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ON A REPRESENTATION OF TIME SPACE-HARMONIC
POLYNOMIALS VIA SYMBOLIC LÉVY PROCESSES
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Abstract. In this paper, we review the theory of time space-harmonic polynomials
developed by using a symbolic device known in the literature as the classical umbral
calculus. The advantage of this symbolic tool is twofold. First a moment representation
is allowed for a wide class of polynomial stochastic processes involving the Lévy ones in
respect to which they are martingales. This representation includes some well-known
examples such as Hermite polynomials in connection with Brownian motion. As a
consequence, characterizations of many other families of polynomials having the time
space-harmonic property can be recovered via the symbolic moment representation.
New relations with Kailath-Segall polynomials are also stated. Secondly the general-
ization to the multivariable framework is straightforward. Connections with cumulants
and Bell polynomials are highlighted both in the univariate case and multivariate one.
Open problems are addressed at the end of the paper.

1 Introduction In mathematical finance, a Lévy process [22] is usually employed to
model option pricing.

Definition 1.1. A Lévy process X = {Xt}t≥0 is a stochastic process satisfying the following
properties:

a) X has independent and stationary increments;

b) P [X(0) = 0] = 1 on the probability space (Ω,F , P );

c) X is stochastically continuous, i.e. for all a > 0 and for all s ≥ 0, limt→s P (|X(t) −
X(s)| > a) = 0.

The employment of Lévy processes in mathematical finance is essentially due to the
property of manage continuous processes interspersed with jump discontinuities of random
size and at random times, well fitting the main dynamics of a market. In order to include the
risk neutrality, a martingale pricing could be applied to options. But Lévy processes do not
necessarily share the martingale property unless they are centred. Instead of focusing the
attention on the expectation, a different approach consists in resorting a family of stochastic
processes, called polynomial processes and introduced very recently in [4]. These processes
are built by considering a suitable family of polynomials {P (x, t)}t≥0 and by replacing
the indeterminate x with a stochastic process Xt. Introduced in [25] and called time-space
harmonic polynomials (TSH), {P (x, t)}t≥0 are such that

(1.1) E[P (Xt, t) | Fs] = P (Xs, s), for s ≤ t

where Fs = σ (Xτ : τ ≤ s) is the natural filtration associated with {Xt}t≥0.
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As done in [19] for the discretized version of a Lévy process, that is a random walk, TSH
polynomials can be characterized as coefficients of the Taylor expansion

(1.2)
exp{zXt}

E[exp{zXt}]
=

∑
k≥0

Rk(Xt, t)
zk

k!

in some neighborhood of the origin. The left-hand side of (1.2) is the so-called Wald’s
exponential martingale [17]. Wald’s exponential martingale is well defined only when the
process admits moment generating function E[exp{zXt}] in a suitable neighborhood of the
origin. Different authors have tried to overcome this gap by using other tools. Sengupta
[25] uses a discretization procedure to extend the results proved by Goswami and Sengupta
in [15]. Solé and Utzet [27] use Ito’s formula showing that TSH polynomials with respect
to Lévy processes are linked to the exponential complete Bell polynomials [3]. Wald’s
exponential martingale (1.2) has been recently reconsidered also in [26], but without this
giving rise to a closed expression for these polynomials.

The employment of the classical umbral calculus turns out to be crucial in dealing with
(1.2). Indeed, the expectation of the polynomial processes Rk(Xt, t) can be considered
without taking into account any question involving the convergence of the right hand side
of (1.2). Indeed the family {Rk(x, t)}t≥0 is linked to the Bell polynomials which are one
of the building blocks of the symbolic method. The main point here is that any TSH
polynomial could be expressed as a linear combination of the family {Rk(x, t)} and the
symbolic representation of these coefficients is particularly suited to be implemented in any
symbolic software. The symbolic approach highlights the role played by Lévy processes
with regard to which the property (1.1) holds and makes clear the dependence of this
representation on their cumulants.

The paper is organized as follows. Section 2 is provided for readers unaware of the
classical umbral calculus. We have chosen to recall terminology, notation and the basic
definitions strictly necessary to deal with the object of this paper. We skip any proof. The
reader interested in is referred to [10, 11]. The theory of TSH polynomials is resumed in
Section 3 together with the symbolic representation of Lévy processes closely related to their
infinite divisible property. Umbral expressions of many classical families of polynomials as
TSH polynomials with respect to suitable Lévy processes are outlined. The generalization
to the multivariable framework is given in Section 4. This setting allows us to deal with
multivariate Hermite, Euler and Bernoulli polynomials as well as with the class of multi-
variate Lévy-Sheffer systems introduced in [9]. Open problems are addressed at the end of
the paper.

2 The classical umbral calculus Let R[x] be the ring of polynomials with real co-
efficients1 in the indeterminate x. The classical umbral calculus is a syntax consisting
in an alphabet A = {α, β, γ, . . .} of elements, called umbrae, and a linear functional
E : R[x][A] −→ R[x], called evaluation, such that E[1] = 1 and

E[xn αi βj · · · γk] = xn E[αi] E[βj ] · · · E[γk] (uncorrelation property)

where α, β, . . . , γ are distinct umbrae and n, i, j, . . . , k are nonnegative integers.
A sequence {ai}i≥0 ∈ R[x], with a0 = 1, is umbrally represented2 by an umbra α if

E[αi] = ai, for all nonnegative integers i. Then ai is called the i-th moment of α. An
umbra is scalar if its moments are elements of R while it is polynomial if its moments are
polynomials of R[x]. Special scalar umbrae are given in Table 1. The core of this moment

1The ring R[x] may be replaced by any ring in whatever number of indeterminates, as for example
R[x, y, . . .].

2When no misunderstanding occurs, we use the notation {ai} instead of {ai}i≥0
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Umbrae Moments
Augmentation ε E[εi] = δ0,i, with δi,j = 1 if i = j, otherwise δi,j = 0.

Unity u E[ui] = 1
Boolean unity ū E[ūi] = i!

Singleton χ E[χ] = 1 and E[χi] = 0, for all i > 1
Bell β E[βi] = Bi, with Bi the i-th Bell number

Bernoulli ι E[ιi] = Bi, with Bi the i-th Bernoulli number
Euler ε E[εi] = Ei, with Ei the i-th Euler number

Table 1: Special scalar umbrae. The equalities on the right column refer to all nonnegative
integer i, unless otherwise specified.

symbolic calculus consists in defining the dot-product of two umbrae, whose construction is
recalled in short in the following.

First let us underline that in the alphabet A two (or more) distinct umbrae may represent
the same sequence of moments. More formally, two umbrae α and γ are said to be similar
when E[αn] = E[γn] for all nonnegative integers n, in symbols α ≡ γ. Therefore, given a
sequence {an}n≥0, there are infinitely many distinct, and thus similar umbrae, representing
the sequence.

