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Interlacing properties of Laguerre zeros and
some applications. A survey

Donatella Occorsio

Abstract1. Let wα(x) = e−x
β

xα, α > −1, β > 1/2 be a Generalized Laguerre weight,
and denote by {pm(wα)}m the corresponding sequence of orthonormal polynomials. The
starting point is that the polynomial Q2m+1 = pm+1(wα)pm(wα+1) has simple zeros and
also well distributed in some sense. In view of this property two different applications
are described: the extended interpolation polynomial L2m+2(wα, wα+1, f), defined as the
Lagrange polynomial interpolating a given function f at the zeros of Q2m+1 and on the
extra points am, being am the Maskar-Rackmanoff-Saff number w.r.t. wα. For this process
will be estimati the Lebesgue constants in some weighted uniform spaces [31]. The second
application deals with the approximation of the Hilbert transform

∫ +∞

0

f(x)wα(x)

x− t dx , t > 0 ,

by a suitable Lagrange interpolating polynomial [32].

1. Introduction

This survey deals with some applications of the interlacing property of the zeros
of Generalized Laguerre polynomials. Let wα(x) = e−x

β

xα, α > −1, β > 1/2
and wα+1(x) = xwα(x) two Generalized Laguerre weights, and let {pm(w)}m,
{pm(wα+1)}m be the corresponding sequences of orthonormal polynomials. In [31]
it was proved that the zeros of pm(wα+1) interlace those of pm+1(wα) and that the
zeros of the polynomial Q2m+1 := pm(wα+1)pm+1(wα) are sufficiently far among
them. This property allows to different applications. The first is the approxima-
tion of functions f by extended interpolating polynomials, i.e. by the Lagrange
polynomial L2m+1(wα, wα+1, f) interpolating f at the zeros {zi}2m+1

i=1 of Q2m+1

L2m+1(wα, wα+1, f ; zi) = f(zi), i = 1, 2, . . . , 2m+ 1 .
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Since L2m+1(wα, wα+1, f) can be expressed as

L2m+1(wα, wα+1, f) = pm(wα+1 )Lm+1

(
wα,

f

pm(wα+1)

)
+

+pm+1(wα)Lm
(
wα+1,

f

pm+1(wα)

)
,

extended interpolation can be used to “extend” a previous interpolation process,
for instance Lm+1(wα, f), reusing the previous m + 1 function evaluations and
obtaining a new interpolating polynomial of degree 2m + 1 with only new m + 1
computations of f . A second advantage produced by extended processes, deals
with the construction of “high” degree Lagrange polynomials by two half-degree
Lagrange polynomials. By this way some difficulties in computing the zeros of
“large” degree orthogonal polynomials are shifted.

With σδ(x) = e−x
β

xδ, δ ≥ 0, let Cσ be the space of functions f such that
fσδ is continuous in [0,∞). Functions in Cσ can grow exponentially at infinity,
with a possibly algebraic singularity in 0. We start showing how a “bad” distance
between the interpolation knots induces an algebraic divergence of the Lebesgue
constants in Cσ, whereas the minimal order is logm (see [37],[38]). However, al-
though the zeros of Q2m+1 are well distanced, the extended interpolation sequence
{L2m+1(wα, wα+1, f)σδ}m has a bad behavior in Cσ, since for any choice of δ, α

‖L2m+1(wα, wα+1)σδ‖∞ = sup
‖fσδ‖∞=1

‖L2m+1(wα, wα+1, f)σδ‖∞ ∼ mτ , τ > 0 .

In order to obtain the logm-Lebesgue constants, in this paper we collect some mod-
ified interpolation processes essentially based on the zeros of Q2m+1 and introduced
in [31], [33]. A first approach follows from an idea introduced in [28] (see also [22]),
namely considering only a finite section of the sequence interpolating a finite part
of f , i.e. {L2m+1(wα, wα+1, fχj)χjσδ} where χj is the characteristic function of
the interval (0, zj), for a special choice of the index j = j(m). In this case there are
necessary and sufficient conditions under which the “truncated” sequence approxi-
mates f like the best approximation sequence in Cσ, except the logm factor.
However {L2m+1(wα, wα+1, fχj)χjσδ} is not a polynomial sequence and this can
be a limit in some contexts where it is crucial to preserve the polynomial nature
of the approximating sequence (see for instance Gaussian quadrature rule and /or
methods to approximate the solutions of integral equations by polynomials).

So, following an idea in [24] (see also [35]), we consider here the Lagrange polyno-
mial L2m+2(wα, wα+1, f) interpolating a given f ∈ Cσ on the zeros of Q2m+1(x) and
on the special knot am+1, where am+1 = am+1(

√
wα) is the Mhaskar- Rakhmanov

-Saff number w.r.t. wα.
Also in this case necessary and sufficient conditions hold, under which the se-

quence {L2m+2(wα, wα+1, f)σδ}m approximates f like the best approximation se-
quence in Cσ, except the logm factor.
A similar result can be obtained considering the sequence {L∗2m+2(wα, wα+1, fχj)}m
with the considerable advantage of a reduced computational effort and avoiding
possible overflows when f increases exponentially. Moreover, in the case the pa-
rameter α and δ are both fixed (i.e. for a given function f ∈ Cσ, the zeros of
the interpolating polynomial are fixed), an useful tool is the Lagrange polynomial
L∗2m+2,s(wα, wα+1, f) interpolating fχj at the zeros of Q2m+1(x)(am+1 − x) and
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on s additional knots ti, i = 1, . . . , s added in a neighborhood of the origin. Also
in this case we prove that under a suitable assumption on s, δ, α, optimal Lebesgue
constants can be obtained.

All the results described till now have been obtained for extended interpolation
processes essentially based on the zeros Q̃2m+1 = pm(wα)pm+1(wα).

The second main application of the interlacing property deals with the approx-
imation of the Hilbert transform on the semiaxis. Let H(fwα; t) be the weighted
Hilbert transform of a given function f

(1.1) H(fwα; t) =
∫ +∞

0

f(x)
x− t

wα(x) dx , t > 0

where wα(x) = e−x
β

xα, α > −1, β > 1/2 provided the integral exists as a principal
value. The Hilbert transform arises in many fields of the applied sciences and also
in singular integral equations of Cauchy type (see [14],[29]).

As far as the methods based on the zeros of orthogonal polynomials are con-
cerned, these consist of quadrature rules, like Gaussian-type quadrature rules or
product integration rules. A drawback of the product rules is the heavy effort
in computing their coefficients, while instability phenomena arise using Gaussian
rules, for values of t close to the Gaussian knots [6]. This last problem has been
overcome by suitable Gaussian rules, modified in some sense in order to approxi-
mate Cauchy principal value integrals or weakly singular integrals (see [22], [5], [6],
[7], [30], [25], [8]). However, any of these quadrature rule have to be applied for
any fixed value of t. In the present paper, following an idea introduced in [23], we
propose to approximate the function H(fwα) by a suitable Lagrange interpolating
polynomial based on Laguerre zeros.

The method is based on the following idea: we start from

H(fwα; t) = F(fwα; t) + f(t)H(wα; t) ,

F(fwα; t) =
∫ ∞

0

f(x)− f(t)
x− t

wα(x) dx ,

and after determining the conditions under which F(fwα) belongs to a weighted
uniform space, we approximate F(fwα) by the truncated Lagrange polynomial
Lm(F(fwα)) (see [20]). Since in the general case the computation of F(fwα)
at the interpolation knots cannot be exactly performed, we approximate them by
using the truncated Gauss-Laguerre rule (see [22]). In order to obtain a convergent
procedure, the choice of the interpolation knots and the degree approximation in
the Gaussian rule have to be carefully performed. Furthermore the interpolation
knots and Gaussian knots have to be chosen sufficiently far among them to avoid
possible numerical cancellation phenomena. This goal is achieved by selecting as
interpolation nodes, the zeros of suitable Laguerre polynomials.[31].

