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1. Introduction

The aim of this paper is to extend some classical polynomial inequalities to
the case of weighted polynomial inequalities on the real semiaxis, considering
weights of the form

u(x) = xγe−x−α−xβ

, x ∈ (0,+∞), α > 0, β > 1, γ ≥ 0. (1.1)

Though the weight u can be seen as a combination of a Pollaczeck-type

weight e−x−α

and a Laguerre-type weight xγe−xβ

, as we will see, the poly-
nomial inequalities cannot be deduced from previous results in the literature
concerning these two weights. Namely, one cannot investigate the problem
reducing it to a combination of a Pollaczeck-type case (on [0, 1], say) and a
Laguerre-type case (on [1,+∞)).

Nevertheless, we will see that the exponential part of the weight (1.1),
i.e.

w(x) = e−x−α−xβ

, α > 0 , β > 1 , x ∈ (0,+∞) . (1.2)
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can be reduced to a weight belonging to the class F(C2+) defined by Levin
and Lubinsky in [7, p. 7]. From the results in [7], we will deduce some esti-
mates for the Mhaskar–Rakhmanov–Saff numbers related to w. Then, we will
prove our weighted polynomial inequalities considering the complete weight
u.

To be more precise, after showing the restricted range inequality with
the weight u on (0,+∞), we are going to prove the related Bernstein–Markoff,
Schur and Nikolskii inequalities. These are, as is well-known, important tools
in order to estimate the degree of convergence of the best weighted polynomial
approximation.

The paper is structured as follows. In Section 2 we recall some basic facts
concerning the weight w and deduce a Remez-type inequality. In Section 3 we
state Bernstein–Markoff-, Schur- and Nikolskii-type inequalities, which will
be proved in Section 4. Finally, in the Appendix we show how the weight w
can be reduced to a weight belonging to the class F(C2+).

2. Basic facts and preliminary results

In the sequel c, C will stand for positive constants which can assume different
values in each formula and we shall write C �= C(a, b, . . .) when C is indepen-
dent of a, b, . . .. Furthermore A ∼ B will mean that if A and B are positive
quantities depending on some parameters, then there exists a positive con-
stant C independent of these parameters such that (A/B)±1 ≤ C. By a slight
abuse of notation, we will denote by ‖ · ‖p the quasinorm of the Lp-spaces for
0 < p < 1, defined in the usual way. Finally, we will denote by Pm the set of
all algebraic polynomials of degree at most m.

Let us consider the weight function (1.2). By using a linear transforma-
tion this weight can be reduced to a weight belonging to the class F(C2+)
defined in [7, p. 7] (see the Appendix for further details). We denote by
εt = εt(w) and at = at(w) the Mhaskar–Rakhmanov–Saff numbers related to
w, with

lim
t→+∞ εt = 0 , lim

t→+∞ at = +∞ .

From the results in [7], we deduce

εt ∼
(√

at
t

) 1
α+1/2

(2.1)

and

at ∼ t1/β , (2.2)

where the constants in “∼” are independent of t.

The importance of these numbers lies, e.g., in the following restricted
range inequalities. Letting 0 < p ≤ ∞, for any Pm ∈ Pm, we have

‖Pm w‖p ≤ C ‖Pm w‖Lp[εm,am] , (2.3)
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and, with s > 1 fixed,

‖Pm w‖Lp(R+\[εsm,asm]) ≤ Ce−Amν ‖Pm w‖p , (2.4)

where

ν =

(
1− 1

2β

)
2α

2α+ 1
, (2.5)

and C is in both cases independent of m and Pm.

From (2.3) and (2.4) we can easily deduce the analogous inequalities
with the weight w replaced by u. The following remark will allow us to avoid
considering the Mhaskar-Rahmanov-Saff numbers related to u, but only the
ones related to w.