Denote α′ + α′′ + · · · + α′′′ by the symbol n.α, where {α′, α′′, . . . , α′′′} is a set of n
uncorrelated umbrae similar to α. The symbol n.α is an example of auxiliary umbra. In
a saturated umbral calculus, the auxiliary umbrae are managed as they were elements of
A [21]. The umbra n.α is called the dot-product of the integer n and the umbra α with
moments [11]:

(2.1) qi(n) = E[(n.α)i] =
i∑

k=1

(n)kBi,k(a1, a2, . . . , ai−k+1),

where (n)k is the lower factorial and Bi,k are the exponential partial Bell polynomials [3].
In (2.1), the polynomial qi(n) is of degree i in n. If the integer n is replaced by t ∈ R, in

(2.1) we have qi(t) =
∑i

k=1(t)kBi,k(a1, a2, . . . , ai−k+1). Denote by t.α the auxiliary umbra
such that E[(t.α)i] = qi(t), for all nonnegative integers i. The umbra t.α is the dot-product
of t and α. A kind of distributive property holds:

(2.2) (t + s).α ≡ t.α + s.α′, s, t ∈ R

where α′ ≡ α. In particular if in (2.1) the integer n is replaced by −t, the auxiliary umbra
−t.α is such that

(2.3) −t.α + t.α′ ≡ ε,

where α′ ≡ α. The umbra −t.α is the inverse umbra of t.α for equivalence (2.3) 3.
Let us consider again the polynomial qi(t) and suppose to replace t by an umbra γ. The

polynomial qi(γ) is an umbral polynomial in R[x][A], with support 4 supp (qi(γ)) = {γ}.
The dot-product of γ and α is the auxiliary umbra γ.α such that E[(γ.α)i] = E[qi(γ)] for all
nonnegative integers i. Two umbral polynomials p and q are said to be umbrally equivalent

3Since −t.α and t.α are two distinct symbols, they are considered uncorrelated, therefore −t.α + t.α′ ≡
−t.α + t.α ≡ ε. When no confusion occurs, we will use this last similarity instead of (2.3).

4The support supp (p) of an umbral polynomial p ∈ R[x][A] is the set of all umbrae occurring in it.
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if E[p] = E[q], in symbols p ' q. Therefore equations (2.1), with n replaced by an umbra
γ, can be written as the equivalences

(2.4) qi(γ) ' (γ.α)i '
i∑

k=1

(γ)kBi,k(a1, a2, . . . , ai−k+1).

Special dot-product umbrae are the α-cumulant umbra χ.α and α-partition umbra β.α,
that we will use later on. In particular any umbra is a partition umbra [11]. This property
means that if {ai} is a sequence umbrally represented by an umbra α, then there exists a
sequence {hi} umbrally represented by an umbra κα, such that α ≡ β.κα. The umbra κα is
similar to the α-cumulant umbra, that is κα ≡ χ.α, and its moments share the well-known
properties of cumulants. 5

Dot-products can be nested. For example, moments of (α.ς).γ can be recursively com-
puted by applying two times formula (2.4). Parenthesis can be avoided since (α.ς).γ ≡
α.(ς.γ). In particular α.β.γ, with β the Bell umbra, is the so-called composition umbra,
with moments

(2.5) E[(α.β.γ)i] =
i∑

k=1

akBi,k(g1, g2, . . . , gi−k+1),

where {ai} are moments of α and {gi} are moments of γ. When the umbra α is replaced by
t ∈ R, then equation (2.5) gives the i-th moment of a compound Poisson random variable
(r.v.) of parameter t :

E[(t.β.γ)i] =
i∑

k=1

tkBi,k(g1, g2, . . . , gi−k+1).

There are more auxiliary umbrae that will employed in the following. For example, if E[α] 6=
0, the compositional inverse α<−1> of an umbra α is such that α.β.α<−1> ≡ α<−1>.β.α ≡ χ.
The derivative of an umbra α is the umbra αD whose moments are E[αi

D] = i ai−1 for
all nonnegative integers i ≥ 1. The disjoint sum α+̇γ of α and γ represents the sequence
{ai + gi}i≥0. Its main property involves the Bell umbra:

(2.6) β.(α+̇γ) ≡ β.α + β.γ.

2.1 Symbolic Lévy processes. The family of auxiliary umbrae {t.α}t∈I , with I ⊂ R+,
is the umbral counterpart of a stochastic process {Xt}t∈I having all moments and such
that E[Xi

t ] = E[(t.α)i] for all nonnegative integers i. This symbolic representation parallels
the well-known infinite divisible property of a Lévy process, summarized by the following
equality in distribution

(2.7) Xt
d= ∆Xt/n + · · · + ∆Xt/n︸ ︷︷ ︸

n

with ∆Xt/n a r.v. corresponding to the increment of the process over an interval of am-
plitude t/n. The n-fold convolution (2.7) is usually expressed by the product of n times a

5For cumulants {Ci(Y )} of a random variable Y, the following properties hold for all nonnegative integers
i : (Homogeneity) Ci(aY ) = aiCi(Y ) for a ∈ R, (Semi-invariance) C1(Y +a) = a+C1(Y ), Ci(Y +a) = Ci(Y )
for i ≥ 2, (Additivity) Ci(Y1 + Y2) = Ci(Y1) + Ci(Y2), if Y1 and Y2 are independent random variables.
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characteristic function E[eizXt ] = E[eiz∆Xt/n ]n with i the imaginary unit. More generally
one has

(2.8) E[eizXt ] = E[eizX1 ]t.

Equation (2.8) allows us to show that the auxiliary umbra t.α is the symbolic version of Xt.
To this aim we recall that the formal power series

(2.9) f(α, z) = 1 +
∑
i≥1

ai
zi

i!

is the generating function of an umbra α, umbrally representing the sequence {ai}. Table
2 shows generating functions for some special auxiliary umbrae introduced in the previous
section.

Umbrae Generating functions
Augmentation ε f(ε, z) = 1

Unity u f(u, z) = ez

Boolean unity ū f(ū, z) = 1
1−z

Singleton χ f(χ, z) = 1 + z

Bell β f(β, z) = exp[ez − 1]
Bernoulli ι f(ι, z) = z/(ez − 1)

Euler η f(η, z) = 2 ez/[ez + 1]
dot-product n.α f(n.α, z) = f(α, z)n

dot-product t.α f(t.α, z) = f(α, z)t

dot-product γ.α f(γ.α, z) = f(γ, log f(α, z))
α-cumulant χ.α f(χ.α, z) = 1 + log[f(α, z)]
α-partition β.α f(β.α, z) = exp[f(α, z) − 1]

composition α.β.γ f(α.β.γ, z) = f [α, f(γ, z) − 1]
α-partition t.β.γ f(t.β.γ, z) = exp[t(f(γ, z) − 1)]

derivative αD f(αD, z) = 1 + zf(α, z)

Table 2: Generating functions for some special auxiliary umbrae.

As for infinitely divisible stochastic processes (2.7), one has f(t.α, z) = f(α, z)t. It
is well-known that the class of infinitely divisible distributions coincides with the class
of limit distributions of compound Poisson distributions [14]. By the symbolic method,
any Lévy process is of compound Poisson type [8]. This result is a direct consequence
of the Lévy-Khintchine formula [22] involving the moment generating function of a Lévy
process. Indeed, if φ(z, t) denotes the moment generating function of Xt and φ(z) denotes
the moment generating function of X1 then φ(z, t) = φ(z)t from (2.8). From the Lévy-
Khintchine formula φ(z) = exp[g(z)], with

(2.10) g(z) = zm +
1
2
s2z2 +

∫
R

(
ezx − 1 − z x1{|x|≤1}

)
d(ν(x)).