The plan of the paper is the following: next section contains some preliminary
results about the interlacing property and the distance of the zeros. Section 3 and 4
are devoted to extended interpolation processes, Section 5 contains some numerical
evidence while in Section 6 are given the proof related to the interpolation. Section
7 includes the method to approximate the Hilbert transform and the corresponding
estimate of the error, while in Section 8 some numerical tests are proposed. Finally
Section 9 contains the proofs related to the approximation of the Hilbert transform.
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2. Notations and basic results

In the sequel C will denote any positive constant which can be different in dif-
ferent formulas. Moreover C 6= C(a, b, . . . ) will be used to mean the constant C is
independent of a, b, . . . . The notation A ∼ B, where A and B are positive quanti-
ties depending on some parameters, will be used if and only if (A/B)±1 ≤ C, with
C positive constant independent of the above parameters.
Throughout the paper θ will denote a fixed real number, with 0 < θ < 1, which
can be different in different formulas and Pm will be the space of all algebraic
polynomials of degree at most m.

Consider the weight

(2.2) wα(x) = e−x
β

xα, α > −1 , β >
1
2

and let {pm(wα)}m be the corresponding sequence of orthonormal polynomials
having positive leading coefficients, i.e.

pm(wα, x) = γm(wα)xm + terms of lower degree , γm(wα) > 0 .

By {xm,k}mk=1 will be denoted the zeros of pm(wα) in increasing order

xm,1 < xm,2 < · · · < xm,m .

In what follows we shall denote by am := am(
√
wα) the Mhaskar- Rakhmanov -Saff

number (shortly M-R-S number) w.r.t. wα, defined as the smallest positive number
satisfying

max
x∈R
|Pm(x)

√
wα(x)| = max

x∈[0, am(
√
wα)]
|Pm(x)

√
wα(x)| , ∀Pm ∈ Pm ,

and having the following expression

(2.3) am = am(
√
wα) =

[
22β(Γ (β))2

Γ(2β)

]1/β (
1 +

2α+ 1
8m

)1/β

m1/β ,

where Γ denotes the Gamma function. Therefore am(
√
wα) ∼ m1/β . We observe

that in view of (2.3), if we consider two generalized Laguerre weights having the
same exponential part e−bx

β

, in case with different constants b, then the correspond-
ing M-R-S numbers differ for a constant. Therefore, in what follows we use only
am for the Mhaskar-Rakhmanov-Saff number of any generalized Laguerre weight.

As proved in [16],[13] the zeros of pm(wα) lie in the range (0, am(
√
wα) and,

setting ∆xm,k = xm,k+1 − xm,k, the following estimate holds:

(2.4) ∆xm,k ∼
√
am
m

√
xm,k

1√
1− xm,k

am
+ 1

m2/3

, k = 1, 2, . . . ,m− 1 ,

It is well known that the zeros {xm+1,k}m+1
k=1 of pm+1(wα) interlace the zeros

{xm,k}mk=1 of pm(wα), i.e.

xm+1,k < xm,k < xm+1,k+1, k = 1, 2, . . . ,m .

Moreover, in a restricted range (0, θam), where 0 < θ < 1 is fixed, the zeros
{z̃i}2m+1

i=1 of Q̃2m+1 := pm+1(wα)pm(wα) are also sufficiently far among them. To
be more precise, let z̃2i−1 = xm+1,i, i = 1, 2, . . . ,m + 1, z̃2i = xm,i, i = 1, 2, . . . ,m
and denote by z̃j the knot defined as

(2.5) z̃j = z̃j(m) = min {z̃k : z̃k ≥ θam+1 , k = 1, 2, . . . , 2m+ 1} .
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Then, in the subset (0, θam), being 0 < θ < 1 fixed, the following estimate holds

(2.6) ∆z̃k = z̃k+1 − z̃k ∼
√
am+1

m

√
z̃k+1 , k = 1, 2, . . . , j ,

uniformly in m ∈ N. In the special case β = 1, (2.6) was proved in [3].

Note that the distance between two consecutive zeros of Q̃2m+1 is comparable with
those of consecutive zeros of pm(wα) in (0, θam). Indeed, by (2.4) it can be easily
deduced

xm,k+1 − xm,k ∼
√
am
m

√
xm,k , k = 1, 2, . . . , j ,

being

(2.7) xm,j = min {xm,k : xm,k ≥ θam , k = 1, 2, . . . ,m} .

Now we show that the interlacing of the zeros of orthogonal polynomials also
holds for different but suitable related weight functions, and that in some cases the
distance is “good” too.

To be more precise, setting wα+1(x) = xwα(x), let {ym,k}mk=1 be the zeros of the
corresponding m-th orthonormal polynomial pm(wα+1).
Set zi, i = 1, 2, . . . , 2m + 1 be the zeros of Q2m+1 := pm+1(w)pm(wα+1), being
z2i−1 = xm+1,i, i = 1, 2, . . . ,m+ 1, z2i = yi, i = 1, 2, . . . ,m and define

(2.8) zj = zj(m) = min {zk : zk ≥ θam+1 , k = 1, 2, . . . , 2m+ 1} .

The following proposition holds [31]:

Proposition 2.1. The zeros of pm+1(wα, x) interlace with those of pm(wα+1), i.e.

(2.9) xm+1,k < ym,k < xm+1,k+1 , k = 1, 2, . . . ,m .

Denoted by zj the knot defined in (2.8), we have

(2.10) ∆zk = zk+1 − zk ∼
√
am+1

m

√
zk , k = 1, 2, . . . , j ,

uniformly in m ∈ N.

In the special case β = 1, the interlacing property (2.9) was proved in [9] by using
a different approach.

Note that (2.10) is comparable with the distance between two consecutive zeros of
pm(wα+1).

Till now we have proved that there exist infinite triangular matrices

(2.11)

Z̃ := {z̃i, i = 1, 2, . . . ,m, m ∈ N} ,

{z̃i}2m+1
i=1 zeros of Q̃2m+1 = pm(wα)pm+1(wα)

Z := {zi, i = 1, 2, . . . ,m, m ∈ N} ,

{zi}2m+1
i=1 zeros of Q2m+1 = pm(wα+1)pm+1(wα)

such that for each of them, the n−th row contains n knots which are distinct and
sufficiently far among them.
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Now we want to prove that a “good” distance (roughly speaking, it means that
any two consecutive zeros are sufficiently far among them) is a necessary (but not a
sufficient) condition in order to construct optimal interpolation processes. In order
to precise what is the meaning of “optimal” interpolating process, we recall the
definition of Lebesgue constant.

For a given sequence of polynomials {qr}r∈N such that each polynomial qm has
m distinct zeros ξm,k k = 1, . . . ,m ∈ R+, being ξm,1 < ξm,2 < · · · < ξm,m, let us
define the infinite triangular matrix X = {ξm,i, i = 1, 2, . . . ,m, m ∈ N}. More-
over, denote by Lm(X , g) the Lagrange polynomial interpolating a given function
g at the elements of the m-th row of X , i.e.

Lm(X , g) ∈ Pm−1 : Lm(X , g, ξm,i) = g(ξm,i) , i = 1, 2, . . . ,m .

With σδ(x) = e−x
β

xδ, δ ≥ 0, β > 1/2, let us introduce the space of functions

Cσ =
{
f ∈ C0(R+), lim

x→0+
|f(x)|σδ(x) = 0 = lim

x→∞
|f(x)|σδ(x)

}
,

equipped with the norm ‖f‖Cσ = supx≥0 |f(x)|σδ(x). Functions in Cσ can have an
exponential growth at infinity and, for δ > 0, they can have an algebraic singularity
at the origin.

The m−th Lebesgue constant in Cσ is defined as the norm of the operator Lm(X )
in Cσ, i.e.

(2.12) ‖Lm(X )‖Cσ = sup
‖gσδ‖=1

‖Lm(X , g)σδ‖ , m = 1, 2, . . .

We remark that we have to assume β > 1/2 in order to assure the density of
the polynomials in the space Cσ [18]. For this reason, from now this hypothesis is
assumed to be true in what follows.

Now we recall the definition of error of the best approximation of f in Cσ

Em(f)σδ = inf
P∈Pm

‖(f − P )σδ‖∞ .

We start from a result of P. Vértesi on the behavior of the sequence
{‖Lm(X )‖Cσ}m. Indeed, in a more general context, in [37],[38] he proved the
following result:

For any matrix X of knots defined in (0,+∞) one has

‖Lm(X )‖Cσ ≥ C logm.