Remark 2.1. Let γ ∈ R and n = m+
|γ|�. For any Pm ∈ Pm, with 0 < p ≤ ∞,
we have

‖Pm u‖p ≤ C ‖Pm u‖Lp[εn,an]
, (2.6)

where C �= C(m,Pm), and εn = εn(w), an = an(w) are defined by (2.1) and
(2.2).

Analogously, from inequality (2.4) we can deduce

‖Pm u‖Lp(R+\[εsn,asn])
≤ Ce−Amν ‖Pm u‖p , s > 1 , (2.7)

where n ∼ m, C �= C(m,Pm), A �= A(m,Pm), and ν is defined by (2.5).

3. Main results

Now we are able to state the polynomial inequalities related to the weight
(1.1).

The following lemma will be a crucial tool in order to prove our poly-
nomial inequalities. For the rest of the paper, let

ϕ(x) =
√
x and vδ(x) = xδ .

Lemma 3.1. For a sufficiently large m (say m ≥ m0), there exists a polyno-
mial Rlm ∈ Plm, with l a fixed integer, such that

Rlm(x) ∼ w(x) (3.1)

and

|R′lm(x)|ϕ(x) ≤ C m√
am

w(x) (3.2)

for x ∈ [εm, am], where εm = εm(w) and am = am(w) are defined by (2.1)
and (2.2). The constants in “∼” and C are independent of m.

By Lemma 3.1 and Remark 2.1, using arguments analogous to those in
[8, 11, 12] we can reduce the problem of the polynomial inequalities related
to the weight u on (0,+∞), to inequalities on bounded intervals with Jacobi
weights.
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Theorem 3.2. Let 0 < p ≤ ∞. Then, for any Pm ∈ Pm, we have

‖P ′m ϕu‖p ≤ C m√
am

‖Pm u‖p (3.3)

and

‖P ′m u‖p ≤ C m√
εmam

‖Pm u‖p , (3.4)

where C �= C(m,Pm) .

We want to emphasize that the presence of the algebraic factor xγ in the
definition of u allows us to iterate the Bernstein inequality (3.3) as follows∥∥∥P (r)

m ϕru
∥∥∥
p
≤ C

(
m√
am

)r

‖Pm u‖p ,

for 1 ≤ r ∈ Z.
Also, the factor

m√
εmam

∼
(

m√
am

) 2α+2
2α+1

=

(
m√
am

)1+ 1
2α+1

.

in the Markoff inequality (3.4) is smaller than that in the analogous inequality
(see [10])

‖P ′m wβ‖p ≤ C
(

m√
am

)2

‖Pm wβ‖p
with the generalized Laguerre weight wβ(x) = e−xβ

on (0,+∞). Whereas,
the factors of the Bernstein inequalities for the weights u and wβ are the
same.

Using standard arguments, the Markoff inequality (3.4) can be deduced
from the Bernstein inequality (3.3) and the Schur inequality stated in next
theorem.

Theorem 3.3. Let 0 < p ≤ ∞. Then, for any Pm ∈ Pm, we have

‖Pm u‖p ≤ C
(

m√
am

) δ
α+1/2

‖Pm vδ u‖p
with C �= C(m,Pm).

In analogy with the Bernstein and Markoff inequalities, we give two
versions of the Nikolskii inequality.

Theorem 3.4. Let 0 < p < q ≤ ∞. Then, for any Pm ∈ Pm, we get∥∥∥Pm ϕ
1
p− 1

q u
∥∥∥
q
≤ C

(
m√
am

) 1
p− 1

q

‖Pm u‖p ,

and

‖Pm u‖q ≤ C
(

m√
εmam

) 1
p− 1

q

‖Pm u‖p (3.5)

where C �= C(m,Pm).
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In analogy with different weighted polynomial inequalities, the factor
m√

εmam
in the second Nikolskii inequality is the same as that in the Markoff

inequality.

4. Proofs

First of all we are going to prove Remark 2.1.

