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Abstract In this paper we construct two infinite families of transitive two-character
sets and hence two infinite families of symmetric strongly regular graphs. We also
construct infinite families of quasi-quadrics.
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1 Introduction

A symmetric graph is a (loopless, undirected) graph whose automorphism group acts
transitively on ordered edges. The study of symmetric graphs goes back to work of
Tutte [12], with the first significant result after that being the classification of those
symmetric graphs of prime order by Chao [5].

A strongly regular graph srg(v, k, λ, µ) is a regular graph such that there are con-
stants λ and µ with the property that every pair of adjacent vertices has λ com-
mon neighbours and every pair of non-adjacent vertices has µ common neighbours.
Strongly regular graphs were introduced by Bose [2].
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A way of constructing symmetric strongly regular graphs arises from the geometry
of certain subsets of finite projective spaces known as transitive two-character subsets.

A two-character set in the projective space PG(d, q) is a set S of n points with
the property that the intersection number with any hyperplane only takes two values,
n − w1 and n − w2. Then the positive constants w1 and w2 are called the weights
of the two-character set. Embed now PG(d, q) as a hyperplane " in PG(d + 1, q).
The linear representation graph #∗

d(S) is the graph having as vertices the points of
PG(d + 1, q) \ " and where two vertices are adjacent whenever the line defined by
them meets S. It follows that #∗

d(S) has v = qd+1 vertices and valency k = (q − 1)n.
Delsarte [10] proved that this graph is strongly regular if S is a two-character set. If
the two-character set S is also transitive, i.e., it has a transitive automorphism group,
then the strongly regular graph #∗

d(S) is also symmetric.
The other parameters of the graph #∗

d(S) are λ = k2 +3k −q(w1 +w2)−kq(w1 +
w2)+q2w1w2 and µ = k2 +k −kq(w1 +w2)+q2w1w2 by Corollary 3.7 of [4]. It is
interesting to note that regarding the coordinates of the elements of S as columns of the
generator matrix of a code L of length n and dimension d + 1, then the two-character
set property of S translates into the fact that the code L has two (non-zero) weights
(w1 and w2) [4]. Such a code is said to be a projective two-weight code. The weights
of the code are exactly the weights of the two-character set.

Numerous authors—too many to be mentioned here—studied two-character sets,
sometimes using algebra, sometimes using geometry. In this paper we construct two
infinite families of transitive two-character sets and hence two infinite families of
symmetric strongly regular graphs. In Corollary 1 we construct symmetric strongly
regular graphs
srg(q4, (q4 − q3 − q2 + q)/2, (q4 − 2q3 − q2 + 6q)/4, (q4 − 2q3 − q2 + 2q)/4), for
any prime power q > 3, while in Corollary 2 we construct symmetric strongly regular
graphs srg(q8, q7 − q5 − q3 + q, q6 − q4 + 3q3 + q2 + 3q, q6 − 2q4 − q3 + q2 + q),

for any odd prime power q.
We also give a construction of quasi-quadrics of projective spaces i.e., two-char-

acter sets having the same intersection numbers with respect to hyperplanes as a
non-degenerate quadric and hence a construction of other strongly regular graphs.

Finally, we present a computational result on two-character sets arising from a
particular 2-modular representation of the group G2(3).

2 Elementary Properties of the Twisted Cubic

A twisted cubic C of PG(3, q), q = ph, p prime, where X1, . . . , X4 are projective
homogeneous coordinates, in its canonical form is the set

{P(t) = (t3, t2, t, 1) : t ∈ GF(q)} ∪ {(1, 0, 0, 0)},

comprising q + 1 points no four of which are coplanar and hence no three of which
are collinear. At each point P(t) of C there exists an osculating plane with equation
X1 −3t X2 +3t2 X3 − t3 X4 = 0, that meets C only at P(t). The set of q +1 osculating
planes form the osculating developable # to C. A chord of C is a line $ of PG(3, q)
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joining either a pair of real points P(t) and P(t ′) of C, possibly coincident, or a pair of
complex conjugate points P(t) and P(t ′) (here t and t ′ are conjugate over a quadratic
extension of GF(q)). We say that $ is a real chord, a tangent or a imaginary chord,
respectively. When p &= 3, dual to the chords of C are the axes of #. From [11, Lemma
21.1.9] the tangents to C form a (q + 1)-span of PG(3, q).

Lemma 1 ([11, Lemma 21.1.3]) Let Gq denote the stabilizer of C in PGL(4, q).

