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Abstract— This paper deals with dynamic stability of cantilever 

column subjected to the action of subtangential forces. The 

eigenfrequency equation I obtained by the generalized Rayleigh-

Ritz method. A procedure is illustrated in order to study 

cantilever beam with variable cross-sections subjected to sub-

follower forces. The analysis is based on a variational approach 

with Orthogonal Polynomials are chosen as trial functions 

polynomial trial functions. The instability regions by divergence 

and flutter are examined in some detail, so allowing to determine 

the range of applicability of the static instability criterion. In the 

case of applying a follower force, the static criterion is no longer 

valid and is necessary to use the dynamic criterion. Numerical 

results are tabulated for different tapered beam whit various 

subtangential parameters and are compared with other classical 

results from the bibliography, so confirming the goodness of the 
proposed approach.   

Keywords; tapered beams, followed forces, subtangential 

parameter. 

I.  INTRODUCTION  

Nonconservative loads are present in basically every 
engineering field such as bioengineering (spinal cord) and civil 
engineering (bridges and columns) among others. Loads 
experienced by aircraft wings may also become partially 
nonconservative as their weight is a dead-load weight but the 
pressure exerted on the wing is a follower load. 

 

 
 

Figure 1. Cantilever beam with sub-tangential force; η=1 Beck’s column. 

As well known, the instability phenomena of various 
engineering structures depend on the boundary conditions. 
Moreover, it is important to consider if the applied forces admit 
or not a potential function, because some kind of 
nonconservative follower forces lead to structural behaviour 
which cannot be examined by using the classical static 
criterion. Therefore, in the presence of follower forces it is 
mandatory to use the dynamic criterion in order to predict the 
correct critical load multiplier. [1-4] 

Recently, De Rosa et al. [5] and Marzani et al. [13], study 
the instability behaviour of beams with variable cross section 
subjected to sub-tangential nonconservative follower forces, 
and the solution is numerically attained by using a Differential 
Quadrature Method (DQM) procedure.  

An approximed, yet general solution is proposed by Glabisz 
[6] for a generic structural element subjected to distributed 
follower forces (Leipholz) or to a concentrated tip force (Beck 
[6]). The problem is approximated using a power series 
approach, and the dynamic loss-of-stability is deduced for 
beams on elastic soil and for various boundary conditions.  

In this paper the authors give a variational Rayleigh-Ritz 
solution to the instability problem of beams with variable 
cross-section subjected to subtangential follower forces. If the 
rotations at the ends of the beam are denoted by φL, and φR , 
then the nonconservative applied forces will considered to be 
functions of ηφL and ηφR respectively. The η parameter 
completely defines the system of subtangential concentrated 
follower forces at the ends, and, consequently, completely 
defines the dynamic behaviour of the system.  

The classical conservative Euler case is recovered at η=0, 
whereas if η=1 the beam is subjected to purely tangential 
forces (Beck problem). As η varies in the range [0,1] critical 
loads are reached by means of divergence or flutter, so 
permitting to deduce the range of applicability of the static 
criterion; Fig.1. Usually, a precise parameter value η=ηc exists, 
which separate the divergence region from the flutter region, 
and this parameter strongly influences the frequency-force 
relationship. As well known, in the case of a cantilever beam 
with constant cross section it is ηc = 0.5; [7-12]. 
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II. FORMULATION OF THE PROBLEM 

A. Hamilton principle  

One of the most effective methods to derive the governing 
equations is the Energy Method. Having all of the energies in 
the system and applying the Hamilton Principle, the governing 
equations could be derived accurately: 
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where δ is the variation, t is time, T is the kinetic energy, U 

is the elastic energy, Wc is the work done by conservative 

forces and Wnc is the work done by non-conservative forces. 
For small deflection, the slope at the free end of the rod can 

be approximated, moreover, cosφ≈1, and sin φ≈φ. 