The term (m, s2, ν) is the Lévy triplet and ν is the Lévy measure. The function φ(z, t)
shares with f(t.β.γ, z), given in Table 2, the same exponential form of the moment gen-
erating function of a compound Poisson process. If ν admits all moments and if c0 =
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m +
∫
{|x|≥1} xd(ν(x)), then the function g(z) given in (2.10) has the form

(2.11) g(z) = c0z +
1
2
s2z2 +

∫
R

(ezx − 1 − z x) d(ν(x)).

Thanks to (2.11), the symbolic representation t.β.γ of a Lévy process is such that the umbra
γ can be further decomposed in a suitable disjoint sum of umbrae. Indeed, assume

i) ς an umbra with generating function f(ς, z) = 1 + z2/2,
ii) η an umbra with generating function f(η, z) =

∫
R (ezx − 1 − z x) d(ν(x)).

Then a Lévy process is umbrally represented by the family

(2.12) {t.β.(c0χ+̇sς+̇η)}t≥0 or {t.β.(c0χ+̇sς) + t.β.η}t≥0,

due to (2.6). Symbolic representation (2.12) is in agreement with Itô representation Xt =
Wt + Mt + c0t of a Lévy process as a sum of a Wiener process Wt + c0t and a compensated
sum Mt of jumps of a Poisson process involving the Lévy measure. Indeed the Gaussian
component is represented by the symbol t.β.(c0χ+̇sς) as stated in [7], with c0 corresponding
to the mean and s2 corresponding to the variance. The Poisson component is represented by
t.β.η, that is t.β.η is the umbral counterpart of a random sum SN = Y1+ · · ·+YN , with {Yi}
independent and identically distributed r.v.’s corresponding to η, associated to the Lévy
measure, and N a Poisson r.v. of parameter t. The representation {t.β.(c0χ+̇sς+̇η)}t≥0

shows that the Lévy process is itself a compound Poisson process with {Yi} corresponding
to the disjoint sum (c0χ+̇sς+̇η).

On the role played by the umbra c0χ+̇sς+̇η more insights could be added. Indeed the
moment generating function of a Lévy process can be written as φ(z, t) = exp[t g(z)] with
g(z) = log φ(z). So the function g(z) in (2.11) is the cumulant generating function of X1 and
γ ≡ c0χ+̇sς+̇η is the symbolic representation of a r.v. whose moments are cumulants of X1.
Therefore, in the symbolic representation t.α of a Lévy process, introduced at the beginning
of this section, the umbra α is the partition umbra of the cumulant umbra γ ≡ c0χ+̇sς+̇η
that is α ≡ β.γ.

This remark suggests the way to construct the boolean and the free version of a Lévy
process by using the boolean and the free cumulant umbra [12].

Boolean Lévy process. Let M(z) be the ordinary generating function of a r.v.
X, that is M(z) = 1 +

∑
i≥1 aiz

i, where ai = E[Xi]. The boolean cumulants
of X are the coefficients bi of the power series B(z) =

∑
i≥1 biz

i such that
M(z) = 1/[1 − B(z)]. Denote by ᾱ the umbra such that E[ᾱi] = i!ai for all
nonnegative integers i. Then the umbra ϕα such that ᾱ ≡ ū.β.ϕα represents the
sequence {bi} and is the α-boolean cumulant umbra. Therefore the symbolic
representation of a boolean Lévy process is t.ū.β.ϕα.

Free Lévy process. The noncrossing (or free) cumulants of X are the coeffi-
cients ri of the ordinary power series R(z) = 1 +

∑
i≥1 riz

i such that M(z) =
R[zM(z)]. If ᾱ is the umbra with generating function M(z), then the ᾱ -free
cumulant umbra Kᾱ represents the sequence {i!ri}. Assuming ᾱ the umbral
counterpart of the increment of a Lévy process over the interval [0, 1], then the
symbolic representation of a free Lévy process is t.K̄α.β.(−1.K̄α)<−1>

D .

Some more remarks on the parameters c0 and s may be added. The Lévy process in (2.12)
is a martingale if and only if c0 = 0, see Theorem 5.2.1 in [1]. When this happens, E[Xt] = 0
for all t ≥ 0 and the Lévy process is said to be centered. Since the parameter c0 allows
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the contribution of the singleton umbra χ in (2.12), such an umbra plays a central role in
the martingale property of a Lévy process. If c0 = 0, no contribution is given by χ which
indeed does not admit a probabilistic counterpart.

If s = 0, the corresponding Lévy process is a subordinator, with almost sure non-
decreasing paths. The subordinator processes are usually employed to scale the time of
a Lévy process. This device is useful to widen or to close the jumps of the paths in market
dynamics. Denote by Tt the subordinator process of Xt chosen independent of Xt. The
process XTt is of Lévy type too. The symbolic representation of Tt is t.β.(c0χ+̇η′) so that
t.β.(c0χ+̇η′).β.(c0χ+̇sς +η) represents XTt with η and η′ similar and uncorrelated umbrae.
Despite its nested representation, the following result immediately is recovered: the process
XTt is a compound Poisson process SN with Yi a randomized compound Poisson r.v. of
random parameter η′, shifted of c0 in its mean.

3 Time-space harmonic polynomials Set X = {α}. The conditional evaluation E(· α)
with respect to α handles the umbra α as it was an indeterminate [8]. In particular,
E(· α) : R[x][A] → R[X ] is such that E(1 α) = 1 and

E(xmαnγiξj · · · α) = xmαnE[γi]E[ξj ] · · ·

for uncorrelated umbrae α, γ, ξ, . . . and for nonnegative integers m,n, i, j, . . . . As it happens
in probability theory, the conditional evaluation is an element of R[x][A] and, if we take the
overall evaluation of E(p α), this gives E[p ], with p ∈ R[x][A], that is E[E(p α)] = E[p ].
Umbral polynomials p with α not in the support are such that E(p α) = E[p ].

Conditional evaluations with respect to auxiliary umbrae need to be handled carefully.
For example, since (n + 1).α ≡ n.α + α′, the conditional evaluation with respect to the dot
product n.α is defined as

E[(n + 1).α n.α] = n.α + E[α′],

and more generally, from (2.2) with t and s replaced by n and m,

(3.1) E([(n + m).α]k | n.α) = E([n.α + m.α′]k | n.α) =
k∑

j=0

(
k

j

)
(n.α)jE[(m.α′)k−j ],

for all nonnegative integers n and m. Therefore, for t ≥ 0 the conditional evaluation of t.α
with respect to the auxiliary umbra s.α, with 0 ≤ s ≤ t, is defined according to (3.1) such
as

E[(t.α)k | s.α] =
k∑

j=0

(
k

j

)
(s.α)jE([(t − s).α′]k−j).

Equation (1.1) traces the way to extend the definition of polynomial processes to umbral
polynomials.

Definition 3.1. Let {P (x, t)} ∈ R[x][A] be a family of polynomials indexed by t ≥ 0. P (x, t)
is said to be a TSH polynomial with respect to the family of umbral polynomials {q(t)}t≥0

if and only if E [P (q(t), t) q(s)] = P (q(s), s) for all 0 ≤ s ≤ t.

The main result of this section is the following theorem. The last equality can’t be
understood without further explanation. Refer to [8].
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Theorem 3.2. For all nonnegative integers k, the family of polynomials6

Qk(x, t) = E[(x − t.α)k] ∈ R[x]

is TSH with respect to {t.α}t≥0.

By expanding Qk(x, t) via the binomial theorem, one has

Qk(x, t) =
k∑

j=0

(
k

j

)
xjE[(−t.α)k−j ] so that Qk(t.α, t) =

k∑
j=0

(
k

j

)
(t.α)jE[(−t.α)k−j ].