This estimate plays the same role of the classical Faber result in the case of the
finite interval.

Then we focus our attention to the construction of knot’s matrices such that

‖Lm(X )‖Cσ ≤ C logm.

These matrices will be said optimal.
In order to look for optimal matrices, we recall the following result which binds

in some sense the good order of Lebesgue constants to the good distance between
consecutive interpolation knots [31]:

Proposition 2.2. If for m sufficiently large (say m > m0), there exists k := k(m)
s. t.

(2.13) ∆ξm,k ≤
(√

am
m

)η+1√
ξm,k , η > 0
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then

(2.14) ‖Lm(X )‖Cσ ≥ C
(

m
√
am

)η
,

where C 6= C(m).

An analogous result on finite intervals can be found in [36].
In view of (2.4) and (2.6), according to Proposition 2.2, the matrices Z̃ and Z

can be taken into account to obtain optimal Lebesgue constants.

3. Extended Lagrange interpolation on the matrix Z̃

Denote by L2m+1(wα, wα, f) the Lagrange polynomial interpolating a given func-
tion f at {z̃i}2m+1

i=1 . This polynomial is called extended Lagrange interpolating poly-
nomial. It can take the following expression:

(3.15)

L2m+1(wα, wα, f ;x) =
2m+1∑
k=1

`2m+1,k(x)f(z̃k) ,

`2m+1,k(x) =
Q̃2m+1(x)

Q̃′m+1(z̃k)(x− z̃k)
.

As we have said, a “good” distance is a necessary condition in order to obtain
corresponding Lebesgue constants having a logarithmic behavior. However, as we
go to describe, this condition is not sufficient.

Proposition 3.1 ([33]). For any choice of α, δ ≥ 0 and β > 1/2, there exists a
positive τ s.t.

(3.16) ‖L2m+1(wα, wα)‖
Cσ

= sup
‖fσδ‖∞=1

‖L2m+1(wα, wα, f)σδ‖∞ ≥ Cmτ ,

with 0 < C 6= C(m).

In view of the previous Proposition there exist choices of α, δ such that the
Lebesgue constants in Cσ have an algebraic growth.

Nevertheless the system of knots made up of the zeros of {Q̃n}n can be proposed
to obtain optimal Lebesgue constants too, slightly changing the interpolation pro-
cess, according to some different approaches that we go to describe.

3.1. Interpolation with the additional knot am. For a given function f de-
note by L2m+1(wα, wα, f) the Lagrange polynomial interpolating f at the zeros of
Q̃2m+1(x)(am+1 − x), being am+1 the M-R-S number w.r.t. wα.
L2m+2(wα, wα, f) is a polynomial of degree 2m+ 1 which can be represented as

(3.17) L2m+2(wα, wα, f ;x) =
2m+2∑
k=1

l̄2m+2,k(x)f(z̃k) ,

where

l̄2m+2,k(x) = `2m+1,k(x)
(am+1 − x)
(am+1 − z̃k)

, k = 1, 2, . . . , 2m+ 1 ,

l̄2m+2,2m+2(x) =
Q̃2m+1(x)

Q̃2m+1(am+1)
, `2m+1,k(x) =

Q̃2m+1(x)
Q̃2m+1,k(z̃k)(x− z̃k)

.
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The idea of adding an extra point was firstly suggested by Szabados [35] in
the case of a Freud weight on the real line. Indeed, similarly to that happens in
the Freud weight case (see [18], [19]), the factors (am − x)/(am − xm,j) influence
substantially the behavior of the Lebesgue constants. Indeed, recalling that the
Laguerre polynomial in a neighborhood of am is estimated as follows

|Q̃2m+1(wα, x)|
√
wα(x) ≤ C

(∣∣∣∣1− x

am+1

∣∣∣∣+m−2/3

)−1/2

,

am+1(1− ε) ≤ x ≤ am+1(1 + δ) ,

where δ, ε > 0, the factor (am+1 − x) damp the growth of the polynomial in the
range am+1 ≤ x ≤ am+1(1 + δ), δ > 0 (see fig. 1).

Figure 1. pm(wα, x)
√
wα(x), β = 1, α = 0,m = 20

We are able to prove that under suitable conditions involving the interpolation
weight wα and the weight σδ of the space functions, the corresponding Lebesgue
constants have a logarithmic divergence and that L2m+2(wα, wα, f) approximates
f ∈ Cσ like the best approximation of this space, except the factor logm:

Theorem 3.1. For any function f ∈ Cσ, with δ > 0,

(3.18) ‖L2m+2(wα, wα, f)σδ‖∞ ≤ C‖fσδ‖∞ logm

with 0 < C 6= C(m, f), if and only if

(3.19)
1
2
≤ δ − α ≤ 3

2
.

Moreover

(3.20) ‖[f − L2m+2(wα, wα, f)]σδ‖∞ ≤ CE2m+1(f)σδ logm

where 0 < C 6= C(m, f).

In particular for smoother functions, say f ∈W∞δ,r, being

W∞δ,r =
{
f ∈ Cσ : ‖f (r)ϕrσδ‖∞ <∞

}
, r ≥ 1 , ϕ(x) =

√
x

a Sobolev-type space, equipped with the norm

‖f‖W∞δ,r = ‖fσδ‖∞ + ‖f (r)ϕrσδ‖∞ ,

it will be useful the following estimate [27]

(3.21) Em(f)σδ ≤ C
(√

am
m

)r
‖f (r)ϕrσδ‖∞ , C 6= C(m, f) .
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Assuming now that the parameters α, δ are both fixed, the assumption in (3.19)
could be never satisfied. For instance, consider the function

(3.22) f(x) =
arctan(x)5/2

(1 + x3)2
ex

3/3 ∈W5(σδ) , σδ(x) = e−x
3

and suppose that α = 0, i.e. wα(x) = e−x
3
. In this case (3.19) is not satisfied.

In this case it can be useful to make use of the “additional knots method”, i.e. to
modify the previous interpolation process by adding some interpolation knots in a
neighbourhood of 0. Indeed the Lagrange polynomial based on the previous knots
{zk}2m+1

k=1

⋃
am+1 and on the additional points {ti}si=1, under suitable assumptions,

is an optimal interpolation process again.
To be more precise, let {ti}si=1, s simple knots added in the range (0, xm+1,1),

for instance ti = (i/(s + 1))xm+1,1, i = 1, 2, . . . , s and let Bs(x) =
∏s
i=1(x − ti).

Denote by L2m+1,s(wα, wα, f) the Lagrange polynomial interpolating f at the zeros
of Q̃2m+1(x)Bs(x)(am+1 − x) i.e.

(3.23)

L2m+2,s(wα, wα, f, z̃k) = f(z̃k) , k = 1, 2, . . . , 2m+ 1 ,

L2m+2,s(wα, wα, f, am+1) = f(am+1) ,

L2m+2,s(wα, wα, f, ti) = f(ti) , i = 1, 2, . . . , s .

An expression for this polynomial is

L2m+2,s(wα, wα, f ;x) =
s∑
i=1

Q̃2m+1(x)(am+1 − x)Bs(x)
Q̃2m+1(ti)(am+1 − ti)B′s(ti)

f(ti)
(x− ti)

+

+
2m+1∑
k=1

Q̃2m+1(x)(am+1 − x)Bs(x)
Q̃′2m+1(z̃k)(am+1 − z̃k)Bs(z̃k)

f(z̃k)
(x− z̃k)

+

(3.24) +
Q̃2m+1(x)Bs(x)

Q̃2m+1(am+1)Bs(am+1)
f(am+1)

By the same arguments used in the proof of Theorem 3.5 in [24], it is no hard
to prove the following result:

Theorem 3.2. For any function f ∈ Cσ, if there exists an integer s such that

(3.25)
1
2
≤ δ − α+ s ≤ 3

2
,

then we have

(3.26) ‖L2m+2,s(wα, wα, f)σδ‖∞ ≤ C‖fσδ‖∞ logm,

where 0 < C 6= C(m, f).