Proof of Remark 2.1. We are going to prove inequality (2.6) only for γ > 0,
since the case γ < 0 is similar.

For any Pm ∈ Pm, 0 < p ≤ ∞, letting n = m+ 
γ�, we can write

‖Pm u‖p ≤ ‖Pm u‖Lp[εn,an]
+ ‖Pm u‖Lp[0,εn]

+ ‖Pm u‖Lp[an,+∞)

=: I1 + I2 + I3 .

So, in order to prove (2.6), it suffices to show that I2 and I3 ≤ CI1.
For I2, since vγ(x) = xγ is monotone increasing, using (2.3), we have

I2 = ‖Pm u‖Lp[0,εn]
= ‖Pmvγw‖Lp[0,εn]

≤ εγn ‖Pmw‖Lp[0,εn]

≤ Cεγn ‖Pmw‖Lp[εn,an]

≤ C ‖Pmvγw‖Lp[εn,an]
.

Analogously, for I3, since xγ−�γ� is monotone decreasing, using again
(2.3), we get

I3 = ‖Pm u‖Lp[an,+∞) = ‖Pmvγw‖Lp[an,+∞)

≤ aγ−�γ�n

∥∥Pmv�γ�w
∥∥
Lp[an,+∞)

≤ Caγ−�γ�n

∥∥Pmv�γ�w
∥∥
Lp[εn,an]

≤ C ‖Pmvγw‖Lp[εn,an]
.

We omit the proof of inequality (2.7), which is analogous to the first
part of this proof. �

Now, we prove Lemma 3.1, dividing the proof into four steps. To be
more precise, in the second and the third steps, we are going to show that for

the two factors of the weight w, i.e. e−x−α

and e−xβ

, there exist polynomials
satisfying inequalities of the form (3.1) and (3.2). To this aim, we will use
the Lagrange interpolation based on Chebyshev zeros. So, in the first step,
we recall the formula of the error of this interpolation process for analytic
functions. Finally, in the fourth step, we will complete the proof of Lemma 3.1.

Proof of Lemma 3.1 – first step. Let us consider an interval of the form [ε, a],
where ε > 0 and a > 2ε. Let σ be a function, defined in the complex plane,
which is analytic inside an ellipse Γ with foci at ε, a and semiaxes

a− ε

4

(
ρ± 1

ρ

)
, ρ > 1 ,
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intersecting the real line at ε/2 and a+ ε/2, whence

1

2

(
ρ+

1

ρ

)
= 1 +

ε

a− ε
. (4.1)

It follows that

ρ = 1 +
ε

a− ε
+

√
2ε

a− ε
+

ε2

(a− ε)2

> 1 +
ε

a
+

√
ε

a
. (4.2)

Now, let P be the Lagrange polynomial interpolating σ at the zeros
of Tlm (ψ(x)), where Tlm (ψ(x)) is the Chebyshev polynomial in [ε, a], ψ :
[ε, a] → [−1, 1] is a linear transformation and l is a fixed integer. For x ∈ [ε, a]
we can write (see for instance [9, p. 55] or [1, p. 124])

|σ(x)− P (x)| =
∣∣∣∣ 1

2πi

∫
Γ

σ(ζ)Tlm (ψ(x))

(ζ − x)Tlm (ψ(ζ))
dζ

∣∣∣∣
≤ 1

2π

length(Γ)max
ζ∈Γ

|σ(ζ)|
min
ζ∈Γ

|ζ − x|min
ζ∈Γ

|Tlm (ψ(ζ))|

≤
⎡⎣ 1

2

(
ρ+ 1

ρ

)
1
2

(
ρ+ 1

ρ

)
− 1

⎤⎦ max
ζ∈Γ

|σ(ζ)|
1

2

(
ρlm − 1

ρlm

) .