If the oscillations are supposed to be small, the kinetic 
energy, elastic energy and the work by conservative forces of 
the system can be written as: 
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where L, A ,ρ, EI, P and ω are the length, cross-sectional 

area, the mass per unit length, bending stiffness, axial force of 

the beam and  the circular frequency. 
The other, non-conservative part of the applied loads gives 

rise to the following virtual work: 
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Since obtained an exact analytical solution to Eq. (1) is not 
so easy, the present study relies on the Rayleigh-Ritz 
approximation solution (R-R). 

According to the R-R approximation method, the solution 
will be expressed as a linear combination of independent 
functions, and it is convenient to express the displacements of 
the beams as a sequence of orthogonal polynomials.  

It will be:  

 

  1,..Tu q f i n
n i i

= = =f q   (5) 

 

where f is the eigenfunction vector, and q contains the 

lagrangian coordinates. The eigenfunctions fi should only 

satisfy the essential boundary conditions, and they can be 

deduced following an iterative method based on the ortho-

normalization method. In general the admissible functions fi 
should satisfy the conditions: at least must satisfy all 

geometric boundary conditions; must be continuous and 

differentiable to the highest spatial derivative; should be a 

complete function; must be linearly independent.  
Put ξ=x1/L, the choice of trial functions fi  Î  L2[0,1] is of 

paramount importance. In this paper they are deduced starting 
from a polynomial: 
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For simplicity the following dimensionless variable are 

introduced: 
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where A0 and I0 area the cross sectional area and moment 

of inertia at ξ=0, respectively.  

By substitution of equations (2-4) and (5) into equation (1), 
the characteristic equation is finally obtained in the matrix 
form: 
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  (11) 

where M is a symmetric mass matrix, K is a symmetric 

matrix elastic stiffness, B is the geometric symmetric matrix 

due to an axial force and W is a nonsymmetric matrix due a 

non-conservative forces. 

The free vibration frequencies can be calculated by 
imposing: 

 

 

2
det[ ( ) ] 0,p h+ - - W =K B W M  (12) 

 
From a computational point of view, the presence of 

unsymmetrical matrices leads to complex conjugate solutions, 
and an iterative approach seems to be the simplest solution 
algorithm. 

The stability of the system under consideration is determined 

by the sign of real part  σvof the complex eigenvalue  

( 1)i is wW = ± = - .  If σ < 0 ,the system is stable; if σ  >0 

and  ω= 0 , the system is statically unstable, i.e., divergence type 

instability; if σ > 0 and ω¹0 , the system is dynamically unstable, 

i.e., flutter type instability; if σ = 0 , the critical distributed 

follower force pc arises. 
Two different cases can be faced, according to the η value. 

If η<ηc the normalized critical load pc corresponds to Ω1=0, and 
it can be deduced using the static criterion.  

The condition: 

 

 
det[ ( )] 0,p h+ - =K B W  (13) 

 

gives the solutions pi and the critical load is pc=p1.  
As η increases, a threshold value ηc is reached, beyond 

which the structure loses stability by flutter, and the static 
criterion is no longer applicable.  

At η>ηc the solutions pi of equation (12) turn out to be 
complex, and the critical load must be calculated using eqn. 
(12), corresponding to the coalescence of the first two free 
vibration frequencies. 

III. RESULTS AND DISCUSSION 

In order to illustrate some numerical examples and 
comparisons with other known results, let us consider now a 
cantilever beam with varying cross section, in which area and 
moment of inertia of the cross section obey to the following 
laws: 

 ( ) ( )2 4
( ) 1 , ( ) 1G Hx a x x a x= + = +  (14) 

 

For a circular cross section, it will be: 
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where a is the radius of the section at x1=0, and therefore: 
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- Uniform cantilever beam  

As a first example, the column with constant cross section 

has been studied, subjected to a sub-tangential load, α=0; 

 

 ( ) 1, ( ) 1G Hx x= = . (17) 

 
Using eqn. (13) the critical load is given, for different 

parameter value η< ηc. At η=0 we have two different value p1 
and p2, whereas the difference p1-p2 diminishes with increasing 
η, and at η =ηcr=0.5 the two values coalesce.  