The introduction of the additional points “close” to the endpoint 0 in the case
of the classical Laguerre weight is referable to [24].

In view of the previous result, we can approximate the function

(3.27) f(x) =
arctan(x)5/2

(1 + x3)2
ex

3/3 ∈W5(σδ) , σδ(x) = e−x
3

by the Lagrange polynomial L2m+2,1(wα, wα, f) with α = 0. (See Example 4.)
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3.2. Truncated sequences. Another approach which produces a “good” extended
interpolation process is the Lagrange polynomial based on the zeros of Q̃2m+1(x)
and interpolating only a finite section of the function f . To be more precise, with
j = j(m) defined in (2.5), we approximate the truncated function fj = f(1−Ψj),
being

Ψ(x) =


0 , if x ≤ 0

and Ψj(x) = Ψ
(

x− z̃j
z̃j+1 − z̃j

)
1 , if x ≥ 1

fj has the same smoothness of f . Moreover, it coincides with f in the interval
(0, z̃j ], it is identically null for x ∈ [z̃j+1,+∞), and these two “pieces” are smoothly
linked by the function Ψj in the interval (z̃j , z̃j+1).

So we consider the Lagrange polynomial of the truncated function fj ,

(3.28) L∗2m+1(wα, wα, f) := L2m+1(wα, wα, fj) ,

i.e.

(3.29) L∗2m+1(wα, wα, f ;x) =
j∑

k=1

`2m+1,k(x)f(z̃k) ,

being `2m+1,k(x) defined in (3.15). Obviously, L∗2m+1(wα, wα, f) is a polynomial of
degree 2m such that L∗2m+1(wα, wα, f ; z̃k) = 0, for k > j.

So, denoting by χm,θ the characteristic function of the segment (0, z̃j), we will
consider the “truncated” sequence {χm,θLm(wα, fj)}m of Lagrange polynomials
interpolating only a finite section of the function f . It makes sense since [28],
[27](see also [25])

(3.30) ‖[f − fj ]σδ‖∞ ≤ EM (f)σδ + Ce−Am‖fσδ‖∞ ,

with2 M = [(θ/(1 + θ)) 2m]1/β ∼ m1/β ∼ m, i.e. the neglected part of f behaves
like the error of best approximation EM (f)σδ being M a proper fraction of 2m
depending on θ.

Then, for this modified Lagrange process, we are able to prove that under suitable
conditions on the weights wα and σδ, L∗2m+1(wα, wα, f) is an optimal interpolation
process in Cσ:

Theorem 3.3. For any function f ∈ Cσ, with δ > 0,

(3.31) ‖L∗2m+1(wα, wα, f)σδ‖∞ ≤ C‖fσδ‖∞ logm

with 0 < C 6= C(m, f), if and only if

(3.32)
1
2
≤ δ − α ≤ 3

2
.

Moreover

(3.33) ‖[f − L∗2m+1(wα, wα, f)]σδ‖∞ ≤ C
{
EM̄ (f)σδ logm+ e−Am‖fσδ‖∞

}
where M̄ =

[
2m (θ/(1 + θ))β

]
, 0 < C 6= C(m, f), 0 < A 6= A(m, f).

2[a] denotes the largest integer smaller than or equal to a ∈ R+.
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Truncated sequences are a “remedium” in some sense on the growth of the poly-
nomial Q̃2m+1 in a neighborhood of am, since in the restricted range (am/m2, θam),
with 0 < θ < 1, the following estimate holds

|Q̃2m+1(x)|wα(x) ≤ C
√
amx

, C am
m2
≤ x ≤ θam .

However, {χm,θL2m+1(wα, fj)}m is not a polynomial sequence and χm,θLm(wα)
does not project Cσ onto Pm−1 as well as required in some applications like the
numerical treatment of functional equations (see [21]).

In order to overcome this problem, in [16] (see also [20][26]) the authors in-
troduced and studied a polynomial sequence interpolating a finite section of the
function. The same procedure was applied to extended Lagrange interpolation
processes in [31], [33].

3.3. Polynomial sequences of a finite section of f . To be more precise, for
any fixed θ ∈ (0, 1), let z̃j be the zero of Q̃2m+1 defined in (2.5) and fj,θ := fχm,θ.
Then, the interpolating polynomial L̄∗∗2m+2(wα, f) is defined as

(3.34) L∗2m+2(wα, wα, f ;x) :=
j∑

k=1

l̄2m+2,k(x)f(z̃k) ,

where

l̄2m+2,k(x) = ˜̀
2m+1,k(x)

(am+1 − x)
(am+1 − z̃k)

, k = 1, 2, . . . , 2m+ 1 ,

l̄2m+2,2m+2(x) =
Q̃2m+1(x)

Q̃2m+1(am+1)
.

Obviously, L∗2m+2(wα, wα, f) is a polynomial of degree 2m+ 1 such that
L∗2m+2(wα, wα, f ; am) = 0 = L∗2m+2(wα, wα, f ; z̃k), for k > j.

The Lagrange operator L2m+2(wα, wα) projects Cu on P2m+1, while L∗2m+2(wα, wα)
does not. However, letting

P∗2m+1 = {q ∈ P2m+1 : q(z̃i) = q(am+1) = 0 , z̃i > z̃j} ⊂ P2m+1 ,

with z̃j defined in (2.5), we have L∗2m+2(wα, wα) is a projector of Cu on P∗2m+1.
Moreover,

⋃
m P∗m is dense in Cu. Indeed, setting

Ẽ2m+1(f)σδ := inf
Q∈P∗2m+1

‖(f −Q)σδ‖∞ .

from a more general in [26], next estimate follows

Lemma 3.1. For any function f ∈ Cu,

(3.35) Ẽ2m(f)σδ ≤ C
{
EM (f)uγ + e−Am‖fσδ‖∞

}
,

where M =
[
2m (θ/(1 + θ))β

]
and the constants 0 < A 6= A(m, f), 0 < C 6=

C(m, f).

In view of (3.35), Ẽ2m(f)σδ can be estimated by the best approximation error
EM (f)σδ , where M is a proper fraction of 2m.

We are able to prove that under suitable relations between the weights wα and
σ, the corresponding Lebesgue constants grow logarithmically:
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Theorem 3.4. For any function f ∈ Cu, with δ > 0,

(3.36) ‖L∗2m+2(wα, wα, f)σδ‖∞ ≤ C‖fσδ‖∞ logm

with 0 < C 6= C(m, f), if and only if

(3.37)
1
2
≤ δ − α ≤ 3

2
.

Moreover

(3.38) ‖[f − L∗2m+2(wα, wα, f)]σδ‖∞ ≤ CẼ2m(f)σδ logm

where 0 < C 6= C(m, f), 0 < A 6= A(m, f).

Remark 3.1. In view of (3.35), one has

(3.39) ‖[f − L∗2m+2(wα, wα, f)]σδ‖∞ ≤ C
{
EM (f)uγ + e−Am‖fσδ‖∞

}
,

where M =
[
2m (θ/(1 + θ))β

]
and the constants 0 < A 6= A(m, f), 0 < C 6=

C(m, f).

Remark 3.2. Truncated Lagrange polynomial sequences were successfully applied
in quadrature by introducing truncated Gaussian rules and truncated product in-
tegration formulae, which are more convenient and faster convergent (see [4],[22],
[20], [25], [26]).

We conclude this section showing empirically how the number of the interpolation
knots involved in truncated processes depends on θ.

Defined
Nm(a, b) = Number of zeros of pm(wα) in (a, b)

for any θ ∈ (0, 1) let

vm(θ) =
Nm(0, θam)

m
and

ṽm(θ) =
1

N − 1

N∑
m=2

vm(θ) , N = 2048 .

In the case α = 0, the values obtained for different choices of the parameter β
are plotted in the figure 2. As we can see, for increasing values of β > 1 the number
of zeros in (0, θam) decreases.

We remark that some procedures are in progress in order to compute only j zeros
of pm(wα) (see [15]).