Whence, using (4.1) and (4.2), we obtain

|σ(x)− P (x)| ≤ 4a

ε
max
ζ∈Γ

|σ(ζ)| ρ−lm

≤ 4a

ε
max
ζ∈Γ

|σ(ζ)| e−lm log(1+ ε
a+

√
ε
a )

≤ 4a

ε
max
ζ∈Γ

|σ(ζ)| e−lm
√

ε
a . (4.3)

�
Proof of Lemma 3.1 – second step. Let us consider the function σ(x)=e−x−α

with α > 0. We are going to use (4.3) in order to prove that there exists a
polynomial P1 ∈ Plm, with m ≥ m0 and l fixed, such that

P1(x) ∼ e−x−α

(4.4)

and
|P ′1(x)|

√
amx ≤ Cm e−x−α

(4.5)

for x ∈ [εm, am], where the constants in“∼” and C are independent ofm,σ, P1.
Let us first show that (4.4) holds in

[
1
2 εm, 2am

] ⊃ [εm, am]. To this aim
it suffices to prove that

|σ(x)− P1(x)| ≤ 1

2
σ

(
1

2
εm

)
, x ∈

[
1

2
εm, 2am

]
. (4.6)
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In fact (4.6) implies
1

2
σ(x) ≤ P1(x) ≤ 3

2
σ(x) ,

i.e. (4.4) for x ∈ [
1
2 εm, 2am

]
.

Note that the function σ(z), with z−α = e−αLog(z) and Log the principal
value of the logarithm, is holomorphic for � z > 0. Hence σ(z) is analytic
inside the ellipse Γ defined as in the previous step, with ε = 1

2 εm and a =
2am. Thus, letting P1 be the Lagrange polynomial interpolating σ(x) at the
Chebyshev zeros in [ 12 εm, 2am], by (4.3), we have

|σ(x)− P1(x)| ≤ 16am
εm

max
ζ∈Γ

|σ(ζ)|e−lm
√

εm
4am

≤ 16am
εm

max
ζ∈Γ

e|ζ|
−α

e−lm
√

εm
4am

≤ 16am
εm

e4
αε−α

m −lm
√

εm
4am

≤ 1

2
e−2αε−α

m ,

choosing

l ≥
log

(
32am

εm

)
+ (4α + 2α)ε−α

m

m
√

εm
4am

∼ 1 + εαm logm,

by (2.1) and (2.2). Note that the quantity on the right-hand side is ∼ 1+o(1)
as m → ∞ and then (4.4) follows choosing l sufficiently large but fixed.

Let us now prove that inequality (4.5) holds in [εm, am]. We can write

|P ′1(x)
√
amx| ≤ |[P ′1(x)− σ′(x)]

√
amx|+ |σ′(x)|√amx

=: A1 +A2 . (4.7)

In order to estimate the term A1, we are going to use arguments similar
to the first part of this step, using the formula

|P ′1(x)− σ′(x)|√amx ≤
∣∣∣∣ 1

2πi

∫
Γ

σ(ζ)Tlm (ψ(x))

(ζ − x)2Tlm (ψ(ζ))
dζ

∣∣∣∣√amx

+

∣∣∣∣∣ 1

2πi

∫
Γ

σ(ζ) d
dxTlm (ψ(x))

(ζ − x)Tlm (ψ(ζ))
dζ

∣∣∣∣∣√amx .

Both terms on the right-hand side can be handled in analogy with the first
part of this step. For the second term, with ψ(x) = (4x−4am−εm)/(4am−εm)
and x ∈ [εm, am], we observe that∣∣∣∣ ddxTlm (ψ(x))

∣∣∣∣√amx ≤ m
ψ′(x)√

1− (ψ(x))
2

√
amx

≤ Cm
√
amx√

(2am − x)(x− εm/2)
≤ Cm,
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since
√
amx ∼

√
(2am − x)(x− εm/2) , x ∈ [εm, am] . (4.8)

In fact, the last relation follows from

1 ≤ 2am − x

am
≤ 2

and

1 ≤ x

x− εm/2
= 1 +

εm
2x− εm

≤ 2 .

