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Abstract
Mitochondrial carriers transport inorganic ions, nucleotides, amino acids, keto acids and cofactors across the mitochondrial
inner membrane. Structurally they consist of three domains, each containing two transmembrane a-helices linked by a short a-
helix and loop. The substrate binds to three major contact points in the central cavity. The class of substrate (e.g., adenine
nucleotides) is determined by contact point II on transmembrane a-helix H4 and the type of substrate within the class (e.g.,
ADP, coenzyme A) by contact point I in H2, whereas contact point III on H6 is most usually a positively charged residue,
irrespective of the type or class. Two salt bridge networks, consisting of conserved and symmetric residues, are located on the
matrix and cytoplasmic side of the cavity. These residues are part of the gates that are involved in opening and closing of the
carrier during the transport cycle, exposing the central substrate binding site to either side of the membrane in an alternating
way. Here we revisit the plethora of mutagenesis data that have been collected over the last two decades to see if the residues in
the proposed binding site and salt bridge networks are indeed important for function. The analysis shows that the major contact
points of the substrate binding site are indeed crucial for function and in defining the specificity. The matrix salt bridge
network is more critical for function than the cytoplasmic salt bridge network in agreement with its central position, but neither
is likely to be involved in substrate recognition directly.
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Introduction

Many transport steps across the mitochondrial
inner membrane are required for the generation of
metabolic energy from the oxidation of sugars and
fats, synthesis of haem and iron sulphur clusters,
production of heat, macromolecular synthesis and
breakdown, and the synthesis, degradation and
interconversion of amino acids. Members of the mito-
chondrial carrier family (MCF) are involved in the
majority of these transport steps (Palmieri 2004,
2012), but the transport of pyruvate is carried out
by the MPC family (Herzig et al. 2012). Some MCF
members have also been found in membranes of other
organelles, such as peroxisomes and chloroplasts
(Palmieri et al. 2011). On the protein level, mito-
chondrial carriers are characterized by having three
homologous repeats, consisting of about a hundred

amino acid residues each (Saraste and Walker 1982).
The structural fold of the bovine ADP/ATP carrier,
the only member of the family for which an atomic
structure is available, consists of a barrel of six trans-
membrane a-helices (H1-6) with three short a-helices
in the matrix loops (h12, h34, h56), which are
arranged in a three-fold pseudo-symmetrical manner
(Pebay-Peyroula et al. 2003). At the carboxy-terminal
ends of all odd-numbered a-helices H1, H3 and H5 a
highly conserved signature motif PX[DE]XX[KR] is
found (Nelson et al. 1998, Pebay-Peyroula et al.
2003). The prolines of the signature motifs are pres-
ent at sharp kinks in the helices, whereas the charged
residues form three salt bridges, which close the cavity
to the matrix side. The structure provided the basic
fold of all mitochondrial carriers but did not reveal
the location of the substrate binding site nor the
putative movements upon substrate binding, as the
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structure is representing an inhibited state, i.e., with
carboxy-atractyloside bound.

Computational approaches to identify the substrate
binding site

Mitochondrial carriers have a similar structure but
can handle a large variety of substrates ranging from
single protons (uncoupling proteins) to large cofac-
tors, such as NAD+ and coenzyme A (Palmieri 2004,
2012). The substrate binding site of mitochondrial
carriers was located by three different computational
methods. The first used comparative structural mod-
els of carriers with known substrate specificity com-
bined with chemical and distance constraints to
identify conserved substrate binding sites that were
capable of discriminating between (oxo)carboxylates,
amino acids and nucleotides (Kunji and Robinson
2006, Robinson and Kunji 2006). It was discovered
that there are three main contact points involved in
substrate binding, which were indicated by roman
numerals I, II and III. The contact points may involve
one or several residues, positioned approximately in
the middle of the membrane, on the cavity-exposed
face of the even-numbered a-helices. For the bovine
mitochondrial ADP/ATP carrier, the contact points
were proposed to be R79 on H2 (contact point I) and
R279 on H6 (contact point III) for binding of
the phosphate groups and G182, I183 and Y186
on H4 for binding of the adenine moiety (contact
point II) (Kunji and Robinson 2006, Robinson and
Kunji 2006). The interactions with the contact
points allow the coupling of substrate binding to a
symmetrical mechanism.
The second approach used molecular dynamics