Since t.α is the symbolic version of a Lévy process, the property

E[Qk(t.α, t) | s.α] =
k∑

j=0

(
k

j

)
E[(t.α)j |s.α]E[(−t.α)k−j ] = Qk(s.α, s)

parallels (1.1). In particular {Qk(x, t)} is a polynomial sequence umbrally represented by
the polynomial umbra x− t.α, which is indeed the TSH polynomial umbra with respect to
t.α. Polynomial umbrae of type x + α are Appell umbrae [6]. Then {Qk(x, t)} is an Appell
sequence and

d
dx

Qk(x, t) = k Qk−1(x, t), for all integers k ≥ 1.

The generating function of the TSH polynomial umbra x − t.α is

(3.2) f(x − t.α, z) =
exp{xz}
f(α, z)t

=
∑
k≥0

Qk(x, t)
zk

k!
.

By replacing x with t.α in (3.2), Wald’s exponential martingale (1.2) is recovered. Equal-
ity of two formal power series is given in terms of equality of their corresponding coeffi-
cients, so that E[Rk(Xt, t)] = E[Qk(t.α, t)] by comparing (3.2) with (1.2). Wald’s identity∑

k≥0 E[Rk(Xt, t)]zk/k! = 1 is encoded by the equivalence t.α − t.α ≡ ε obtained from
x − t.α when x is replaced by t.α.

The next proposition traces the way to compute the coefficients of Qk(x, t) in any sym-
bolic software.

Proposition 3.3. If {an} is the sequence umbrally represented by the umbra α and {Qk(x, t)}
is the sequence of TSH polynomials with respect to {t.α}t≥0, then

Qk(x, t) =
k∑

j,i=0

c
(k)
i,j ti xj , with c

(k)
i,j =

(
k

j

) ∑
λ`k−j

dλ(−1)2l(λ)+i s[l(λ), i] ar1
1 ar2

2 · · ·

where the sum is over all partitions7 λ = (1r1 , 2r2 , . . .) with length l(λ) of the integer k −
j, s[l(λ), i] denotes a Stirling number of first kind and dλ = i!/(r1!r2! · · · (1!)r1(2!)r2 · · · ).

6When no confusion occurs, we will use the notation x− t.α to denote the polynomial umbra −t.α+x =
x + (−t).α.

7Recall that a partition of an integer i is a sequence λ = (λ1, λ2, . . . , λm), where λj are weakly decreasing
positive integers such that

Pm
j=1 λj = i. The integers λj are named parts of λ. The length of λ is the number

of its parts and will be indicated by l(λ). A different notation is λ = (1r1 , 2r2 , . . .), where rj is the number
of parts of λ equal to j and r1 + r2 + · · · = l(λ). Note that rj is said to be the multiplicity of j. We use the
classical notation λ ` i to denote “λ is a partition of i”.
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More properties on the coefficients of Qk(x, t) have been given in [8].

Any TSH polynomial is a linear combination of {Qk(x, t)}, which indeed is a bases of
the space of TSH polynomials. The following theorem characterizes the coefficients of any
TSH polynomial P (x, t) in terms of the coefficients of {Qk(x, t)}.

Theorem 3.4. A polynomial P (x, t) =
∑k

j=0 pj(t) xj of degree k for all t ≥ 0 is a TSH
polynomial with respect to {t.α}t≥0 if and only if

pj(t) =
k∑

i=j

(
i

j

)
pi(0)E[(−t.α)i−j ], for j = 0, . . . , k.

3.1 Cumulants. A different symbolic representation of TSH polynomials {Qk(x, t)} is

Qk(x, t) = E[(x − t.β.κα)k],

with κα the α-cumulant umbra. The umbra −t.β.κα ≡ t.β.(−1.κα) ≡ t.β.κ(−1.α) is the
symbolic version of a Lévy process with sequence of cumulants of X1 umbrally represented
by κ(−1.α). Therefore, also the polynomials Qk(x, t) = E[(x+t.β.κα)k] are TSH with respect
to Lévy processes umbrally represented by {t.β.κ(−1.α)}t≥0 ≡ {t.(−1.α)}t≥0.

Moments of polynomial umbrae t.β.γ involve the exponential Bell polynomials. When t
is set equal to 1, then complete exponential Bell polynomials are recovered. More generally,
also the moments of x − t.β.κα ≡ x − t.α can be expressed by using exponential complete
Bell polynomials since

(3.3) x − t.α ≡ β.[χ.(x − t.α)] ≡ β.κx−t.α ≡ β.(κ(x.u)+̇κ(−t.α)) ≡ β.κ(x.u) + β.κ(−t.α)

where κx−t.α is the cumulant umbra of x − t.α, that could be replaced by κ(x.u)+̇κ(−t.α)

due to the additivity property of cumulants. The last equivalence in (3.3) follows from
equivalence (2.6). Equivalences (3.3) give also

(3.4) Qk(x, t) = Yk(x + h1, h2, . . . , hk),

with Yk exponential complete Bell polynomials and {hi} the sequence of cumulants of −t.α.
Equation (3.4) has been proved in [27] by using Teugel martingales.

For Qk(x, t), the Sheffer identity with respect to t holds:

Qk(x, t + s) =
k∑

j=0

(
k

j

)
Pj(s)Qk−j(x, t),

where Pj(s) = Qj(0, s) for all nonnegative integers j.

3.2 Examples. The discretized version of a Lévy process is a random walk Sn = X1 +
X2 + · · · + Xn, with {Xi} independent and identically distributed r.v.’s. For the symbolic
representation of a Lévy process we have dealt with, the symbolic counterpart of a random
walk is the auxiliary umbra n.α. Indeed the infinite divisible property (2.7) is highlighted in
the summation α+α′+ · · ·+α′′, encoded in the symbol n.α, with α, α′, . . . , α′′ uncorrelated
and similar umbrae. Nevertheless not all r.v.’s having the symbolic representation n.α share
the infinite divisible property. For example, the binomial r.v. has not the infinite divisible
property [22], nevertheless its symbolic representation is of type n.α where α ≡ χ.p.β and
p ∈ (0, 1). So the generality of the symbolic approach lies in the circumstance that if the
parameter n is replaced by t, that is if the random walk is replaced by a Lévy process, more
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general classes of polynomials can be recovered for which many of the properties here intro-
duced still hold. The following tables resume the TSH representation for different families
of classical polynomials, see [20]. In particular Table 3 gives the umbra corresponding to
the r.v. Xi of Sn in the first column, its umbral counterpart in the second column and
the associated TSH polynomial in the third column. In Table 4, the TSH polynomials
given in Table 3 are traced back to special families of polynomials. In particular, with the
polynomials Pk(x, t) we refer to

Pk(x, t) =
k∑

j=1

Qj(x, t)Bk,j(m1,m2, . . . ,mk−j+1)

for suitable {Qj(x, t)} and {mi}.

Xi Umbral counterpart Corresponding TSH polynomial
Uniform [0, 1] −1.ι E[(x + n.ι)k]
Bernoulli p = 1

2
1
2 (−1.ε + u) E[(x + n.