1. When q ≥ 5, Gq ( PGL(2, q);
2. G4 ( Sym(5);
3. G3 ( Sym(4) · 23;
4. G2 ( Sym(3) · 23.

For our purpose we need to know the action of Gq on planes and points of PG(3, q).

Lemma 2 ([11, Corollary 4, p. 234]) Under the action of Gq there are five orbits on
planes of PG(3, q):

1. N1 = # of size q + 1;
2. N2 = {planes meeting C at exactly two points} of size q(q + 1);
3. N3 = {planes meeting C at exactly three points} of size q(q2 − 1)/6;
4. N4 = {planes not in # meeting C at exactly one point} of size q(q2 − 1)/2;
5. N5 = {planes disjoint from C} of size q(q2 − 1)/3.

Lemma 3 ([11, Corollary 5 p. 235]) Under the action of Gq there are five orbits on
points of PG(3, q).

Assume q &≡ 0 (mod 3).

1. M1 = C of size q + 1;
2. M2 = {points off C on a tangent} of size q(q + 1);
3. M3 = {points on three osculating planes} of size q(q2 − 1)/6;
4. M4 = {points off C on exactly one osculating plane} of size q(q2 − 1)/2;
5. M5 = {points on no osculating plane} of size q(q2 − 1)/3.

Assume q ≡ 0 (mod 3).

1. M1 = C of size q + 1;
2. M2 = {points on all osculating planes} of size q + 1;
3. M3 = {points off C on a tangent and one osculating plane} of size (q2 − 1);
4. M4 = {points off C on a real chord} of size q(q2 − 1)/2;
5. M5 = {points on an imaginary chord} of size q(q2 − 1)/2.

Remark 1 From [11, Corollary p. 242], for q ≡ 1 (mod 3), M3 ∪ M5 = { points
on a real chord} and M4 = {points on an imaginary chord}. For q ≡ −1 (mod 3),
M3 ∪ M5 = {points on an imaginary chord} and M4 = {points on a real chord}.
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2.1 The First Infinite Family

In this section we will show that the orbit M4 for all q turns out to be a two-character
set.

Theorem 1 For q ≥ 3, the Gq-orbit M4 is a two-character set with w1 = (q3−q2)/2
and w2 = (q3 − q2 − 2q)/2.

Proof Firstly assume that q &≡ 0(mod 3). Let " be a plane of PG(3, q). If " ∈ N1
and q ≡ 1 (mod 3) then " meets M4 at q(q − 1)/2 points. Indeed, in this case, "

does not contain imaginary chords and from Remark 1 M4 is the set of points on
imaginary chords. The claim follows from the fact that q(q − 1)/2 is the number of
imaginary chords [11, Lemma 21.1.4]. If q ≡ −1 (mod 3) then " meets M4 again
at q(q − 1)/2 points. Indeed, in this case from Remark 1 M4 is the set of points
on real chords (there are exactly q chords of C passing through " ∩ C). Assume
that " ∈ N2 and let " ∩ C = {P, Q}. Then " contains either the tangent tP to
C at P or the tangent tQ to C at Q. It cannot contain both because the tangents to
C are mutually disjoint (they form a (q + 1)-span). It follows that " meets M2 at
q + (q − 1) points. Assume that q ≡ 1(mod 3). Then M3 ∪ M5 consists of points
on real chords. There are q(q + 1)/2 real chords of which q − 1 on P and q − 1
on Q distinct from P Q. It follows that " meets M3 ∪ M5 at the q − 1 points of
P Q and at (q2 − 3q + 2)/2 points on the remaining chords. Hence " meets M4 at
q2 + q + 1 − 2 − (2q − 1) − (q − 1) − ((q2 − 3q + 2)/2) = q(q − 1)/2 points.
Assume that " ∈ N3. Let " ∩ C = {P, Q, R}. Then " meets C at three points, M2
at q − 2 points, M3 ∪ M5 at 3(q − 1) points on P Q, P R and Q R and at further
(q2 − 5q + 6)/2 points. It follows that π meets M4 at q(q − 1)/2 points. Assume
that " ∈ N4. Then " meets C at only one point, M2 at q points, M3 ∪ M5 at
q(q +1)/2−q = q(q −1)/2 points and hence M4 at q(q +1)/2 points. Assume that
" ∈ N5. Then " is skew to C, meets M2 at q + 1 points, M3 ∪ M5 at q(q + 1)/2
points and hence M4 at q(q − 1)/2 points. When q ≡ −1 (mod 3), the orbits M4 is
exactly the set of points on real chords and hence the result follows from the previous
case. Assume now that q ≡ 0(mod 3). In this case M4 consists of points off C on real
chords and the result follows from the proof above. The proof is now complete.

