1 + R2

σ

R2

σII

E

)−1

(23)

zmax(s) = l

2

[√(
1 + s

l

)2

+ π
J

l2R2
−

(
1 − s

l

)]

(24)

and the average stress 〈σ(s)〉 in units of E at equilib-
rium is

〈σ(s)〉
E

=
∫ zmax(s)

zmin(s)

p(z)
s − z

l + z
dz (25)

Fig. 15 The mean stress 〈σ(s)〉 in units of the elastic modulus
E of the material, as a function of the dimensionless separation
s/ l for different values of the quantity reduced root mean square
(rms) distance 〈z2〉1/2/l (Color figure online)

Let us consider, as before, the case of a microstruc-
tured surface made of PVS (Δγ ≈ 16 mJ/m2, E∗ =
4 MPa) covered with mushroom-shaped pillars with
internal radius R = 12.5 µm and nominal pillar height
l = 100 µm [33]. Assuming a limiting pull-off stress
σII ≈ 0.26 MPa (see Sect. 3), we obtain the average
stress 〈σ(s)〉 in units of E as a function of the di-
mensionless separation s/ l for different values of the
reduced root mean square (rms) distance 〈z2〉1/2/l as
shown in Fig. 15.

Figure 15 shows the strong reduction of the average
stress 〈σ(s)〉, which occurs as the quantity 〈z2〉1/2/l is
increased. In particular the maximum dimensionless
pull-off stress 〈σ 〉max/E can be plot as a function of
〈z2〉1/2/l. Figure 16 shows, indeed, that a value of the
rms distance 〈z2〉1/2 equal to ≈ 1 % of the nominal
height l is already enough to produce a decrement of
the pull-off stress of about ≈ 20 %.

7 Stress aided thermally activated defect
nucleation

The above calculations have been carried out for cases
where defects are already present at the interface be-
tween the micro-pillars and the substrate. However, in
some conditions the surfaces may be very clean and
very smooth. When this happens one may be tempted
to conclude that, not depending on the type of pillar
we are considering, mode II debonding mechanism
can never occur. In particular one would expect that
cylindrical pillars would detach by following mode I
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Fig. 16 The maximum average stress 〈σ 〉max (in units of the
elastic modulus E) as a function of 〈z2〉1/2/l

or mode III mechanisms, whereas mushroom-shaped
pillars would detach by following mode III only. How-
ever, in this section we show that this is not true and
that mode II remains a possible debonding mechanism
since defects at the interface may be formed as a con-
sequence of a stress aided thermally activated nucle-
ation process. Indeed, thermal fluctuations are always
able to overcome the stress dependent energy barrier
ΔUB = π3Δγ 3E∗2/(12σ 4) (see [30]) and nucleate
the defect. Statistical mechanics shows that the rate
w at which these fluctuations occur depends on the
energy barrier ΔUB through the Maxwell-Boltzmann
equation w = ν exp(−ΔUB/kBT ), where T is the
temperature of the system, ν ≈ 1014 s−1 is a very large
prefactor related to the high entropy associated with
placing the nucleus in many different places on the
contact area [10] and kB is the Boltzmann constant.
We observe that, increasing the applied stress deter-
mines a strong reduction of the energy barrier ΔUB

and therefore an increase of the nucleation rate. Of
course, if the applied stress is small one must wait a
long time before the first nucleus is formed and pil-
lar detachment can be observed. However, as the ap-
plied stress is increased, defect nucleation and pillar
detachment will occur on shorter time intervals and
will become observable when these time intervals will
reach values of order 1 s or less, i.e. when the nucle-
ation rate w is equal to or smaller than w0 ≈ 1 Hz.
When this happens the stress-dependent energy barrier
takes the value ΔUB = kBT ln(ν/w0). At room tem-
perature, i.e. T = 300 K, one obtains ΔUB ≈ 1 eV.

This means that mode II debonding mechanism can
be observed, even in case of perfectly smooth and
clean surfaces, when the applied stress is large enough

Fig. 17 Map of debonding mechanisms for a cylindrical mi-
cropillar in contact with perfectly clean and smooth substrates

to reduce the energy barrier against nucleation at val-
ues equal to or smaller than ΔUB ≈ 1 eV. From ΔUB

one can calculate the critical external stress σII which
activates the stress aided thermally activated debond-
ing mechanism of type II:

σII =
[
π3

12

Δγ 3E∗2

ΔUB

]1/4

(26)

For the case of PVS micropillars under consideration
one obtains σII = 5 MPa. This value is relatively large
and may be even larger than the rupture stress of the fi-
bre. This of course means that soft micropillars might
be, in principle, ripped off before mode II debonding
can take place. Now, neglecting other forms of fail-
ure, and concentrating only on interfacial detachment,
one can produce a new map of debonding mechanisms
for the case of cylindrical micropillars in contact with
clean and smooth surfaces.

This new map is shown in Fig. 17, where

E∗
C =

(
12

π3

ΔγΔUB

ρ4

)1/2

(27)

Recalling that ΔUB ≈ 1 eV, and that for PVS mi-
cropillars Δγ ≈ 0.016 J/m2 and ρ ≈ 1 nm one ob-
tains that the stress-aided thermally activated nucle-
ation at the interface is energetically more favorable
than uniform decohesion (mode III) when E∗ < E∗

C =
31 MPa. Hence, in case of PVS (E∗ = 4 MPa) cylin-
drical micro-pillars we expect that only mode I and
mode II debonding mechanisms can be activated. To
find which one is the real mechanism it is enough to
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Fig. 18 Map of debonding mechanisms for an optimally de-
signed mushroom shaped micropillar in contact with a perfectly
clean and smooth substrate

observe that mode I mechanism occurs when σI < σII ,
which gives

R > RC =
√

768

π5

ΔUB

Δγ
(28)

Being Δγ ≈ 0.016 J/m2, we obtain RC ≈ 5 nm which
simply means that, even in case of contact with per-
fectly smooth and clean surfaces, man-made cylindri-
cal PVS micropillars (size of order 10 µm [33]) always
detach from the substrate by following the mode I
debonding mechanism.

However the presence of an optimally designed
annular plate inhibits mode I failure mechanism,
thus, in the case of mushroom-shaped pillar in con-
tact with perfectly smooth and clean surface, the
map of debonding mechanisms changes as shown in
Fig. 18, from which one concludes that relatively soft
mushroom-shaped pillars detach at much higher stress
because of stress aided thermally activated defect nu-
cleation (mode II mechanism) even in case of clean
and smooth surfaces.

8 Conclusions and outlook

We have reviewed the main detachment mechanisms
of microstructured adhesives made of regular arrays
of micropillars and shown how mushroom shaped mi-
cropillars can be optimally designed to strongly en-
hance the performance of this type of biomimetic ad-
hesives. Although these optimized systems present

pull-off forces which may be even larger than those
obtained in the case of biological systems (e.g. geckos
and beetles), they present direction-independent adhe-
sion, i.e. the strength of adhesion is the same not de-
pending on the direction of the applied load. This is
an important drawback when the goal is related to ap-
plications in the field of locomotion and object manip-
ulation. We may say that, notwithstanding the great
advances in the field of microstructured adhesives, our
attempt to copy Nature is incomplete. Indeed, a lot of
research is still going on and will be needed in the
future to propose and fabricate bio-mimetic surfaces
with controlled direction dependent adhesion.
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