[
1
2 (−1.u + ε)

]
)k]

Bernoulli p ∈ (0, 1) χ.p.β E[(x − n.χ.p.β)k]
Sum of a ∈ N a.(−1.ι) E[(x + (an).ι)k]
uniform r.v.’s on [0, 1]

Table 3: TSH polynomials associated to special random walks

Xi Special families Connection with
of polynomials TSH polynomials

Uniform [0, 1] Bernoulli Bk(x, n) Bk(x, t) = Qk(x, t)
Bernoulli p = 1/2 Euler Ek(x, n) Ek(x, n) = Qk(x, t)
Bernoulli p ∈ (0, 1) Krawtchouk Kk(x, p, n) (n)kKk(x, p, n) = Pk(x, t)

mi = E[((−1.χ.p.β)<−1>)i]
Sum of a ∈ N pseudo-Narumi Nk(x, an) k! Nk(x, an) = Pk(x, t)
uniform r.v.’s on [0, 1] mi = E[(u<−1>)i]

Table 4: Connection between special families of polynomials and TSH polynomials

Next Tables 5 and 6 give TSH polynomials for some special Lévy processes.

3.3 Orthogonality of TSH polynomials. A special class of TSH polynomials is the one
including the Lévy-Sheffer polynomials, whose applications within orthogonal polynomials
have been given in [23]. A sequence of polynomials {Vk(x, t)}t≥0 [24] is a Lévy-Sheffer
system if its generating function is such that

(3.5)
∑
k≥0

Vk(x, t)
zk

k!
= (g(z))t exp{xu(z)},

where g(z) and u(z) are analytic functions in a neighborhood of z = 0, u(0) = 0, g(0) = 1,
u′(0) 6= 0 and 1/g(τ(z)) is an infinitely divisible moment generating function, with τ(z) such
that τ(u(z)) = z. Assume α an umbra such that f(α, z) = g(z) and γ an umbra such that
f(γ, z) = 1 + u(z). From (3.5), the Lévy-Sheffer polynomials are moments of x.β.γ + t.α :

(3.6) Vk(x, t) = E[(x.β.γ + t.α)k].
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Lévy process Umbral representation TSH polynomial Qk(x, t)
Brownian motion
with variance s2 t.β.(sς) E[(x − t.β.(sς))k]
Poisson process
with parameter λ (tλ).β E[(x − (tλ).β)k]
Gamma process
with scale parameter 1 t.ū E[(x − t.ū)k]
and shape parameter 1
Gamma process
with scale parameter λ (tλ).ū E[(x − (tλ).ū)k]
and shape parameter 1
Pascal process
with parameter d = p/q t.ū.d.β E[(x − t.ū.d.β)k]
and p + q = 1

Table 5: TSH polynomials associated to special Lévy processes

Theorem 3.5. The TSH polynomials Qk(x, t) are special Lévy-Sheffer polynomials.

The proof of Theorem 3.5 is straightforward by choosing in (3.6) as umbra α its inverse
−1.α and as umbra γ the singleton umbra χ. All the Lévy-Sheffer polynomials possess the
TSH property. Indeed the following theorem has been proved in [8].

Theorem 3.6. The Lévy-Sheffer polynomials {Vk(x, t)}t≥0 are TSH with respect to Lévy
processes umbrally represented by {−t.α.β.γ<−1>}t≥0.

In particular, one has [8]

(3.7) Vk(x, t) =
k∑

i=0

E[(x + t.β.κ(α.β.γ<−1>))i]Bk,i(g1, . . . , gk−i+1),

where gi = E[γi], for all nonnegative i, and κ(α.β.γ<−1>) is the cumulant umbra of α.β.γ<−1>,
with γ<−1> the compositional inverse of the umbra γ. When the umbra α is replaced by its
inverse and the umbra γ by the singleton umbra, since χ<−1> ≡ χ, the only contribution
in the summation (3.7) is given by i = k. So again equation (3.7) reduces to Qk(x, t) =
E[(x − t.α)k] since κ(α.β.γ<−1>) ≡ χ. − 1.α.

Within Lévy-Sheffer polynomials, the Lévy-Meixner polynomials are those orthogonal
with respect to the Lévy processes −t.α.β.γ<−1>, due to their TSH property. The orthogonal
property is

E [Vn(−t.α.β.γ<−1>, t)Vm(−t.α.β.γ<−1>, t)] = cmδn,m.

According to [23], all the polynomials in Table 6 are orthogonal. Their measure of orthog-
onality corresponds to the Lévy process −t.α since χ<−1> ≡ χ and −t.α.β.γ<−1> ≡ −t.α.

3.4 Kailath-Segall polynomials. Equivalence (3.3) gives the connection between TSH
polynomials and Kailath-Segall polynomials [16], which is a different class of polynomials
strictly related to Lévy processes. Indeed, both have a representation in terms of partition
umbra of a suitable polynomial umbra. Overlaps are removed by suitably choosing the
indeterminates.
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Lévy process Special family Connection with
of polynomials TSH polynomials

Brownian motion

with variance s2 Hermite H
(s2)
k (x) H

(s2)
k (x) = Qk(x, t)

Poisson process C̃k(x, λt) =
with parameter λ Poisson-Charlier C̃k(x, λt) =

∑k
j=1 s(k, j)Qk(x, t)

with s(k, j) Stirling
numbers of first kind

Gamma process
with scale parameter 1 Laguerre Lt−k

k (x) k!(−1)kLt−k
k (x) = Qk(x, t)

and shape parameter 1
Gamma process
with scale parameter λ actuarial gk(x, t) gk(x, t) = Pk(x, t)
and shape parameter 1 mi = E[((χ.(−χ))<−1>)i]
Pascal process (−1)k(t)kMk(x, t, p) =
with parameter d = p/q Meixner polynomials = Pk(x, t)
and p + q = 1 of first kind Mk(x, t, p) mi = E[(χ.(−1.χ + χ/p))i]

Table 6: Special families of polynomials and TSH polynomials

The n-th Kailath-Segall polynomial Pn(x1, . . . , xn) is a multivariable polynomial such
that when the indeterminates are replaced by the sequence X

(1)
t , . . . , X

(n)
t of variations of

a Lévy process Xt

X
(1)
t = Xt, X

(2)
t = [X,X]t, X

(n)
t =

∑
s≥t

(∆Xs)n n ≥ 3,

its iterated integrals are recovered

P
(0)
t = 1, P

(1)
t = Xt, P

(n)
t =

∫ t

0

P
(n−1)
s− dXs, n ≥ 2,

that is P
(n)
t = Pn

(
X

(1)
t , . . . , X

(n)
t

)
. The following recursion formula is known as Kailath-

Segall formula

(3.8) P
(n)
t =

1
n

(
P

(n−1)
t X

(1)
t − P

(n−2)
t X

(2)
t + · · · + (−1)n+1P

(0)
t X

(n)
t

)
.

When X
(1)
t , . . . , X

(n)
t are replaced by the power sums S1, . . . , Sn in the indeterminates

x1, . . . , xk, according to formula (1.2) in [28] and Theorem 3.1 in [13], the corresponding
polynomials Pn(S1, . . . , Sn) are such that

(3.9) n!Pn(S1, . . . , Sn) = E[(β.[(χ.χ)σ])n],

where σ is the power sum umbra representing {Sj} and the χ-cumulant umbra χ.χ represents
the sequence {(−1)i−1(i − 1)!}.