Then, proceeding as in the first part of this step, we get

A1 = |P ′1(x)− σ′(x)|√amx ≤ Cme−x−α

. (4.9)

Now, consider the term A2 in (4.7). Since x−α−1/2 is monotone decreas-

ing and ε
−α−1/2
m ∼ m/

√
am, by (2.1), we have

A2 = |σ′(x)|√amx = αx−α−1/2√amσ(x)

≤ Cε−α−1/2
m

√
amσ(x)

≤ C m√
am

√
amσ(x) . (4.10)

Combining (4.9) and (4.10) in (4.7), inequality (4.5) follows. �

Proof of Lemma 3.1 – third step. From [5, 6] (see also [2, 3, 4]) we deduce
that there exists P2 ∈ Plm, with m ≥ m0 and l fixed, such that

P2(x) ∼ e−xβ

and

|P ′2(x)|
√
amx ≤ Cme−xβ

for x ∈ [am/m2, am] ⊃ [εm, am], where the constants in “∼” and C are
independent of m. �

Proof of Lemma 3.1 – fourth step. Combining the results in the second and
the third step, the polynomial P1 · P2 satisfies (3.1) and (3.2), since

P1(x)P2(x) ∼ w(x)

and

|(P1P2)
′(x)| √amx ≤ P1(x) |P ′2(x)|

√
amx+ |P ′1(x)|P2(x)

√
amx

≤ Cmw(x)

for x ∈ [εm, am]. Hence Lemma 3.1 is completely proved. �
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Proof of Theorem 3.2. For any Pm ∈ Pm, by Remark 2.1 and Lemma 3.1, we
get

‖P ′m ϕvγ w‖p ≤ C ‖P ′m ϕvγ w‖Lp[εn,an]

≤ C ‖P ′m ϕvγ Rlm‖Lp[εn,an]

≤ C ∥∥(PmRlm)
′
ϕvγ

∥∥
Lp[εn,an]

+ C ‖PmR′lm ϕvγ‖Lp[εn,an]

≤ C ∥∥(PmRlm)
′
ϕvγ

∥∥
Lp[εn,an]

+ C m√
am

‖Pm vγw‖p ,

where n = m− 1 + 
γ + 1/2�.
Now, in order to prove that the first term at the right-hand side is

bounded by the second term, we want to use the known Bernstein inequality
related to Jacobi weights on the bounded interval [ε2n, a2n]. To this aim we
observe that, for x ∈ [εn, an], the relations√

(x− ε2n)(a2n − x) ∼ √
amϕ(x)

and

(x− ε2n)
γ ∼ vγ(x)

hold, applying the same arguments as in (4.8), by (2.2) and (2.1). Hence, we
can use the Bernstein inequality related to the interval [ε2n, a2n] with the
Jacobi weight (x− ε2n)

γ , obtaining∥∥(PmRlm)
′
ϕvγ

∥∥
Lp[εn,an]

≤ C√
am

∥∥∥(PmRlm)
′√

(· − ε2n)(a2n − ·)(· − ε2n)
γ
∥∥∥
Lp[εn,an]

≤ C√
am

∥∥∥(PmRlm)
′√

(· − ε2n)(a2n − ·)(· − ε2n)
γ
∥∥∥
Lp[ε2n,a2n]

≤ C m√
am

‖PmRlm(· − ε2n)
γ‖Lp[ε2n,a2n]

≤ C m√
am

‖Pm vγw‖p ,

by Lemma 3.1 and since (x− ε2n)
γ ≤ xγ . �

The Markoff inequality (3.4) in Theorem 3.2 can be deduced from (3.3)
and Theorem 3.3. Therefore, we are going to prove Theorem 3.3, omitting
the proof of (3.4).