simulations to identify residues of the bovine mito-
chondrial ADP/ATP carrier that are involved in the
trajectory and binding of ADP in the cavity. ADP
bound with a minimum of the free energy to the
binding site defined above, revealing an aromatic
stacking arrangement of the adenine moiety with
Y186 and an ionic interaction of the b-phosphate of
ADP with an arginine, which comes through the
centre of the matrix salt bridge network (Dehez
et al. 2008, Wang and Tajkhorshid 2008). From a
sequence perspective, it was clear that the most
important interactions of the carriers with the
substrate were electrostatic in nature (Kunji and
Robinson 2006), but this notion has been refined
by calculating electrostatic potentials (Wang and
Tajkhorshid 2008) and by looking at the effects of
chlorine ions on binding (Krammer et al. 2009).
The third approach exploited the principle that

mitochondrial carriers have a high degree of three-
fold pseudo-symmetry in contrast to the transported

substrates that are asymmetric in structure and
chemistry (Robinson et al. 2008). Therefore, the
residues involved in substrate binding must deviate
from each other to couple the binding of the asym-
metric substrate to a symmetric transport mecha-
nism. Conserved asymmetric residues were found
to cluster consistently at a single site that overlapped
with the common substrate binding site in all
studied mitochondrial carriers (Kunji and Robinson
2006, Robinson and Kunji 2006, Robinson et al.
2008). In addition, conserved negatively charged
asymmetric residues were observed in the substrate
binding sites of carriers that transport substrates
into mitochondria by coupling the transport step
to the import of protons, indicating a potential
link between proton and substrate binding (Kunji
and Robinson 2010).

Mutagenesis studies

Many mutagenesis studies on mitochondrial carriers
had been carried out prior to any structural infor-
mation being available. Here we revisit the effects of
these mutations to see if they are consistent with the
proposed substrate binding site. In these studies the
activity of the mutant proteins have been assessed by
transport experiments in reconstituted liposomes
(Fiermonte et al. 1993, Palmieri et al. 1996a) or
by mutant complementation assays in deletion
strains of yeast (Nelson et al. 1993). So far, the
bovine 2-oxoglutarate carrier OGC is the only mito-
chondrial carrier in which every residue has been
mutated to cysteine and to other amino acids when
the Cys-replacement leads to loss of transport
(Stipani et al. 2001, Cappello et al. 2006, 2007,
Miniero et al. 2011). These systematic studies
have carved out the conserved functional elements
of mitochondrial carriers. The OGC studies dem-
onstrate that the vast majority of the critical residues
have their side chains protruding into the cavity of
the carrier, whereas only a few critical residues are
found on the surface exposed to the mitochondrial
membrane, in the cytoplasmic loops and in the
matrix helices (Miniero et al. 2011). Extensive
mutagenesis studies in other carriers have been car-
ried out on cavity residues of the yeast phosphate
carrier Mir1 (Wohlrab and Briggs 1994, Phelps
et al. 1996, Briggs et al. 1999, Wohlrab et al.
2002) and the yeast citrate carrier Ctp1 (Kaplan
et al. 2000, Ma et al. 2004, 2007), whereas only
selected residues have been investigated in the
yeast ADP/ATP carrier Aac2 (Nelson et al. 1993,
1998, Heidkämper et al. 1996, David et al. 2008),
the human folate carrier (Lawrence et al. 2011),
the human and rat carnitine/acyl-carnitine carrier
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(Indiveri et al. 2002, De Lucas et al. 2008, Tonazzi
et al. 2009, Giangregorio et al. 2010, Tonazzi et al.
2012), and the human and rat uncoupling protein
(Echtay et al. 1997, 2001, Modrianský et al. 1997).
Since the latter mutagenesis studies are incomplete,
we have chosen to focus on the cavity residues of
OGC, Mir1 and Ctp1 to evaluate if the computa-
tional approaches agree with the results of mutagen-
esis studies. Effects of mutations on the function of

the ADP/ATP carrier have been described elsewhere
(Nury et al. 2006).