In order to recognize special TSH polynomials within the family {Pn}, two steps are
necessary:
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i) Kailath-Segall polynomials need to be umbrally represented when the power
sums {Sj} are replaced by the indeterminates {xi};
ii) the indeterminates {xi} need to be replaced by suitable terms involving x
and t.

For the first step, we will use equation (3.9). Assume p an umbra representing the sequence
{E[(χ.xi.β)i]}. Observe that E[(χ.xi.β)i] = xi for all nonnegative i. Then from (3.9) one
has n!Pn(x1, . . . , xn) = E[(β.[(χ.χ)p ])n] so that the generating function of Pn is

f (β.[(χ.χ)p ], z) = exp

∑
n≥1

(−1)n+1

n
znxn

 ,

see also [30]. The strength of this symbolic representation essentially relies on the properties
of the partition umbra β.[(χ.χ)p ] reproducing those of Bell polynomials. For example, the
following property of Kailath-Segall polynomials

(3.10) Pn(ax1, a
2x2, . . . , a

nxn) = anPn(x1, x2, . . . , xn), a ∈ R

is proved by observing that β.[a(χ.χ)p ] ≡ a(β.[(χ.χ)p ]). For the next step, we need to
characterize the indeterminates x1, x2, . . . such that

(3.11) κ(x.u) +̇κ(−t.α) ≡ (χ.χ)p ⇒ E[(κ(x.u))n] + E[(κ(−t.α))n] = (−1)n−1(n − 1)! xn.

In the following we show some examples of how to perform this selection. These results
extend the connections between TSH polynomials and Kailath-Segall polynomials analyzed
in [27].

Generalized Hermite polynomials. Since E[(κ(x.u))i] = x δi,1 and E[(κ(−t.β.(sς)))i] =
s2 t δi,2, then

k!Pk(x, s2t, 0, . . . , 0) = H
(t)
k (x)

where
∑

k≥0 H
(t)
k (x)zk/k! = exp{xz − tz2/2}.

Poisson-Charlier polynomials. Poisson-Charlier polynomials {C̃k(x, t)}, with gen-
erating function

∑
k≥0 C̃k(x, t)zk/k! = e−tz(1 + z)x, are umbrally represented by

(3.12) C̃k(x, λt) = E[(x.χ − t.λ.u)k],

see [8]. Nevertheless (3.12) differs from the result of Theorem 3.2, the TSH property holds
since {C̃k(x, λt)} are a linear combination of special Qk(x, t). Moreover representation (3.12)
allows us the connection with Kailath-Segall polynomials, when the indeterminates {xi} are
chosen such that E[(κ(x.χ))i] + E[(κ(−t.λ.u))i] = (−1)i−1(i − 1)!xi. Since

E[(κ(x.χ))i] + E[(κ(−t.λ.u))i] =
{

x − tλ, i = 1,
(−1)i−1(i − 1)!xi, i ≥ 2,

then k!Pk(x − tλ, x, x, . . .) = C̃k(x, λt).
Laguerre polynomials. Laguerre polynomials {Lt−k

k (x)} are TSH polynomials such
that k!(−1)kLt−k

k (x) = E[(x−t.ū)k]. They can be traced back to Kailath-Segall polynomials
if the indeterminates {xi} are characterized by E[(κ(x.u))i] + E[(κ(−t.ū))i] = (−1)i−1(i −
1)!xi. Since f(κ(−t.ū), z) = 1 + t log(1 − z) then E[(κ(−t.ū))i] = −t(i − 1)!. So Pk(x −
t, t,−t, t, . . .) = (−1)kLt−k

k (x) and from (3.10) we have Pk(t − x, t, t, . . .) = Lt−k
k (x).
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Actuarial polynomials. The actuarial polynomials gk(x, t) are a linear combination
of suitable TSH polynomials Qk(x, t) (see Table 6) but they are moments of the polynomial
umbra λt − x.β, that is gk(x, t) = E[(λt − x.β)k]. In order to characterize the connec-
tion with Kailath-Segall polynomials, the indeterminates {xi} need to be characterized by
E[(κ(λt.u))i] + E[(κ(−x.ū))i] = (−1)i−1(i − 1)!xi. As before E[(κ(λt.u))i] = λ t δi,1, instead
E[(κ(−x.ū))i] = −x(i− 1)! for all nonnegative integers i as in the previous example. There-
fore one has k!(−1)kPk(x − λt, x, x, . . .) = gk(x, t).

Meixner polynomials of first kind. Meixner polynomials of first kind {Mk(x, t, p)}
[23] are a linear combination of suitable TSH polynomials Qk(x, t) (see Table 6) but they
are moments of the following polynomial umbra

(−1)k(t)kMk(x, t, p) = E

{[
x.

(
−1.χ +

χ

p

)
− t.χ

]k
}

,

which allows us to find the connection with Kailath-Segall polynomials. Indeed for all
nonnegative integers i we have

E

[{
κx.(−1.χ+ χ

p )
}i

]
= (−1)i−1 (i − 1)! x

(
1
pi

− 1
)

and
E

[{
κ(χ.−t.χ)

}i
]

= (−1)i−1(i − 1)! t.

Then Kailath-Segall polynomials give the Meixner polynomials (−1)k(t)kMk(x, t, p) by
choosing

xi =
[(

1
pi

− 1
)

x − t

]
for i = 1, 2, . . . .

4 Symbolic multivariate Lévy processes In the multivariate case, the main device
of the symbolic method here proposed relies on the employment of multi-indices of length
d. Sequences like {gi1,i2,...,id

} are replaced with a product of powers (µi1
1 µi2

2 · · ·µid

d ) where
(µi1

1 µi2
2 · · ·µid

d ) are umbral monomials and (i1, i2, . . . , id) are nonnegative integers. Since
the umbral monomials could not have disjoint support, then the evaluation E does not
necessarily factorizes on the product (µi1

1 µi2
2 · · ·µid

d ) that is

(4.1) E[µi1
1 µi2

2 · · ·µid

d ] = E[µi] = gi

where i = (i1, i2, . . . , id) and µ = (µ1, µ2, . . . , µd). We assume g0 = 1 with 0 = (0, 0, . . . , 0).
Then gi is called the multivariate moment of µ. Table 7 shows some special d-tuples we will
use later.
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d-tuple Generating functions
Multivariate Unity u (u, . . . , u′) f(u, z) = ez1+···+zd .

Multivariate Gaussian ς (ς, . . . , ς ′) f(ς, z) = 1 + 1
2zzT .

Multivariate Bernoulli ι (ι, . . . , ι) f(ι, z) =
z1 + · · · + zd

ez1+···+zd − 1
.

Multivariate Euler η (η, . . . , η) f(η,z) =
2e(z1+···+zd)

e2(z1+···+zd) + 1
.

Table 7: Generating functions of special d-tuples of umbral monomials

The notions of similarity and uncorrelation are updated as follows. Two d-tuples µ
and ν of umbral monomials are said to be similar if they represent the same sequence of
multivariate moments. They are said to be uncorrelated if E[µi1νi2 ] = E[µi1 ]E[νi2 ].

Multivariate Lévy processes are represented by d-tuples of umbral monomials.

Definition 4.1. A stochastic process {Xt}t≥0 on Rd is a multivariate Lévy process if

(i) X0 = 0 a.s.

(ii) For all n ≥ 1 and for all 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn < ∞, the r.v.’s Xt2−Xt1 , Xt3−Xt2 , . . .
are independent.

(iii) For all s ≤ t, Xt+s − Xs
d= Xt.