4. Extended interpolation on the matrix Z

Now we go to state the main results obtained in [31] about extended Lagrange
interpolation processes essentially based on the knots of the matrix Z. Denote by
L2m+1(wα, wα+1, f) the Lagrange polynomial interpolating a given function f at
the zeros {zi}2m+1

i=1 of Q2m+1, let zj be defined in (2.8) and let χm,θ be the char-
acteristic function of the segment (0, zj). Let L2m+2(wα, wα+1, f) be the Lagrange
polynomial approximating a function f at the zeros of Q2m+1(x)(am+1 − x). Here
we shall consider the Lagrange process L2m+2(wα, wα+1) of the truncated function
fχm,θ associated to a given f ∈ Cσ, i.e. we will study

(4.40) L∗2m+2(wα, wα+1, f) := L2m+2(wα, wα+1, fχm,θ) .
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Figure 2. ṽm(θ) for θ ∈ (0, 1)

Also in this case the polynomial sequence {L∗2m+2(wα, wα+1, f)}m, can be used to
approximate successfully any function f ∈ Cσ. Indeed, the following result holds
[31]

Theorem 4.1. For any function f ∈ Cσ, with δ > 0,

(4.41) ‖L∗2m+2(wα, wα+1, f)σδ‖∞ ≤ C‖fσδ‖∞ logm

with 0 < C 6= C(m, f), if and only if

(4.42) 1 ≤ δ − α ≤ 2 .

Moreover

(4.43) ‖[f − L∗2m+2(wα, wα+1, f)]σδ‖∞ ≤ C
{
EM (f)σδ logm+ e−Am‖fσδ‖∞

}
where M =

[
2m (θ/1 + θ))β

]
∼ m, 0 < C 6= C(m, f), 0 < A 6= A(m, f).

In the case that for a given function f ∈ Cσ the interpolation knots cannot
be chosen and the parameters δ and α don’t satisfy (4.42), we can adopt the ad-
ditional nodes method [31]. Let ti, i = 1, . . . , s some simple knots added in the
range [0, z1], for instance ti = (i/(s + 1))xm+1,1, i = 1, 2, . . . , s and let Bs(x) =∏s
i=1(x−ti). Denote by L2m+2,s(wα, wα+1, f) the Lagrange polynomial interpolat-

ing f at the zeros of Q2m+1(x)Bs(x)(am+1−x), and define L∗2m+2,s(wα, wα+1, f) =
L2m+2,s(wα, wα+1, fχm,θ). An expression for this polynomial is

L∗2m+2,s(wα, wα+1, f ;x) =
s∑
i=1

Q2m+1(x)(am+1 − x)Bs(x)
Q2m+1(ti)(am+1 − ti)B′s(ti)

f(ti)
(x− ti)

+

(4.44) +
j∑

k=1

Q2m+1(x)(am+1 − x)Bs(x)
Q′2m+1(zk)(am+1 − zk)Bs(zk)

f(xk)
(x− zk)

The following result holds

Theorem 4.2. For any function f ∈ Cσ, if there exists an integer s such that

(4.45) 1 ≤ δ − α+ s ≤ 2 ,
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then we have

(4.46) ‖L∗2m+2,s(wα, wα+1, f)σδ‖∞ ≤ C‖fσδ‖∞ logm,

where 0 < C 6= C(m, f). Moreover,

(4.47) ‖[f − L∗2m+2,s(wα, wα+1, f)]σδ‖∞ ≤ C
{
EM (f)σδ logm+ e−Am‖fσδ‖∞

}
,

where M =
[
2m (θ/(1 + θ))β

]
∼ m, 0 < C 6= C(m, f), 0 < A 6= A(m, f).

In particular, in the case f ∈ Cσ with δ = 0, it does not exist α s.t. (4.42) holds
true. Nevertheless, in this last case we can again construct an interpolant sequence
with Lebesgue constants going like logm. Indeed, let us consider the sequence
{L∗2m+2,1(wα, wα+1, f)σδ}m, with t1 = 0, i.e.

L∗2m+2,1(wα, wα+1, f ;x) =
Q2m+1(x)(am+1 − x)

Q2m+1(0)am+1
f(0)+

(4.48)

+
j∑

k=1

Q2m+1(x)(am+1 − x)x
Q′2m+1(zk)(am+1 − zk)zk

f(xk)
(x− zk)

In this case we have the following

Corollary 4.4. For any function f ∈ Cσ with δ = 0 and for any α ≤ 0

(4.49) ‖L∗2m+2,1(wα, wα+1, f)σδ‖∞ ≤ C‖fσδ‖∞ logm , 0 < C 6= C(m, f)

and

(4.50) ‖[f − L∗2m+2,1(wα, wα+1, f)]σδ‖∞ ≤ C
{
EM (f)σδ logm+ e−Am‖fσδ‖∞

}
where M =

[
2m (θ/(1 + θ))β

]
∼ m, 0 < C 6= C(m, f), 0 < A 6= A(m, f).

5. Numerical tests I

The following examples can be found in [31] and are useful to show the perfor-
mance of the interpolation processes previously described. We compare the results
obtained by extended Lagrange polynomials with those produced by the Lagrange
polynomial based on the zeros of p2m+1(ρ, x)(am − x), where ρ(x) = e−2xβxλ,
am = am(ρ). More precisely, denote by ξi, i = 1, 2, . . . , 2m + 1 the zeros of
p2m+1(ρ), define

(5.51) h = h(m) = min
1≤i≤2m+1

{ξi ≥ amθ}

and let L2m+2(ρ, f) be the Lagrange polynomial interpolating f at {ξi}2m+2
i=1 , being

ξ2m+2 = am. Setting L∗2m+2(ρ, f) := L2m+2(ρ, fχh), where χh is the characteristic
function of the segment (0, ξh), in [20] it was proved that for any f ∈ Cσ

(5.52)
1
4
≤ δ − λ

2
≤ 5

4
=⇒

‖L∗2m+2(ρ, f)σδ‖∞ ≤ C‖fσδ‖∞ logm , 0 < C 6= C(m, f) .
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In addition, in the case λ = δ = 0, in [11] it was proved that for the Lagrange
process L2m+1,1(ρ) for approximating f ∈ Cσ at the knots {ξi}2m+2

i=1

⋃
{0},

(5.53)
1
4
≤ δ − λ

2
+ s ≤ 5

4
=⇒

‖L2m+1,1(ρ, f)σδ‖∞ ≤ C‖fσδ‖∞ logm , 0 < C 6= C(m, f) .

We remark that the same estimate can be easily deduced if we replace
L2m+1,1(ρ, f) with L∗2m+1,1(ρ, f). We use the following notations

(5.54) Dm =
{
ξi + ξi+1

2
, i = 1, 2, . . . , 2m+ 1

}
, ‖g‖∞,Dm = max

x∈Dm
|g(x)| .

Setting
z̄i = zi , i = 1, 2, . . . , 2m+ 1 , z̄2m+2 = am ,

let

(5.55) Fm =
{
z̄i + z̄i+1

2
, i = 1, 2, . . . , 2m+ 1

}
.

Any table contains the number j = j(m) (being j the integer defined in (2.8))
of knots used in extended interpolation polynomial L∗2m+2(wα, wα+1w, f) and the
corresponding maximum error committed in the set Fm. Similarly the column
h = h(m) contains the number of knots used in L∗2m+2(ρ, f) and the corresponding
errors taken in the set Dm. We recall that to compute the interpolation knots in
L∗2m+2(wα, wα+1, f) we need the zeros of two almost one half degree polynomials
w.r.t. the zeros involved in L∗2m+2(ρ, f).
The computation of the Lagrange polynomials are performed in double machine
precision 2.2204× 10−16.

Example 1.

(5.56) f1(x) = sin(x)ex/2 σδ(x) = xe−x f1 ∈ Cσ ∀ r ≥ 1 .

We choose as interpolation weights ρ(x) = e−2xx1/2 and w−1/2(x) = e−xx−1/2,
respectively, so the assumptions in (5.52) and (3.19) are both fulfilled.