Analysis of mutations of residues in the substrate binding
site

The pseudo-symmetry and conservation analysis of
OGC (Figure 1A and C), Mir1 (Figure 2A and C)
and Ctp1 (Figure 3A and C) demonstrate that the
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Figure 1. Asymmetry, symmetry and the effects of single cysteine mutations on transport activity of the bovine 2-oxoglutarate carrier OGC.
The backbone is shown in yellow and is based on the structure of the bovine AAC1 (Pebay-Peyroula et al. 2003). The conservation and
average symmetry scores of the OGC subfamily are represented by the size and colour of the Cb atom, respectively. Large spheres indicate
residues that are well-conserved in the subfamily of OGC, whereas small spheres are not. Asymmetric residues are shown in a colour scale
from red (highly asymmetric) to white (neutral) (A), whereas symmetric residues are shown in a colour scale from blue (highly symmetric) to
white (neutral) (C) (Cappello et al. 2006). The asymmetric (B) and symmetric residues (D) were also coloured according to the relative
initial transport velocity of the single cysteine mutant proteins compared with the wild-type at the external substrate concentration equal to
the km of the wild-type: red, 0–15%; orange 16–50%; green, 51–100%; white, no data. The black encircled residues are the three contact
points of the substrate binding site, which in OGC is a symmetrical triplet of arginines. As the substrates malate and oxoglutarate are small,
the substrate binding site has only a few asymmetrical adaptations. This Figure is reproduced in colour in the online version of Molecular
Membrane Biology.
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conserved and asymmetric residues in the cavity
have a clear tendency of clustering in the proposed
substrate binding site at a central location in the
membrane, whereas the symmetric ones tend to clus-
ter in and around the cytoplasmic and matrix gate
(Robinson et al. 2008).
There is a distinct correlation between residues with

increasing degree of asymmetry and residues that
are critical for transport in OGC (Figure 1A & B),
Mir1 (Figure 2A & B) and Ctp1 (Figure 3A & B). The
analysis also shows that mutations of the contact
point residues are detrimental to transport activity.
In Mir1 only contact point II is involved, whereas
other interactions are carried out by asymmetric

residues, because the substrate is small and requires
co-transport with a proton (Kunji and Robinson
2010). However, the residues of the substrate binding
site of OGC and Ctp1 are mostly conserved and
symmetrical, as a requirement for the coupling of
substrate binding to a symmetric transport mecha-
nism. The carriers that transport carboxylic acids have
positively charged residues to bind the negatively
charged substrates whereas the surrounding asym-
metric residues are likely to define the specificity by
modulating the immediate environment. For example
2-oxoglutarate carriers, with the combination of
RY[TS][RK], RA and [RK] in the three contact
points, transport 2-oxoglutarate, L-malate, malonate,
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Figure 2. Asymmetry, symmetry and the effects of mutations on transport activity of the yeast phosphate carrier Mir1. Key as in Figure 1.
Where the kinetic parameters were measured, the corresponding initial rates were calculated with the Michaelis-Menten equation at a
substrate concentration equal to the km of the wild-type. The black encircled residues are the three contact points of the substrate binding site,
which in Mir1 consists of Q86, K179, Q180 and M279, all asymmetric as an adaptation to a small substrate. This Figure is reproduced in
colour in the online version of Molecular Membrane Biology.
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maleate, succinate, and to a small extent D-malate
and 2-oxoadipate (Bisaccia et al. 1985, Fiermonte
et al. 1993) whereas dicarboxylate carriers with RY
[ST]R, R[AG] and R in the contact points transport
L-malate, phosphate, sulphate, thiosulphate, malo-
nate, maleate and succinate (Palmieri et al. 1996b,
Fiermonte et al. 1998). Thus OGC and the dicarbox-
ylate carrier have overlapping, but not identical
substrate specificity. Therefore, there must be other
determinants that can discriminate between sub-
strates that are similar. Most likely the asymmetric
residues close to the contact points take part in
this ‘fine-tuning’ of the substrate specificity (Palmieri
et al. 2011).