Proof of Theorem 3.3. For any Pm ∈ Pm, letting n = m+
γ�, by Remark 2.1,
we have

‖Pmu‖p ≤ C‖Pmu‖Lp[εn,an]

≤ Cε−δ
n ‖Pmvδu‖Lp[εn,an] ,

whence our claim follows, taking into account (2.1). �
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Proof of Theorem 3.4. Let Pm ∈ Pm. By Remark 2.1 and Lemma 3.1 we have∥∥∥Pm ϕ
1
p− 1

q vγ w
∥∥∥
q
≤ C

∥∥∥Pm ϕ
1
p− 1

q vγ w
∥∥∥
Lq [εn,an]

≤ C
∥∥∥Pm ϕ

1
p− 1

q vγ Rlm

∥∥∥
Lq [εn,an]

,

where n = m+ 
γ + (1/p− 1/q)/2�.
In analogy with the proof of Theorem 3.2, we are going to apply the

Nikolskii inequality related to Jacobi weights on the bounded interval
[ε2n, a2n]. Since, for x ∈ [εn, an], we have√

(x− ε2n)(a2n − x) ∼ √
amϕ(x)

and

(x− ε2n)
γ ∼ vγ(x) ,

using the Nikolskii inequality with the weight (x− ε2n)
γ , and by Lemma 3.1,

we obtain∥∥∥PmRlm ϕ
1
p− 1

q vγ

∥∥∥
Lq [εn,an]

≤ C
(
√
am)

1
p− 1

q

∥∥∥∥PmRlm

(√
(· − ε2n)(a2n − ·)

) 1
p− 1

q

(· − ε2n)
γ

∥∥∥∥
Lq [εn,an]

≤ C
(
√
am)

1
p− 1

q

∥∥∥∥PmRlm

(√
(· − ε2n)(a2n − ·)

) 1
p− 1

q

(· − ε2n)
γ

∥∥∥∥
Lq [ε2n,a2n]

≤ C
(

m√
am

) 1
p− 1

q

‖PmRlm(· − ε2n)
γ‖Lp[ε2n,a2n]

≤ C
(

m√
am

) 1
p− 1

q

‖Pm vγw‖p ,

which completes the proof. �

We omit the proof of (3.5) which follows from Theorems 3.4 and 3.3.

5. Appendix

In this section we show that the weight w defined in (1.2) can be reduced to
a weight belonging to the class F(C2+) in [7].

First of all, for the reader’s convenience, we recall the definition of the
class F(C2+), given by Levin and Lubinsky in [7, pp. 7–8] .

Let I = (c, d) be an interval, with −∞ ≤ c < 0 < d ≤ +∞, and
 : I ∈ R be a weight function, with  = e−Q, Q : I ∈ [0,+∞), satisfying the
following properties:

(i) Q′ is continuous in I and Q(0) = 0;
(ii) Q′′ exists and is positive in I \ {0};
(iii) limx→c+ Q(x) = limx→d− Q(x) = ∞;
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(iv) the function

T (x) =
xQ′(x)
Q(x)

, x ∈ I \ {0} ,

is quasi-decreasing in (c, 0) and quasi-increasing in (0, d), with

T (x) ≥ Λ > 1 , x ∈ I \ {0} ;
(v) there exist C1, C2 > 0 and a compact subinterval J ⊆ I, such that

Q′′(x)
|Q′(x)| ≤ C1

|Q′(x)|
Q(x)

, a.e. x ∈ I \ {0} ,
and

Q′′(x)
|Q′(x)| ≥ C2

|Q′(x)|
Q(x)

, a.e. x ∈ I \ J .

Then, following Levin and Lubinsky, we say  ∈ F(C2+).
The related Mhaskar–Rahmanov–Saff numbers ā−t = ā−t() and āt =

āt(), with ā−t < 0 < āt and t > 0, are uniquely defined by the equations
(see [7, p. 13])

t =
1

π

∫ āt

ā−t

xQ′(x)√
(x− ā−t)(āt − x)

dx (5.1)

and

0 =
1

π

∫ āt

ā−t

Q′(x)√
(x− ā−t)(āt − x)

dx . (5.2)

Moreover, āt is an increasing function of t ∈ R, with

lim
t→−∞ āt = c , lim

t→+∞ āt = d .