2m+ 2 h ‖[f1 − L∗2m+2(ρ, f1)]σδ‖∞,Dm j ‖[f1 − L∗2m+2(wα, wα+1, f1)]σδ‖∞,Fm
22 22 2.2 e-4 22 3.8e-4
32 32 1.9e-6 32 2.5e-6
42 42 2.6e-8 42 4.5e-8
52 49 1.5e-10 49 2.6e-10
62 55 2.0e-12 55 4.1e-12
72 60 1.7e-14 60 3.0e-14
82 65 6.6e-16 65 9.8e-16

In this example the function is smooth and with m = 81 we obtain the machine
precision.

Example 2.

(5.57) f2(x) = |x− 5|11/3ex
2/2 ∈W∞3,3, σδ(x) = x3e−x

2
.

We choose ρ(x) = e−2xx4 and w3/2(x) = e−xx3/2, so that (3.19) and (5.52) are
both satisfied.
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2m+ 2 h ‖[f2 − L∗2m+2(ρ, f2)]σδ‖∞,Dm j ‖[f2 − L∗2m+2(wα, wα+1, f2)]σδ‖∞,Fm
16 16 2.7e-5 16 2.4e-5
32 27 1.2e-6 28 2.3e-7
64 51 5.1e-6 51 3.3e-7
120 90 4.8e-8 90 3.5e-8
302 178 9.0e-9 178 4.1e-9
400 236 1.5e-10 236 2.3e-10
798 — — 377 3.3e-11

The zeros of pm(ρ) are computable up to m = 399. So L∗400(ρ, f) is the max-
imum degree Lagrange polynomial that we can consider. In this case, using the
zeros of p399(w) and p398(w̄) we can construct the polynomial L∗798(wα, wα+1, f)
interpolating f at the zeros of p399(w, x)p398(w̄, x)(a399 − x).

Example 3.

(5.58) f3(x) =
log(1 + x)
(1 + x2)6

ex
2
∈W5(uγ) , σδ(x) = x3e−x

2

According to (5.52) and (3.19) in Theorem 3.1, we choose ρ(x) = e−2xx4 and
w3/2(x) = e−xx3/2.

2m+ 2 h ‖[f3 − L∗2m+2(ρ, f3)]σδ‖∞,Dm j ‖[f3 − L∗2m+2(wα, wα+1, f3)]σδ‖∞,Fm
8 6 5.0e-4 6 4.8e-4
16 12 1.8e-5 12 2.0e-5
32 25 2.2e-6 26 1.1e-6
48 38 5.3e-7 38 3.8e-7
64 51 2.0e-7 51 1.6e-8
202 152 5.0e-9 162 1.2e-9
302 227 9.9e-10 242 2.4e-10
400 381 8.1e-10 281 2.35e-11
422 — — 390 9.6e-12
502 — — 445 7.8e-13

Also in this test by using extended interpolation, we can almost double the maxi-
mum degree Lagrange polynomial, since we are able to construct L∗502(wα, wα+1, f)
which interpolates f at the zeros of p251(wα, x)p250(wα+1, x)(a251 − x).

Example 4.

(5.59) f4(x) =
arctan(x)5/2

(1 + x3)2
ex

3/3 ∈W∞0,5 , σδ(x) = e−x
3

In this case for α = 0, i.e. w0(x) = e−x
3

(3.19) is not satisfied. Therefore we can
supply by using the Lagrange polynomial with an additional knot defined in (4.48).
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2m+ 2 h ‖[f4 − L∗2m+2(ρ, f4)]σδ‖∞,Dm j ‖[f4 − L∗2m+2,1(wα, wα+1, f4)]σδ‖∞,Fm
8 8 9.7e-4 8 1.5e-3
16 16 4.1e-6 16 2.1e-5
32 32 1.4e-7 31 8.1e-8
50 50 2.1e-8 40 5.0e-8
100 88 6.5e-10 81 6.5e-10V
202 190 5.8e-11 164 3.5e-11
302 195 1.1e-11 193 6.5e-12
400 257 3.3e-12 256 2.0e-12
600 — — 330 3.2e-13

5.1. Computational details. We recall the three-term recurrence relation for the
orthogonal polynomials w.r.t. the weight wα.

(5.60)

p−1(wα, x) = 0 , p0(wα, x) =
(∫ ∞

0

wα(x) dx
)−1/2

bn+1pn+1(wα;x) = (x− en)pn(wα, x)− bnpn−1(wα, x)

bn =
γn−1(wα)
γn(wα)

en =
∫ ∞

0

xp2
n(wα, x)wα(x) dx .

Although the coefficients {bk}k, {ek}k are not always known, there exist efficient
numerical procedures to calculate them [2]. The computation of the zeros of general-
ized Laguerre polynomials with parameter β 6= 1, requires an higher computational
effort. Indeed, when β 6= 1 the coefficients in the three term recurrence relation
for the polynomials {pm(wα)}m are not always known. However there exists the
Mathematica Package OrthogonalPolynomials [2] to compute these zeros by using
“high” variable precision.

6. The proofs: first part

Now we collect some polynomial inequalities deduced in [26] by a change of
variable in analogous estimates in [13]. Let x ∈ [xm,1, xm,m] and d = d(x) ∈
{1, . . . ,m} be an index of a zero of pm(wα) closest to x. Then, for some positive
constant C 6= C(m,x, d), we have

(6.61)

1
C

(
x− xm,d
xd − xd±1

)2

≤

≤ p2
m(wα, x)e−x

β
(
x+

am
m2

)α+(1/2)√
|am − x|+ amm−2/3 ≤

≤ C
(

x− xd
xm,d − xm,d±1

)2

.

and for a fixed real number 0 < δ < 1,

(6.62)

|pm(wα, x)|
√
wα(x) ≤ C

4
√
x 4
√
|am − x|+ amm−2/3

,

am
m2
≤ x ≤ am(1 + δ) .
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In particular, for a fixed 0 < θ < 1

(6.63) |pm(wα, x)|
√
wα(x) ≤ C 1

4
√
amx

,
am
m2
≤ x ≤ θam .

Moreover, for k = 1, 2, . . . ,m and ∆xm,k = xm,k+1 − xm,k

(6.64)
1

|p′m(wα, xm,k)|
√
wα(xm,k)

∼ ∆xm,k 4
√
amxm,k

4

√∣∣∣∣1− xm,k
am

∣∣∣∣+m−2/3

for any polynomial Pm ∈ Pm, the Bernstein inequality [13] [27],

(6.65)

max
x≥0
|P ′m(x)|

√
wα(x)

√
x ≤

≤ C m
√
am

max
x≥0
|Pm(x)

√
wα(x)| , C 6= C(m,Pm)

and the Remez-type inequality [27]

(6.66) max
x≥0

|Pm(x)
√
wα(x)| ≤ C max

x≥am/m2
|Pm(x)

√
wα(x)| .

Finally we recall that for any polynomial Pm ∈ Pm, the following inequality holds
[27]

(6.67) max
x≥am(1+δ)

|Pm(x)|
√
wα(x) ≤ C e−Am max

x≤am
|Pm(x)|

√
wα(x)

where C 6= C(m), A 6= A(m).

In the next will be useful the following

Lemma 6.1.

(6.68)
1

|Q̃′2m+1(z̃k)|σδ(z̃k)
≤ C

√
am − z̃k
z̃δ−α−1
k

∆z̃k , z̃k < z̃j , C 6= C(m) .

Proof. Using (6.61)

(6.69)

1
|pm(wα, xm+1,k)|

√
wα(xm+1,k)

≤

≤ C 4

√
xm+1,k(am − xm+1,k) , xm+1,k ≤ zj ,

so, by (6.64), it follows

1
|Q′2m+1(xm+1,k)|σδ(xm+1,k)

≤ C
√
am − xm+1,k

x
γ−α−(1/2)
m+1,k

∆xm+1,k , xm+1,k ≤ zj .

An analogous estimate holds replacing xm+1,k with xm,k. Using then ∆xm+1,k ∼
∆xm,k ∼ ∆z̃k, z̃k < zj , the Lemma follows.

�

Lemma 6.2. For x ∈ (z̃1, z̃2m+1) and denoted with z̃d the zero of Q̃2m+1 closest
to x, we have

(6.70)
|Q̃2m+1(x)|

|Q̃′2m+1(zd)(x− zd)|
σδ(x)
σδ(z̃d)

≤ C , C 6= C(m,x) .