Mutations that alter substrate specificity

The mutagenesis experiments show that particular
residues are important for transport, but this obser-
vation does not disclose their role, because they can be
directly or indirectly involved in substrate binding, in
the structural fold, in the conformational changes
during substrate translocation or in the opening
and closing of the matrix and cytosoplasmic gates.
If a mutation causes an altered substrate specificity
then this demonstrates unequivocally that the muta-
ted residue is involved in substrate binding and
selection. In our recent paper, the substrate binding
site of the two human mitochondrial ornithine carrier
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Figure 3. Asymmetry, symmetry and activity of mutants of the yeast citrate carrier Ctp1. Key as in Figure 1. Where the kinetic parameters
were measured, the corresponding initial rates were calculated according to the Michaelis-Menten equation at a substrate concentration
equal to the km of the wild-type. The black encircled residues are the contact points of the substrate binding site, which in Ctp1 might consist
of the conserved and asymmetric K83 and Q182 together with the symmetric R279 and R181. This Figure is reproduced in colour in the
online version of Molecular Membrane Biology.
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isoforms (ORC1 and ORC2) were probed by site
directed mutagenesis of the contact point residues
(Monné et al. 2012). The two transporters differ in
specificity and transport rate (Fiermonte et al. 2003)
and have different residues in contact point II; RE in
ORC1 and QE in ORC2. The results demonstrated
that this difference is responsible for the difference in
substrate specificity between the two isoforms
(Figure 4). When the residues are exchanged in the

ORC1-R179Q and ORC2-Q179R mutant proteins
the substrate specificity and transport rate are
swapped as well. Given that mutations in contact
point II also affect the turnover number, substrate
binding to this residue is a rate limiting step in the
catalytic transport cycle. A mutation in the other
residue in contact point II ORC1-E180D also dis-
played changed substrate specificity, indicating that
this position is also important in substrate selection.
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Figure 4. Swapping specificity of the human ornithine carrier by exchanging a single residue in contact point II of the substrate binding site.
L-ornithine (magenta) bound in the substrate binding site of ORC1 and ORC2 is shown with the investigated residues (yellow). Results from
transport hetero-exchange experiments of radioactive L-ornithine with the wild-type and mutant ORC proteins reconstituted in proteolipo-
somes, preloaded internally with the various substrates indicated: L-Orn, L-ornithine; L-Arg, L-arginine; L-Lys, L-lysine; L-His, L-histidine;
H-Arg, L-homoarginine; D-Orn, D-ornithine; D-Arg, D-arginine and D-Lys, D-lysine (Monné et al. 2012). This Figure is reproduced in
colour in the online version of Molecular Membrane Biology.
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The most straightforward interpretation is that the Ca
carboxylate and amino group of the amino acid sub-
strate bind to R/Q179 and E180 of the ornithine
carriers. When bound to this position the only plau-
sible binding site for the terminal amino group is
residue E77 in contact point I. This residue is con-
served and unique for the ORC subfamily and the
results show that it cannot be altered without total loss
of function. It was also noted that contact point II
might be interacting indirectly with contact point III
through cation-p interactions. In this way, substrate
binding would engage all three contact points for
coupling substrate binding to a symmetrical
mechanism.
The R294A mutation of the yeast mitochondrial

ADP/ATP carrier Aac2 also alters the substrate spec-
ificity, demonstrating that contact point III is also
involved in substrate binding (Heidkämper et al.
1996). This mutant protein transports ADP at an
almost unchanged rate compared to the wild-type
but ATP transport is reduced to less than 10%,
suggesting that R294 is important for binding the
g-phosphate of ATP.

Analysis of mutations of residues involved in the transport
mechanism

The systematic mutagenesis of OGC has highlighted
the structural elements that are conserved, symmet-
rical and important for transport (Figure 5). Apart
from those in the vicinity of the substrate binding
site (Figure 5A), critical residues are also found in
the conserved signature motifs of the odd- and
even-numbered helices that form the matrix and
cytoplasmic gates, respectively. Similar to what
was observed for the asymmetric residues, it seems
that residues with increasing degree of symmetry
coincide with positions where mutations are affect-
ing the transport more severely in OGC (Figure 1C
& D), Mir1 (Figure 2C & D) and Ctp1 (Figure 3C &
D). Here we review these residues to see whether
they are likely to be involved in substrate binding
or in critical aspects of the transport mechanism or
the structure.
The matrix gate mutations include residues of

the signature motif PX[DE]XX[RK] that are highly
conserved in all carriers and can therefore not
have a discriminatory role in substrate recognition
(Figure 5B). Carriers transporting NAD+ (Todisco
et al. 2006, Palmieri et al. 2009), pyrimidine nucleo-
tides (Marobbio et al. 2006, Floyd et al. 2007), FAD/
folate (Tzagoloff et al. 1996, Titus and Moran, 2000,
Bedhomme et al. 2005), and coenzyme A, FAD and
NAD+ in peroxisomes (Agrimi et al. 2012a, 2012b,
Bernhardt et al. 2012) have a conserved W instead of