To verify the accuracy of the numerical calculation applied, 
the critical force obtained for a specific parameter η of the 
present paper was compared with the values reported by 
reference.  

In Table I, the critical loads pc for η< ηc are presented and 
compared with the results by Chen [11]. For η > 0.5 the critical 
load must be calculated using eqn. (12), corresponding to the 
coalescence of the first two free vibration frequencies. For the 
values of nonconservative parameter η=1, Beck column, the 
critical force is pc=2.0315.  

TABLE I.  DEPENDENCE OF CRITICAL FORCE (α=0), η<0,5. 

 
In Table II, are given the critical loads for η> ηc. The beam 

have two divergence instability forces for η≤0.3545 (DS) and 
divergence and flutter instability forces for  0.3543≤η≤0.5 
(DFS), and only one flutter instability force for η > 0.5. At this 
parameter value ηc=0.5, for η>0.5 the type of instability of the 
column is pure flutter (FS); Fig. 2.  

TABLE II.  DEPENDENCE OF CRITICAL FORCE (α=0), η>0,5. 

a=0 Chen [11] Present 

h pC W1=W2 pC W1=W2 

0,51 1,627 0,732 1,6267 0,7315 

0,52 ----- ------ 1,6274 0,7456 

0,55 1,632 0,788 1,6321 0,7876 

0,60 ----- ----- 1,6473 0,8445 

0,70 ----- ----- 1,7009 0,9359 

0,80 1,782 1,009 1,7815 1,0085 

1,00 2,032 1,118 2,0315 1,1161 

1,5 ----- ----- 3,1033 1,2215 

2 ----- ----- 3,8272 1,1855 

 

a=0 Chen [11] Present 

h p1 p1 p2 

0 0,240 0,2499 2,2499 

0,20 0,337 0,3369 2,0151 

0,30 ------ 0,4109 1,8469 

0,3543 ------ 0,4649 1,7236 

0,40 ------ 0,5362 1,6071 

0,45 ------ 0,6519 1,4279 

0,48 ------ 0,7644 1,2671 

0,49 0,829 0,8291 1,1868 

0,50 1 1 1 
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The comparison of the results has shown a good agreement. 
The variations of the first two eigenfrequency parameters 

W1, W2, with the force parameter, p, for nonconservativeness 
η=0.5, 0.6, 1, 1.5 and 2 are shown in Figure 3. When η<0.5, the 

first W1=0 at the critical load, in which case the divergence 
instability occurs. For η>0.5, when p=0 the first two natural 

frequencies of the beam are  W1=0.2499,  W1=0.2499. As p 
increases, the first frequency increases monotonically, while 
the second one decreases. At p=pc, two frequencies coincide. 
Any further increase of p will yield two complex conjugate 
frequencies. The Figure 3 is typical for all values of η larger 
than 0.5. 

 

 
 

Figure 2. Effect of nonconservativeness parameter η vs p; uniform 

beam (α=0). 

 

 

Figure 3. Non-dimensional  parameters, W1, W2 for various follower 

force; uniform beam (α=0). 

 

- Tapered cantilever beam 
Let us consider here a linear circular tapered cantilever 

beam of length L clamped at ξ=0. The beam is considered 
subjected to a concentrated compressive sub-tangential load p 
in x =L Figure 1. 

The cross- section of the beam varies with geometrical 
tapered parameter α given in (14).  

For a tapered parameter α=-0.5 the beam radius at ξ =0 is 
twice the radius at ξ=1, the critical force are given in Table III 
and the results can be compared with the critical loads given by 
Glabisz [7] and Marzani et al. [13] . For the sake of 
completeness, the p2 values are also given. A geometrical 
sketch of the functional relationship between axial loads p and 
subtangential parameter is given in Figure 4, as can be seen,  p1 
→ p2 for η → ηc. 