In particular, if āt ≥ |ā−t| for t sufficiently large, the relations (see [7, p. 27])

Q(āt) ∼ t√
T (āt)

(5.3)

and

Q(ā−t) ∼ t√
T (ā−t)

√
|ā−t|
āt

(5.4)

lead to approximations of ā±t.

Now, let us consider the weight w defined by (1.2), i.e.

w(x) = e−x−α−xβ

, α > 0 , β > 1 , x ∈ (0,+∞) .

By using a linear transformation this weight can be reduced to

w̃(y) = e−Q(y) , y ∈ (−λ,+∞) , (5.5)

where

Q(y) =
1

(λ+ y)α
+ (λ+ y)β − λ−α − λβ , λ :=

(
α

β

) 1
α+β

, (5.6)

with α, β as above.

Proposition 5.1. The weight w̃ in (5.5) belongs to the class F(C2+).
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Proof. With Q given by (5.6), it is easily seen that

Q(0) = 0 , lim
y→−λ+

Q(y) = lim
y→+∞Q(y) = ∞ .

Concerning Q′, we have

Q′(y) =
β(λ+ y)α+β − α

(λ+ y)α+1
.

Hence Q′ is continuous in (−λ,+∞), and sgnQ′(y) = sgn y.
Moreover, Q′(0) = 0 and so Q : (−λ,+∞) → [0,+∞) is monotone

decreasing in (−λ, 0], and monotone increasing in [0,+∞). Furthermore,

Q′′(y) =
α(α+ 1) + β(β − 1)(λ+ y)α+β

(λ+ y)α+2
> 0, −λ < y < +∞.

Then, properties (i), (ii) and (iii) are fulfilled.
Now, let us show that the function

T (y) :=
yQ′(y)
Q(y)

, −λ < y < +∞ ,

fulfills the first part of property (iv), namely that T (y) is quasi-monotone in
(−λ, 0) and (0,+∞). By definition we have

T (y) =
1

λ+ y
· y[β(λ+ y)α+β − α]

1 + (λ+ y)α+β − (λ−α + λβ)(λ+ y)α
.

Let us consider the case −λ < y ≤ 0. We set

T̃ (y) :=
y[β(λ+ y)α+β − α]

1 + (λ+ y)α+β − (λ−α + λβ)(λ+ y)α
.

This is a non-negative continuous function in the interval (−λ, 0), and

T̃ (−λ) = αλ > 0 .

Moreover, by using l’Hospital rule twice, we get

lim
y→0

T̃ (y)

= lim
y→0

2β(α+ β)(λ+ y)α+β−1 + yβ(α+ β)(α+ β − 1)(λ+ y)α+β−2

(α+ β)(α+ β − 1)(λ+ y)α+β−2 − α(α− 1)(λ−α + λβ)(λ+ y)α−2

=
2β(α+ β)λα+β+1

(α+ β)(α+ β − 1)λα+β − α(α− 1)(λ−α + λβ)λα

=
2α(α+ β)λ

(α+ β)(α+ β − 1)αβ − α(α− 1)(1 + α
β )

= 2λ > 0.

It follows that 0 < c1 ≤ T̃ (y) ≤ c2 < ∞ in (−λ, 0) , i.e.

c1
λ+ y

≤ T (y) ≤ c2
λ+ y

, −λ < y < 0 .