Corollary 1 #∗
3(M4) is a symmetric strongly regular graph srg(q4, (q4−q3−q2+q)

/2, (q4 − 2q3 − q2 + 6q)/2, (q4 − 2q3 − q2 + 2q)/2).

Remark 2 When q = 3, the group G3 has four point-orbits of size 4, 8, 12, 16. The
12-orbit is a transitive two-character set with w1 = 3 and w2 = 6, the 16-orbit is a
transitive two-character set with w1 = 4 and w2 = 7. Their union is a two-character
set with w1 = 7 and w2 = 10. When q = 4, we have that M4 has size 30 and it is a
transitive two-character set with w1 = 6 and w2 = 10.

3 On the Set of Tangent Lines to Q−(3, q), q odd

Let Q−(3, q) be an elliptic quadric of PG(3, q), q odd, i.e., a set of q2 + 1 points
of PG(3, q) no three of them collinear. On each point P of Q−(3, q) there are q + 1
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tangent lines lying on a plane called tangent plane to Q−(3, q) at P . Hence there are
(q2+1)(q +1) tangent lines to Q−(3, q). Embed PG(3, q) in PG(3, q2) as a Baer sub-
geometry. Denote by T the set of points of PG(3, q2), that are not in PG(3, q), on tan-
gent lines to Q−(3, q) (extended over GF(q2)). Clearly, |T | = (q+1)(q2+1)(q2−q).

3.1 The Second Infinite Family

Theorem 2 The set T is a transitive two-character set with w1 = q5 − q3 and
w2 = q5 − q3 − q2.

Proof The stabilizer of Q−(3, q) in PGL4(q) is the group PGL2(q2). In order to
show that PGL2(q2) is transitive on T it is sufficient to show that the stabilizer H in
PGL2(q2) of an extended tangent line $ to Q−(3, q) is transitive on the set of points of
$ not in PG(3, q) for PGL2(q2) acts transitively on the set of tangent lines to Q−(3, q).
The group H has order q2(q −1) and acts on $ with a kernel of order q as AGL(1, q);
hence H acts transitively on the set of points of $ not in PG(3, q).

A plane " of PG(3, q2) either meets PG(3, q) at a plane or at a line.
Assume that " ∩ PG(3, q) is a plane π . If π is a tangent plane to Q−(3, q) at a

point P of Q−(3, q) then " meets T at (q + 1)(q2 − q) points.
If π is a secant plane to Q−(3, q), i.e., π ∩ Q−(3, q) ia a conic C, then " contains

the tangent lines to Q−(3, q) at the points of C and again " meets T at (q +1)(q2 −q)

points.
Assume that " meets PG(3, q) at a line $.
If $ is tangent to Q−(3, q) at P then " meets T at q3 + q2 − q points: q2 − q

points of the GF(q2)-extension of $ and for any other point of Q−(3, q) there are q
GF(q2)-extended tangent lines to Q−(3, q) meeting " at a point.

Assume that $ is external to Q−(3, q). On $ there are exactly two tangent planes
to Q−(3, q). This means that " meets T at (q2 − 1)q = (q + 1)(q2 − q) points.

Finally, assume that $ is secant to Q−(3, q) at P1 and P2. Then, " meets T at
(q + 1)(q2 − q) points. The proof is now complete.

Corollary 2 #∗
3(T ) is a symmetric strongly regular graph srg(q8, q7 − q5 − q3

+ q, q6 − q4 + 3q3 + q2 + 3q, q6 − 2q4 − q3 + q2 + q).

Remark 3 When q is even, the tangent lines to Q−(3, q) form a non-singular linear
complex, and the analogue of our theorem has been proved in [8].

4 A Construction of Quasi-Quadrics

In a projective space PG(k, q) a quasi-quadric is a set of points that has the same
intersection numbers with respect to hyperplanes as a non-degenerate quadric in that
space [9]. Clearly, non-degenerate quadrics themselves are examples of quasi-quad-
rics. When k is odd, quasi-quadrics have two sizes of intersections with hyperplanes
and so are two-character sets (and therefore give rise to strongly regular graphs). In
this section we give a construction of quasi-quadrics, arising from a non-degenerate
polarity " of PG(k, q), k odd.
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Let s = q or s = q2, q = ph, p prime, according as " is symplectic, orthogonal
or unitary.