(iv) For all ε > 0, limh→0 P (|Xt+h − Xt| > ε) = 0.

(v) t 7→ Xt(ω) are right-continuous with left limits, for all ω ∈ Ω, with Ω the underlying
sample space.

As in the univariate case, the moment generating function of a multivariate Lévy process
is ϕX1(z) = E

[
ezXT

1

]
, with z ∈ Rd. Paralleling the univariate case, the generating function

of a d-tuple µ is

f(µ, z) = 1 +
∑
k≥1

∑
i∈Nd

0
|i|=k

gi
zi

i!
.

Choose the d-tuple µ such that f(µ,z) = ϕX1(z), that is E[µi] = E[Xi
1] for all i ∈ Nd

0.
The auxiliary umbra n.µ denotes the sum of n uncorrelated d-tuples of umbral monomials
similar to µ. Its multivariate moment is [5]

(4.2) E[(n.µ)i] =
∑
λ`i

i!
m(λ)λ!

(n)l(λ) E[µλ],

where E[µλ] = gr1
λ1

gr2
λ2

. . . and λ is a partition8 of the multi-index i of length l(λ). By
replacing the nonnegative integer n with the real parameter t in (4.2) the resulting auxiliary
umbra t.µ is the symbolic representation of the multivariate Lévy process Xt.

As in the univariate case, since µ ≡ β.κµ with κµ the µ-cumulant umbra [13], a different
representation for a multivariate Lévy process is t.β.κµ. The cumulant d-tuple could be
further specified by using the multivariate Lévy-Khintchine formula [22].

8A partition – of a multi-index i, in symbols – ` i, is a matrix – = (λij) of nonnegative integers and
with no zero columns in lexicographic order ≺ such that λr1 + λr2 + · · · + λrk = ir for r = 1, 2, . . . , d. The
number of columns of – is denoted by l(–). The notation – = (–r1

1 , –r2
2 , . . .) represents the matrix – with

r1 columns equal to –1, r2 columns equal to –2 and so on, where –1 ≺ –2 ≺ . . . . We set m(–) = (r1, r2, . . .),
m(–)! = r1!r2! · · · and –! = –1!–2! · · · .
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Theorem 4.2. X = {Xt}t≥0 is a Lévy process if and only if there exists m1 ∈ Rd, a
symmetric, positive defined d × d matrix Σ > 0 and a measure ν on Rd with

ν({0}) = 0 and
∫

R
(|x|2 ∧ 1)ν(dx) < ∞

such that

(4.3) ϕX(z) = exp
{

t

[
1
2
zΣzT + m1z

T +
∫

Rd

(exzT

− 1 − xzT 1{|x|≤1}(x))ν(dx)
]}

,

The representation of ϕX(z) in (4.3) by m1, Σ and ν is unique.

Set m2z
T =

∫
Rd zxT 1{|x|>1}(x)ν(dx) and m = m1 + m2, then

ϕX(z) = exp
{

t

[
1
2
zΣzT + mzT +

∫
Rd

(ezxT

− 1 − zxT )ν(dx)
]}

,

that is,

(4.4) ϕX(z) = exp
{

t

[
1
2
zΣzT + mzT

]}
exp

{
t

[ ∫
Rd

(ezxT

− 1 − zxT )ν(dx)
]}

.

Theorem 4.3. Every Lévy process {Xt}t≥0 on Rd is umbrally represented by the family of
auxiliary umbrae

(4.5) {t.β.(χ.m+̇ςCT +̇η)}t≥0,

where β is the Bell umbra, m ∈ Rd, ς is the multivariate umbral counterpart of a standard
gaussian random variable, C is the square root of the covariance matrix Σ and η is the
multivariate umbra associated to the Lévy measure.

Every auxiliary umbra t.β.κµ is the symbolic version of a multivariate compound Poisson
r.v. of parameter t, that is a random sum SN = Y 1+· · ·+Y N of independent and identically
distributed random vectors {Y i}, whose index N is a Poisson r.v. of parameter t. Then
the same holds for the Lévy process. The d-tuple (ςCT +̇χ.m+̇η) umbrally represents any
of the random vectors {Y i}. Observe that χ.m has not a probabilistic counterpart. If m
is not equal to the zero vector, this parallels the well-known difficulty to interpret the Lévy
measure as a probability measure.

4.1 Multivariate TSH polynomials. The conditional evaluation with respect to an
umbral d-tuple µ has been introduced in [9]. Assume X = {µ1, µ2, . . . , µd}. The conditional
evaluation with respect to the umbral d-tuple µ is the linear operator

E( · µ) : R[x1, . . . , xd][A] −→ R[X ]

such that E(1 µ) = 1 and

(4.6) E(xl1
1 xl2

2 · · · xld
d µi νj ηk · · · µ) = xl1

1 xl2
2 · · · xld

d µi E[νj ] E[ηk] · · ·

for uncorrelated d-tuples µ,ν,η . . . , multi-indices i, j, k . . . ∈ Nd
0 and {li}d

i=1 nonnegative
integers. Since f [(n + m).µ,z] = f(µ,z)n+m = f(n.µ, z) f(m.µ, z), then (n + m).µ ≡
n.µ+m.µ′, with µ and µ′ uncorrelated d-tuples of umbral monomials. Then, for E( · n.µ)
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we assume E[{(n+m).µ}i n.µ] = E[{n.µ+m.µ′}i n.µ] for all nonnegative integers n, m
and for all i ∈ Nd

0. If n 6= m, then

(4.7) E[{(n + m).µ}i n.µ] = E[{n.µ + m.µ}i n.µ],

since n.µ and m.µ are uncorrelated auxiliary umbrae. We will use (4.7) when no misun-
derstanding occurs. Thanks to equations (4.6) and (4.7), we have

(4.8) E
[
{(n + m).µ}i n.µ

]
=

∑
k≤i

(
i

k

)
(n.µ)kE[(m.µ)i−k],

where k ≤ i ⇔ kj ≤ ij for all j = 1, . . . , d and
(
k
i

)
=

(
k1
i1

)
· · ·

(
kd

id

)
. By analogy with (4.7)

and (4.8), we have t.µ ≡ s.µ + (t − s).µ and for t ≥ 0 and s ≤ t

E
[
(t.µ)i s.µ

]
=

∑
k≤i

(
i

k

)
(s.µ)kE[{(t − s).µ}i−k].

Theorem 4.4. For all i ∈ Nd
0, the family of polynomials

(4.9) Qi(x, t) = E[(x − t.µ)i] ∈ R[x1, . . . , xd]

is TSH with respect to {t.µ}t≥0.

The auxiliary umbra −t.µ denotes the inverse of t.µ that is −t.µ + t.µ ≡ ε, where ε
is the d-tuple such that ε = (ε1, ε2, . . . , εd) with {εi} uncorrelated augmentation umbrae.
Coefficients of Qi(x, t) in (4.9) are such that

Qi(x, t) =
∑
k≤i

(
i

k

)
xi−kE[(−t.µ)k]

so when x is replaced by t.µ their overall evaluation is zero. Properties on the coefficients
of Qi(x, t) can be found in [9]. Here we just recall a characterization of the coefficients of
any multivariate TSH polynomial in terms of those of Qi(x, t).