TABLE III.  DEPENDENCE OF CRITICAL FORCE (α =0.5). 

a=-0,5 Present Glabisz [7] Marzani et al [13] 

h p1 p2 p1 p1 

0,00 0,1043 0,6114 ----- 0,1043 

0,20 0,1509 0,4960 ----- 0,1509 

0,30 0,2058 04007 ----- 0,2058 

ηc=0,3425 0,2938 0,2938 ----- ----- 

0,40 0,3711 ----- ----- 0,3711 

0,50 0,3807 ----- 0,3807 ----- 

0,60 0,4052 ----- ----- 0,4052 

0,80 0,4969 ----- ----- 0,4969 

1 0,6592 ----- ----- 0,6588 

1,5 0,9487 ----- 0,9484 ----- 

2 1,0252 ----- ----- ----- 

 
If η is higher than its critical value ηc the static criterion is 

no longer applicable, and the critical flutter load must be 
sought by applying the dynamic criterion and the complete 
equation (12). The critical value ηc is the threshold value 
between the divergence region and the flutter region. 

 

 
 

Figure 4. Effect of nonconservativeness parameter on critical force; 

tapered beam.(α=-0.5). 
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In the flutter region η≥ηc, the dynamic criterion is 

followed, and the axial load is found, such that the first two 
frequencies coalesce, Ω1=Ω2. The corresponding data for 
α=0.5, is given in the Figure 5. 

In Figure 6, the eigenfrequency curves are presented for 
α=-0.5 and different values of the subtangential parameter, 
namely, η=0.3425, 0.5, 0.6, 1.0, 1.5, 2.0. While, in Figures 7 
are given the eigenfrequency curves for α=0.5. 

Obviously, for fixed properties of the left-hand side of the 
beam (ξ=0), increasing values of the tapered parameter (α) 
results in bigger natural frequencies as well as critical loads, as 
it can be seen by comparing the plot in Figures 4-7. It is 
interesting to note that the divergence instability range 
decreases for decreases tapered parameter. In fact, for α=0.5 
the cantilever beam  is unstable for divergence when η≤0.6014 
while for  α=0 (uniform beam) divergence appears only when 
η≤0.5.  

 
 

Figure 5. Effect of nonconservativeness parameter on critical force; 

tapered beam.(α=0.5). 

 

 
 

Figure 6. Non-dimensional  parameters, W1, W2 for various follower 

force; (α=-0.5). 

IV. COMMENTS AND CONCLUSIONS 

A general approach is discussed for the analysis of tapered 
beams subjected to non-conservative sub-tangential loads. The 
analysis does not depend on the boundary conditions, and 
allows the determination of the critical parameters signalling 
the passage from divergence to flutter. The whole procedure is 
extremely stable, even in critical conditions. The numerical 
examples have been completely carried through by means of 
the powerful software Mathematica 6.  

The proposed numerical procedure has been demonstrated 
to be fast, stable and accurate, presenting results in excellent 
agreement with the other approximate solutions.  

 

 

Figure 7. Non-dimensional  parameters, W1, W2 for various follower 

force; (α=-0.5). 
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NOMENCLATURE 

 a radius of section in x=0 

dW virtual work 

A(x); 

Ao 

cross-sectional area of cantilever beam; cross-

sectional area of  in x=0 

B; W matrix in eq. (10) 

E Young’s modulus of  beam material 

f vector eigenfunction vector 

I(x); Io moment of inertia; area moment of inertia in x=0 

K; M stiffness matrix; mass matrix 

L length of the beam 

p ;p dimensionless partially tangential load;, eqs. (7,14) 

pc critical buckling load parameter   

q vector coefficients of trial function 

T kinetic energy 

u3 amplitude of the transverse deflection 

V  potential energy 

ii WW ;   ith non-dimensional eigenfrequencyeq. (9) 

a thickness ratio 

ξ x/l; geometric parameter 

h tangential coefficient 

hc critical tangential coefficient 

r mass density 
w  natural frequency, eq. (5); eq. (14) 
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