Let k = 2r − 1. Let X0, . . . , X2r−1, be homogeneous projective coordinates for
PG(k, s), k = 2r − 1, r > 2. Let S1 and S2 be the subspaces with equations:

S1 : X0 = X1 = X2 = · · · = Xr−1 = 0,

S2 : Xr = Xr+1 = · · · = Xk+1 = 0.

Assume that S1 and S2 are totally singular with respect to ". Let P := (0, 0, . . . , 0, ar ,

ar+1, . . . , ak+1) be a point of S1, and let P⊥ be the polar hyperplane of P with respect
to the polarity ". The intersection of P⊥ and S2 is a projective (r − 2)-subspace, say
SP , and we say that SP corresponds to P . Straightforward computations show that
SP has the following equations:

{
aα

r X0 + aα
r+1 X1 + · · · + aα

k+1 Xr−1 = 0
Xr = Xr+1 = · · · = Xk+1 = 0

.

where α = 1 if " is symplectic or orthogonal, and α = q in the unitary case. Note
that the subspace 〈P, SP 〉 is totally singular with respect to ".

Take another point P ′ of S1, P ′ &= P, and suppose that its corresponding sub-
space SP ′ coincides with SP . Then, the line P P ′ and SP would be orthogonal to each
other and hence would generate a totally singular r -dimensional projective subspace,
a contradiction.

Thus, allowing P to vary over the points of S1, the construction described above
produces a family, say P1, of θr−1(s) distinct totally singular (r − 1)-dimensional
subspaces (here θt (s) denotes the number of points of a projective space PG(t, s)).
Further any two members of P1 meet in exactly a totally singular (r −2)-dimensional
subspace. In a similar way, as Q varies over the points of S2, one obtains another
collection, say P2, of θr−1(s) distinct totally singular (r − 1)-dimensional subspaces.
This way, we get a set R containing at least 2θr−1(s) + 2 totally singular (r − 1)-
dimensional subspaces, including S1 and S2, but at most two of these subspaces are
mutually disjoint.

Theorem 3 The set R is a hyperbolic quadric if " is orthogonal and a quasi-quad-
ric in the symplectic and unitary cases having the same intersection numbers of a
hyperbolic quadric of PG(2r − 1, s).

Proof Easy computations show that |R| = (sr−1 + 1)(sr − 1)/(s − 1).
Let H be a hyperplane of PG(k, s). We distinguish two cases.
S1 ⊂ H or S2 ⊂ H Assume S1 ⊂ H . The case S2 ⊂ H is similar. In this case the

intersection between H and S2 is an (r −2)-dimensional subspace Sp for some P ∈ S1.
Of course, H meets any other member of P1 in an (r − 2)-dimensional subspace. It
follows that H meets R in h1 points where h1 = θr−1(s) + θr−2(s) + (θr−1(s) −
θr−2(s − 1) + (θr−1(s) − 1)(θr−2(s) − θr−3(s) − 1) = θr−1(s) + sr−2(θr−1(s) − 1).

S1, S2 &⊂ H Let X1 be the (r − 2)-dimensional subspace S1 ∩ H and X2 the
(r − 2)-dimensional subspace S2 ∩ H . We have to consider two subcases.
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1. X2 = S1 P for some P ∈ X1. In this case, H contains 〈P, X2〉, meets (θr−2(s)−1)

members of P1 in an (r−2)-dimensional subspace meeting both X1 and X2, and the
remaining members of P1 in θr−1(s)−θr−3(s) points. It follows that H meets R in
h1 points where h1 = 2θr−2(s)+θr−1(s)−θr−2(s)−1+ (θr−2(s)−1)(θr−2(s)−
θr−3(s)−1)+(θr−1(s)−θr−2(s))(θr−2(s)−θr−3(s)) = θr−1(s)+sr−2(θr−1(s)−
1).

2. X2 does not correspond to any point of X1. It follows that H meets R in h2 points
where h2 = 2θr−2(s) + θr−2(s)(θr−2(s) − θr−3(s) − 1) + (θr−1(s) − θr−2(s) −
1)(θr−2(s) − θr−3(s)) = θr−2(s) + sr−2(θr−1(s) − 1).

Remark 4 When q is even and " is symplectic R is actually a quadric: an orthogonal
polarity is also symplectic.