Interlacing properties of Laguerre zeros and some applications. A survey 19

Proof. Denoted by xm+1,d a zero of pm+1(wα) closest to x ∈ [xm+1,1, xm+1,m+1],
in [20] it was proved,∣∣∣∣ pm+1(wα, x)

p′m+1(wα, xm+1,d)(x− xm+1,d)

∣∣∣∣
√
wα(x)√

wα(xm+1,d)
∼ 1 .

Therefore, assuming z̃d is a zero of pm+1(wα), we have

|Q̃2m+1(x)|
|Q̃′2m+1(z̃d)(x− z̃d)|

σδ(x)
σδ(z̃d)

≤ C |pm(wα, x)|
|pm(wα, z̃d)|

σδ(x)
σδ(z̃d)

√
wα(z̃d)√
wα(x)

and using (6.69) and (6.62),

|Q̃2m+1(x)|
|Q̃′2m+1(z̃d)(x− z̃d)|

σδ(x)
σδ(z̃d)

≤ C
(
x

z̃d

)δ−α−1/4

≤ C ,

since x ∼ z̃d.
�

Lemma 6.3. Let {z̃k}2m+1
k=1 the zeros of Q̃2m+1 and denote with z̃d a zero closest to

x, ∆z̃k = z̃k+1 − z̃k. Assuming 0 ≤ ρ, σ ≤ 1, for x ∈ (0, am) and for m sufficiently
large, we have

(6.71)
2m+1∑
k=1
k 6=d

∆z̃k
|x− z̃k|

(am − x)ρ

(am − z̃k)ρ
xσ

z̃σk
≤ C logm

where C 6= C(m,x).

We omit the proof of the previous Lemma since it can be easily obtained following
the same arguments used in [24] to prove Lemma 4.1, p. 36.

Proof of Theorem 4.1. First we prove the sufficient condition. By (6.66) we have

(6.72)

‖L∗2m+2(wα, wα, f)σδ‖∞ ≤

≤ C max
C am/m2≤x≤am

|L∗2m+2(wα, wα, f ;x)σδ(x)|

and by (3.34)

‖L∗2m+2(wα, wα, f)σδ‖∞ ≤

≤ C‖fσδ‖∞ max
Cam/m2≤x≤am

j∑
k=1

∣∣∣∣∣ Q̃2m+1(x)(am+1 − x)
Q̃′2m+1(z̃k)(am+1 − z̃k)(x− z̃k)

∣∣∣∣∣ σδ(x)
σδ(z̃k)

=:

(6.73) =: C‖fσδ‖∞ max
Cam/m2≤x≤am

Σ̃(x)

By (6.63)

(6.74) |Q̃2m+1(x)|σδ(x) ≤ C x
δ−α−(1/2)

√
am

,
am
m2
≤ x ≤ θam ,
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and recalling (6.68) we have

Σ̃(x) ≤ C
j∑

k=1,k 6=d

∆z̃k
|x− z̃k|

√
am − x√
am − z̃k

xδ−α−(1/2)

z̃
δ−α−(1/2)
k

+

+

∣∣∣∣∣ Q̃2m+1(x)(am+1 − x)
Q̃′2m+1(z̃d)(x− z̃d)(am+1 − z̃d)

∣∣∣∣∣ σδ(x)
σδ(z̃d)

.

By Lemma 6.3 under the assumption 0 ≤ δ − α − 1/2 ≤ 1, using Lemma 6.2 and
taking into account (am+1 − x) ∼ (am+1 − z̃d), we get

(6.75) Σ̃(x) ≤ C logm.

Combining last inequality with (6.73), (4.46) follows.
We omit the proof of the necessary part, since it follows with a slight change in

the proof of Theorem 3.1 in [31].
�

Proof of Proposition 2.1. Consider the Fourier expansion of xpm(wα+1, x) in the
system {pj(wα)}∞j=0:

xpm(wα+1, x) = dmpm(wα, x) + dm+1pm+1(wα, x) ,

di =
∫ ∞

0

xpm(wα+1, x)pi(wα, x)wα(x) dx

and for x = xm+1,k, k = 1, 2, . . . ,m+ 1

(6.76) xm+1,k pm(wα+1, xm+1,k) =
γm(wα)
γm(wα+1)

pm(wα, xm+1,k) .

Similarly proceeding , by the Fourier expansion of pm+1(wα, x) in the system
{pj(wα+1)}j ,

pm+1(wα, x) = cmpm(wα+1, x) + cm+1pm+1(wα+1, x) ,

ci =
∫ ∞

0

pm+1(wα, x)pi(wα+1, x)wα+1(x) dx

and for x = ym,k, k = 1, 2, . . . ,m, we have

(6.77) pm+1(wα, ym,k) =
γm+1(wα)
γm+1(wα+1)

pm+1(wα+1, ym,k) .

By the three-term recurrence relation (5.60)

pm+1(wα+1, ym,k) = −γm−1(wα+1)γm+1(wα+1)
γ2
m(wα+1)

pm−1(wα+1, ym,k)

and replacing in (6.77)

(6.78) pm+1(wα, ym,k) = −γm−1(wα+1)γm+1(wα)
γ2
m(wα+1)

pm−1(wα+1, ym,k) .

By (6.76) and (6.78) it follows that Q2m+1 = pm+1(wα)pm(wα+1) has simple zeros.
Moreover,

(6.79) Q′2m+1(xm+1,k) > 0 , Q′2m+1(ym,k) < 0 ,
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by which it follows that the zeros of pm+1(wα, x) interlace with those of pm(wα+1).
Now we prove (2.10). Using xm+1,k+1 − ym,k < xm+1,k+1 − xm+1,k, and ym,k −
xm+1,k < ym,k+1 − ym,k, by (2.4) it follows

(6.80) ∆zk ≤ C
√
am
m

√
zk , zk ≤ θam .

To prove the converse inequality in (2.10), we first prove

(6.81) xm+1,k+1 − ym,k ≥ C
√
am
m

√
xk+1 , k = 1, 2, . . . , j ,

with C 6= C(m). By (6.79) we have

0 < Q′2m+1(xm+1,k+1)−Q′2m+1(ym,k) = (xm+1,k+1 − ym,k)Q′′2m+1(ξk) ,

where ξk ∈ (ym,k, xm+1,k+1). Therefore

(6.82)
1

(xm+1,k+1 − ym,k)
≤

Q′′2m+1(ξk)
Q′2m+1(xm+1,k+1)

.

By (6.65) and (6.62) it follows

|p′m(wα, ξk)|
√
wα(ξk) ≤ C m√

amξk

1
4
√
ξk(am − ξk)

and therefore

|Q′′2m+1(ξk)|
√
wα(ξk)w̄(ξk) ≤ C|p′m(wα, ξk)p′m+1(w̄, ξk)|

√
wα(ξk)w̄(ξk) ≤

≤ C m2

amξk

1√
ξk(am − ξk)

.

By (6.61)

(6.83)
1

|pm(w̄, xm+1,k+1)|
√
w̄(xm+1,k+1)

≤ C 4

√
xm+1,k+1(am − xm+1,k+1)

and by (6.64) we get

(6.84)

1
Q′2m+1(xm+1,k+1)

√
wα(xm+1,k+1)w̄(xm+1,k+1)

≤

≤ C
√
xm+1,k+1(am − xm+1,k+1)∆xm+1,k+1 .

Using
√
wα(xm+1,k+1)w̄(xm+1,k+1) ∼

√
wα(ξk)w̄(ξk), it follows

(6.85)
|Q′′2m+1(ξk)|

Q′2m+1(xm+1,k+1)
≤ C m2

amξ
∆xm+1,k+1 .

Since by (2.4)

∆xm+1,k+1 ∼
√
am
m

√
xm+1,k+1 , k ≤ j ,

it follows

(6.86)
1

(xm+1,k+1 − ym,k)
≤ C m

√
amxm+1,k+1

.