Theorem 4.5. A polynomial

(4.10) P (x, t) =
∑
k≤v

pk(t) xk

is a TSH polynomial with respect to {t.µ}t≥0 if and only if

(4.11) pk(t) =
∑

k≤i≤v

(
i

k

)
pk(0)E[(−t.µ)i−k], for k ≤ v.

Table 8 and 9 give some examples of multivariate TSH polynomials and their connection
with multivariate Lévy processes. The corresponding d-tuples have been given in Table 7.

Let us remark that Hermite polynomials H
(t2)
i (x, Σ) in Table 9 are a generalization of

the polynomials Hi(x) in [29] whose moment representation is Hi(x) = E[(xΣ−1 + iY )i]
with E the expectation symbol, Y ' N(0, Σ−1) and Σ a covariance matrix of full rank d.
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multivariate Lévy process Umbral representation TSH polynomial Qi(x, t)
Brownian motion
with covariance Σ = CCT t.β.(ςCT ) E[(x − t.β.(ςCT ))i]

Xt with X1
d= (U, . . . , U)

and U uniform r.v. on [0, 1] −t.ι E[(x + t.ι)i]

Xt with X1
d= (Y, . . . , Y )

and Y Bernoulli r.v. 1
2 [t.(u − 1.η)] E

{(
x + 1

2 [t.(η − u)]
)i

}
of parameter 1/2

Table 8: TSH polynomials associated to special multivariate Lévy processes

multivariate Lévy process Special family Connection with
of polynomials TSH polynomials

Brownian motion

with covariance Σ = CCT Hermite H
(t2)
i (x, Σ) H

(t2)
i (x, Σ) = Qi(x, t)

Xt with X1
d= (U, . . . , U)

and U uniform r.v. on [0, 1] Bernoulli B
(t)
i (x) B

(t)
i (x) = Qi(x, t)

Xt with X1
d= (Y, . . . , Y )

and Y Bernoulli r.v. Euler E(t)
i (x) E(t)

i (x) = Qi(x, t)
of parameter 1/2

Table 9: Special families of polynomials and TSH polynomials

A generalization of Lévy-Sheffer system to the multivariate case has been introduced
in [9]. A sequence of multivariate polynomials {Vk(x, t)}t≥0 is a multivariate Lévy-Sheffer
system if

1 +
∑
k≥1

∑
v∈Nd

0
|v|=k

Vk(x, t)
zk

k!
= [g(z)]t exp{(x1 + · · · + xd)[h(z) − 1]},

where g(z) and h(z) are analytic in a neighborhood of z = 0 and

∂

∂zi
h(z)

∣∣∣∣
z=0

6= 0 for i = 1, 2, . . . , d.

If µ and ν are d-tuples of umbral monomials such that f(µ, z) = g(z) and f(ν, z) = h(z)
respectively, then

(4.12) Vk(x, t) = E[(t.µ + (x1 + · · · + xd).β.ν)k].

The multivariate Lévy-Sheffer polynomials for the pair µ and ν are TSH polynomials
with respect to a special symbolic multivariate Lévy process involving the multivariate
compositional inverse of a d-tuple ν. Assume χ(i) the d-tuple with all components equal
to the augmentation umbra and only the i-th one equal to the singleton umbra, that is
χ(i) = (ε, . . . , χ, . . . , ε). The multivariate compositional inverse of ν is the umbral d-tuple
ν<−1> = ((ν<−1>)1, . . . , (ν

<−1>)d) such that (ν<−1>)i.β.ν ≡ χ(i) for i = 1, . . . , d.



REPRESENTATION OF TIME SPACE-HARMONIC POLYNOMIALS 117

Theorem 4.6. The multivariate Lévy-Sheffer polynomials for the pair µ and ν are TSH
polynomials with respect to the symbolic multivariate Lévy process

{t.(µ1.β.ν<−1>

1 + · · · + µd.β.ν<−1>

d )}t≥0.

5 Conclusions and open problems In this paper, the review of a symbolic treatment
of TSH polynomials, relied on the classical umbral calculus, is proposed. The main ad-
vantage of this symbolic presentation is the plainness of the overall setting which reduces
to few fundamental statements, but also the availability of efficient routines [7] for the
implementation of formulae as (4.2), which is the key to manage the polynomials Qk(x, t).

The main result of this presentation is that any univariate (respectively multivariate)
TSH polynomial has the form Qk(x, t) (respectively Qk(x, t)) or can be expressed as a
linear combination of the polynomials Qk(x, t) with coefficients given by (4.11). Thanks
to the umbral representation of multivariate Lévy-Sheffer systems, more families of umbral
polynomials could be characterized, together with their orthogonality properties. This will
be the object of future research and investigation.

In [2], Barrieu and Shoutens have related the infinitesimal generator of a Markov process
to a more general class of linear operators possessing the TSH property, both ascribable
to special families of martingales. A stochastic Taylor formula is produced which results
to be a generalization of a TSH polynomial due to the presence of a remainder term se-
ries. A symbolic representation of this new TSH function could open the way to a new
classification of the corresponding operators by which to recover the martingale property
on Lévy processes. Similarly, the extension to the more general class of Markov processes
(a first attempt is given in [2]) would move the employment of TSH functions beyond the
field of applications strictly connected to the market portfolio. One step more consists in
dealing with matrix-valued stochastic processes by replacing formal power series (2.9) with
hypergeometric functions, as done in [18]. This would allow us a symbolic representation
also for zonal polynomials whose computational handling is still an open problem.
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with respect to Lévy processes. Ann. Mat. Pura Appl.. 10.1007/s10231-012-0252-3

[9] Di Nardo E., Oliva I. (2012) Multivariate time-space harmonic polynomials: a symbolic ap-
proach. Submitted.

[10] Di Nardo E., Senato D. (2001) Umbral nature of the Poisson random variables. In: Crapo, H.
Senato, D. eds., Algebraic Combinatorics and Computer science: a tribute to Gian-Carlo Rota
Springer-Verlag.



118 E. DI NARDO

[11] Di Nardo E., Senato D. (2006) An umbral setting for cumulants and factorial moments. Eu-
ropean J. Combin. 27, No. 3, 394–413.

[12] Di Nardo E., Petrullo P., Senato D. (2010) Cumulants and convolutions via Abel polynomials.
Europ. Jour. Combinatorics 31, No. 7, 1792–1804.

[13] Di Nardo E., Guarino G., Senato D. (2008) A unifying framework for k-statistics, polykays
and their multivariate generalizations. Bernoulli 14, 440–468.

[14] Feller W. (1966) An introduction to probability theory and its applications. John Wiley & Son,
II edition.

[15] Goswami A., Sengupta A. (1995) Time-space polynomial martingales generated by a discrete-
time martingale. Journ. Theor. Prob. 8, No. 2, 417–431.

[16] Kailath T., Segall A. (1976) Orthogonal functionals of independent increment processes. IEEE
Trans. Inform. Theory IT-22 3, 287–298.

[17] Kuchler U., Sorensen M. (1997) Exponential families of stochastic processes. Springer.

[18] Lawi S. (2008) Hermite and Laguerre polynomials and matrix-valued stochastic processes.
Elect. Comm. in Probab. 13, 67–84.

[19] Neveu J. (1975) Discrete-parameter martingales. North-Holland/American Elsevier.

[20] Roman S. (1984) The umbral calculus. Academic press.

[21] Rota G.-C., Taylor B.D. (1994) The classical umbral calculus. SIAM J. Math. Anal. 25, No.
2, 694–711.
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