Hence T (y) is quasi-monotone decreasing in (−λ, 0).
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Let us now consider the case 0 < y < +∞. Since T is continuous on
(0,+∞) and

T (0) =
limy→0 T̃ (y)

λ
=

2λ

λ
= 2

and

lim
y→+∞T (y) = β ,

we get

0 < c3 ≤ T (y) ≤ c4 < ∞, 0 ≤ y < +∞ ,

which implies that T (y) is quasi-monotone increasing (or decreasing) in
(0,+∞).

To show that the function

T (y) :=
yQ′(y)
Q(y)

, −λ < y < +∞ ,

fulfills the second part of property (iv), we consider

f(y) := yQ′(y)−Q(y) .

Since f(0) = 0 and, by property (ii),

sgn f ′(y) = sgn (yQ′′(y)) = sgn y ,

f is strictly decreasing in (−λ, 0) and strictly increasing in (0,+∞). Thus
f(y) > 0 if y ∈ (−λ,+∞) \ {0}, which implies

T (y) > 1 , y ∈ (−λ,+∞) \ {0} .
Moreover, we have already shown that limy→0 T (y) = 2 whence

T (y) ≥ Λ > 1 , y ∈ (−λ,+∞) .

Finally, we prove property (v), namely

0 <
Q(y)Q′′(y)
Q′(y)2

≤ c5 < ∞ , −λ ≤ y < +∞ .

Let

U(y) :=
Q(y)Q′′(y)
Q′(y)2

=
α(α+ 1) + β(β − 1)(λ+ y)2α+2β + [α(α+ 1) + β(β − 1)](λ+ y)α+β

α2 + β2(λ+ y)2α+2β − 2αβ(λ+ y)α+β
.

Hence

U(−λ) = 1 +
1

α
, lim

y→+∞U(y) = 1− 1

β
> 0 ,

and using l’Hospital rule,

U(0) = Q′′(0) lim
y→0

Q(y)

Q′(y)2
= Q′′(0) lim

y→0

Q′(y)
2Q′(y)Q′′(y)

=
1

2
. �
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Since w̃ is nonsymmetric, so are also its associated Mhaskar–Rakhmanov–
Saff numbers, ã−t and ãt, t > 0. These numbers are uniquely defined by the
equations (5.1)-(5.2) (see [7, p. 13]). Moreover, ãt is an increasing function of
t, with

lim
t→+∞ ã−t = −λ , lim

t→+∞ ãt = +∞ .

To give more explicit expressions for a−t and at, by (5.3) and (5.4), we get√
Q(ã−t)Q′(ã−t) ∼ t√

ãt
∼

√
Q(ãt)Q′(ãt) .

Since

Q(ã−t) ∼ 1

(λ+ ã−t)α
, Q′(ã−t) ∼ 1

(λ+ ã−t)α+1
,

and

Q(ãt) ∼ ãβt , Q′(ãt) ∼ ãβ−1
t ,

we obtain

λ+ ã−t ∼
(√

ãt
t

) 1
α+1/2

(5.7)

and

ãt ∼ t1/β . (5.8)

Coming back to the weight w in (1.2), we denote by εt = εt(w) and
at = at(w) the Mhaskar–Rakhmanov–Saff numbers related to w, with

lim
t→+∞ εt = 0 , lim

t→+∞ at = +∞ .

Then, from (5.7) and (5.8), we deduce

εt ∼
(√

at
t

) 1
α+1/2

and

at ∼ t1/β .

Hence the restricted range inequalities (2.3) and (2.4) can be deduced from
Theorem 4.2 in [7, p. 96]. In particular, from the results in [7] we get

‖Pm w̃‖Lp((−λ,+∞)\[ã−sm,ãsm]) ≤ Ce−AH(m) ‖Pm w̃‖p ,

where

H(m) = min

{
m√

T (ã−m)

√
2|ã−m|

|ã−m|+ ãm
,

m√
T (ãm)

√
2ãm

|ã−m|+ ãm

}
,

whence inequality (2.4) follows, taking into account that T (ã−m) ∼ (λ +
ã−m)−1 and T (ãm) ∼ 1.
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