Remark 5 It should be noted that when r = 3, the chordal variety M4
3 of the Veronese

surface V of PG(5, q) is a quasi-quadric of hyperbolic type. In [7] the geometry of
conics of PG(2, q) was used to determine the two intersection numbers. By means of
[1], it can be proved that the point set of M4

3 can be partitioned into q2 + 1 Veronese
surfaces (V included). It turns out that the q2 + q + 1 conic planes of V all meet the
remaining Veronese surfaces on M4

3 at a point. Hence, V and each one of the Veronese
surfaces on M4

3 play the role of S1 or S2 in our Theorem 3.

Remark 6 It should be mentioned that when " is unitary the set R can be obtained as
the intersection of two Hermitian varieties in PG(2r − 1, q2), [6]

Remark 7 Of course, the strongly regular graphs arising from our quasi-quadrics and
quasi-Hermitian varieties have the same parameters of those arising from the usual
quadrics and Hermitian varieties, but in general we have no information about their
automorphism groups: some MAGMA computations [3] for small values of k and q
show that the automorphism groups of our graphs are smaller than those arising from
quadrics or Hermitian varieties. In particular, in the symplectic case when k = 5 and
q = 3, 5, 7, 9, 11 we found that the group of the related strongly regular graphs is
GL3(q) · 2. In the unitary case, always when k = 5 and q2 = 9, 16, 25, 49, we found
that the group of the related strongly regular graph is (SU3(q) × SU3(q)) · Cq+1 · 2.

5 A sporadic two-character set

The group G2(3) has a 2-modular representation of 14◦ [13]. As a subgroup of
PGL14(2), it has five orbits on points of PG(13, 2) of sizes 378, 378, 3888, 4368
and 7371. The union of the two 378-orbits and the 3888-orbit is a two-character set
with w1 = 2368 and w2 = 2304. (This computation was performed in Magma [3].)
This gives rise to a strongly regular (16384, 4644, 1276, 1332) graph.

References

1. Baker, R.D., Bonisoli, A., Cossidente, A., Ebert, G.L.: Mixed partitions of PG(5, q). Discrete
Math. 208/209, 23–29 (1999)

123

Author's personal copy



406 Graphs and Combinatorics (2013) 29:399–406

2. Bose, R.C.: Strongly regular graphs, partial geometries and partially balanced designs. Pacific J.
Math. 13, 389–419 (1963)

3. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I. The user language. J. Symbolic
Comput. 24, 235–265 (1997)

4. Calderbank, R., Kantor, W.M.: The geometry of two-weight codes. Bull. London Math. Soc. 18,
97–122 (1986)

5. Chao, C.: On the classification of symmetric graphs with a prime number of vertices. Trans. Am. Math.
Soc. 158, 247–256 (1971)

6. Cossidente, A., Ebert, G., Marino, G.: Commuting Hermitian varieties and the flag geometry of
PG(2, q2) (unpublished)

7. Cossidente, A., Marino, G.: The Veronese embedding and two-character sets. Des. Codes Cryp-
togr. 42, 103–107 (2007)

8. Cossidente, A., Durante, N., Marino, G., Penttila, T., Siciliano, A.: The geometry of some two-character
sets. Des. Codes Cryptogr. 46, 231–241 (2008)

9. De Clerck, F., Hamilton, N., O’Keefe, C.M., Penttila, T.: Quasi-quadrics and related structures. Aus-
tralas. J. Combin. 22, 151–166 (2000)

10. Delsarte, Ph.: Weights of linear codes and strongly regular normed spaces. Discrete Math. 3,
47–64 (1972)

11. Hirschfeld, J.W.P.: Finite Projective Spaces of Three Dimensions. Oxford University
Press, Oxford (1985)

12. Tutte, W.T.: A family of cubical graphs. Proc. Cambridge Philos. Soc. 43, 459–474 (1947)
13. Wilson, R., Walsh, P., Tripp, J., Suleiman, I., Rogers, S., Parker, R., Norton, S., Nickerson, S.,

Linton, S., Bray, J., Abbott, R.: Atlas of Finite Group Representations. http://brauer.maths.qmul.ac.
uk/Atlas/v3

123

Author's personal copy

http://brauer.maths.qmul.ac.uk/Atlas/v3
http://brauer.maths.qmul.ac.uk/Atlas/v3

	Two-Character Sets Arising from Gluings of Orbits
	Abstract
	1 Introduction
	2 Elementary Properties of the Twisted Cubic
	2.1 The First Infinite Family

	3 On the Set of Tangent Lines to Q-(3,q), q odd
	3.1 The Second Infinite Family

	4 A Construction of Quasi-Quadrics
	5 A sporadic two-character set
	References