[DE] in the second signature motif; FAD/folate car-
riers and ATP-Mg2+/phosphate carriers (Fiermonte
et al. 2004, Traba et al. 2008, 2009) have a glutamine
and [QNAT], respectively, instead of the negatively
charged residue of the third signature motif; dicar-
boxylate carriers (Palmieri et al. 1996b, 2008,
Fiermonte et al. 1998) have an asparagine or methi-
onine instead of the positively charged residue of
the second motif; the fungal oxaloacetate/sulphate/
a-isopropylmalate carrier (Palmieri et al. 1999,
Marobbio et al. 2008) lacks the negatively charged
residue and the positively charged residue in the
second and third motifs, the former residue being
replaced by [FY] and the latter by [LM]; and the
phosphate carriers (Runswick et al. 1987, Dolce et al.
1994, Wohlrab and Briggs 1994) have a hydrophobic
substitution instead of the positively charged residue
in the third motif. These mostly polar modifications
would be capable to either cation-p or hydrogen
bond interactions, which have an interaction energy
that is approximately half of an ionic bond. There is
no straightforward correlation to substrate specifi-
city, since the tryptophan modification, for example,
is the same in the NAD+, pyrimidine nucleotides,
FAD/folate and peroxisomal coenzyme A/FAD/
NAD+ transporters (see above), but their substrates
are very different in chemistry and biophysical prop-
erties. It is possible that the strength of the matrix
network is modulated to be lower than the interac-
tion energy of the substrate with the binding site. Just
below the matrix salt bridge network are conserved
and symmetrical glutamines, which could form a
hydrogen bond with residues involved in the matrix
salt bridge network, but there is no correlation to
substrate specificity (Figure 5B). The positively
charged residue that follows the matrix salt bridge
network residues interacts with a negatively charged
residue of the [DE]G motif and conserved Y, linking
the matrix a-helices to the odd-numbered a-helices,
but they are outside of the central cavity and
occluded (Figure 5D). The residues at the cyto-
plasmic gate in and around the motif [YF]XX[YF]
and [DE]XX[RK] are (Figure 5C), although less
conserved, found in a wide range of carriers with
different substrates and are therefore also unlikely to
form a basis for substrate specificity. There are also
many conserved and symmetric glycines, of which
some are found in the GXXXG motif below the
cytoplasmic gate in the odd-numbered helices that
have been shown to be crucial for transport
(Figure 5B). There are two separate hypotheses to
describe their role in carrier activity: (i) They could
form important pivot points for close helix-helix
interactions (Melnyk et al. 2004, Robinson et al.
2008), or (ii) they could form hinges in the helices
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necessary for the opening and closing of the gates
(Palmieri and Pierri 2010).
Thus it is unlikely that the critical residues of the

matrix and cytoplasmic gates could be involved in
substrate binding and it is much more likely that they
are involved in the closing and opening of the gates in
the transport cycle. Since they are in the translocation
pathway, it is also possible that they modulate or
facilitate the entry of substrates to the central substrate
binding site or the exclusion of others.

Conclusions/perspectives

In this review we have shown that the conclusions
drawn from theoretical and experimental approaches
to define the substrate binding site in mitochondrial
carriers largely agree. In fact, the sequence/structure
analysis complements interpretation of the mutant
data and vice versa. The approach of combining
site-directed mutagenesis and transport assays with
a set of substrates has proved to be successful for
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8 M. Monné et al.

M
ol

 M
em

br
 B

io
l D

ow
nl

oa
de

d 
fro

m
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
21

3.
10

6.
81

.2
41

 o
n 

11
/0

5/
12

Fo
r p

er
so

na
l u

se
 o

nl
y.



determining the residues that are directly involved in
substrate interactions. Taken together, the mutagen-
esis studies of well-characterized carriers have vali-
dated the importance of specific residues in substrate
binding and transport mechanism. Furthermore, the
identification of contact point residues in the mito-
chondrial carrier substrate-binding site has helped
and will continue to be useful in explaining differ-
ences in half-saturation constants of substrates for
specific carriers (Marobbio et al. 2008) and in
predicting the substrates, or at least the class of
substrates, that are transported by yet uncharacteri-
zed mitochondrial carriers (Castegna et al. 2010,
Palmieri et al. 2011, Stael et al. 2011).
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