Since the estimate

(6.87)
1

(ym,k − xm+1,k)
≤ C m

√
amxm+1,k
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follows by similar arguments, the Proposition is completely proved.
�

Lemma 6.4. Let Q2m+1 = pm+1(wα)pm(wα+1) and zk, k = 1, 2, . . . , 2m + 1 the
zeros of Q2m+1

(6.88)
1

|Q′2m+1(zk)|σδ(zk)
≤ C

√
am − zk
zδ−α−1
k

∆zk , zk < zj , C 6= C(m)

Proof. Using (6.61)

(6.89)

1
|pm(wα+1, xm+1,k)|

√
wα+1(xm+1,k)

≤

≤ C 4

√
xm+1,k(am − xm+1,k) , xm+1,k ≤ zj ,

so, by (6.64), it follows

1
|Q′2m+1(xm+1,k)|σδ(xm+1,k)

≤ C
√
am − xm+1,k

xδ−α−1
m+1,k

∆xm+1,k , xk ≤ zj .

An analogous estimate holds replacing xm+1,k with ym,k. Using then ∆xm+1,k ∼
∆ym,k ∼ ∆zk, xm+1,k, ym,k, zk < zj , the Lemma follows.

�

Lemma 6.5. For x ∈ (z1, z2m+1) and denoted with zd the zero of Q2m+1 closest
to x, we have

(6.90)
|Q2m+1(x)|

|Q′2m+1(zd)(x− zd)|
σδ(x)
σδ(zd)

≤ C , C 6= C(m,x) .

Proof. Denoted by xd a zero of pm+1(wα) closest to x ∈ [xm+1,1, xm+1,m+1], in
[20] it was proved,∣∣∣∣ pm+1(wα, x)

p′m+1(wα, xm+1,d)(x− xm+1,d)

∣∣∣∣
√
wα(x)√

wα(xm+1,d)
∼ 1 .

Therefore, assuming zd is a zero of pm+1(wα), we have

|Q2m+1(x)|
|Q′2m+1(zd)(x− zd)|

σδ(x)
σδ(zd)

≤ C |pm(wα+1, x)|
|pm(wα+1, zd)|

σδ(x)
σδ(zd)

√
wα(zd)√
wα(x)

and using (6.69) and (6.62),

|Q2m+1(x)|
|Q′2m+1(zd)(x− zd)|

σδ(x)
σδ(zd)

≤ C
(
x

zd

)δ−α−3/4

≤ C ,

since x ∼ zd.
�

Proof of Theorem 4.1. First we prove the sufficient condition. By (6.66) we have

(6.91)

‖L∗2m+2(wα, wα+1, f)σδ‖∞ ≤

≤ C max
Cam/m2≤x≤am

|L∗2m+2(wα, wα+1, f ;x)σδ(x)|
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and using (3.34)

‖L∗2m+2(wα, wα+1, f)σδ‖∞ ≤

≤ C‖fσδ‖∞ max
C am/m2≤x≤am

j∑
k=1

∣∣∣∣ Q2m+1(x)(am+1 − x)
Q′2m+1(zk)(am+1 − zk)(x− zk)

∣∣∣∣ σδ(x)
σδ(zk)

=:

(6.92) =: C‖fσδ‖∞ max
C am/m2≤x≤am

Σ(x)

By (6.63)

(6.93) |Q2m+1(x)|σδ(x) ≤ C x
δ−α−1

√
am

,
am
m2
≤ x ≤ θam ,

and recalling (6.88) we have

Σ(x) ≤ C
j∑

k=1,k 6=d

∆zk
|x− zk|

√
am − x√
am − zk

xδ−α−1

zδ−α−1
k

+

+
∣∣∣∣ Q2m+1(x)(am+1 − x)
Q′2m+1(zd)(x− zd)(am+1 − zd)

∣∣∣∣ σδ(x)
σδ(zd)

.

By Lemma 6.3 under the assumption 0 ≤ δ − α − 1 ≤ 1, using Lemma 6.5 and
taking into account (am − x) ∼ (am − zd), we get

(6.94) Σ(x) ≤ C logm.

Combining last inequality with (6.92), (3.18) follows.
Now we prove that (4.41) implies (4.42). Let g a linear piecewise function such

that
g(ym,k) = 0 , k = 1, 2, . . . ,m , g(am+1) = 0

and

g(xm+1,k) =
sgn

(
p′m+1(wα, xm+1,k)pm(wα+1, xk)(x− xm+1,k)

)
σδ(xm+1,k)

, k = 1, 2, . . . , j

and
g(xm+1,k) = 0 , k > j .

So ‖gσδ‖∞ = 1, and

‖L∗2m+2(wα, wα+1, g)σδ‖∞ ≥

≥
j∑

k=2

|pm+1(wα, x̄)pm(wα+1, x̄)|(am − x̄)
|p′m+1(wα, xm+1,k)pm(wα+1, xm+1,k)|(xm+1,k − x̄)(am − xm+1,k)

×

× σδ(x̄)
σδ(xm+1,k)

where x̄ = xm+1,1/2 ∼ am/m2. Using (6.61) we have

(6.95) (am − x̄)|pm+1(wα, x̄)pm(wα+1, x̄)|σδ(x̄) ≥ Cx̄δ−α−1
√
am − x̄
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and by (6.64) and (6.61) it follows

(6.96)

|p′m+1(wα, xm+1,k)pm(wα+1, xm+1,k)|(am − xm+1,k)σδ(xm+1,k) ≤

≤
√
am − xm+1,k

xδ−α−1
m+1,k

∆xm+1,k
.

Using am − x̄ > am − xm+1,k and x̄− xm+1,k ≤ xm+1,k we have

‖L∗2m+2(wα, wα+1, g)σδ‖∞ ≥
m+1∑
k=2

∆xm+1,kx̄
δ−α−1

xδ−αm+1,k

≥

≥
(am
m2

)δ−α−1
∫ am

x2

dt

tδ−α
≥ m−2(δ−α−1) .

Since (4.41) holds,

C logm ≥ ‖L∗2m+2(wα, wα+1, g)σδ‖∞ ≥ Cm−2(δ−α−1)

it follows δ − α− 1 ≥ 0.
To prove that (4.41) implies right hand condition in (4.42), consider the same

function g previously defined and let x̃ = θam. We have

‖L∗2m+2(wα, wα+1, g)σδ‖∞ ≥

≥
j−1∑
k=1

|pm+1(wα, x̃)pm(wα+1, x̃)|(am − x̃)
|p′m+1(wα, xm+1,k)pm(wα+1, xm+1,k)|(xm+1,k − x̃)(am − xm+1,k)

×

× σδ(x̃)
σδ(xm+1,k)

.

Using (6.61)

(am − x̃)|pm+1(wα, x̃)pm(wα+1, x̃)|σδ(x̄) ≥ Cx̃δ−α−1
√
am − x̃

and using (6.96) again and am − xm+1,k < am, x̃ − xm+1,k ≤ x̃, am − xm+1,k >
(1− θ)am we have

‖L∗2m+2(wα, wα+1, g)σδ‖∞ ≥ C
√
am − x̃
am

x̃δ−α−2

j−1∑
k=1

√
am − xm+1,k ∆xm+1,k

xδ−α−1
m+1,k

≥

≥ Cx̃δ−α−2

∫ θam

xm+1,1

dt

tδ−α−1
.

Since (4.41) holds,

C logm ≥ ‖L∗2m+2(wα, wα+1, g)σδ‖∞ ≥ C
(
m−2

)−δ+α+2

it follows δ − α− 1 ≤ 1.
Let us prove (3.20). Let P ∈ P∗2m+1. Since L∗2m+2(wα, wα+1) : f ∈ Cu → P∗2m+1

is a projector,

‖[f −L∗2m+2(wα, wα+1, f)]σδ‖∞ ≤ ‖(f −P )σδ‖∞+‖L∗2m+2(wα, wα+1, f −P )σδ‖∞ .

Using then (3.35) and (4.41), the proof is complete.
�
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Proof of Theorem 4.2. By (6.66) and (4.44) we have

‖L∗2m+2,s(wα, wα+1, f)σδ‖∞ ≤

≤ C‖fσδ‖∞ max
C am/m2≤x≤am

{
s∑
i=1

|Q2m+1(x)(am+1 − x)Bs(x)|
|Q2m+1(ti)(am+1 − ti)B′s(ti)(x− ti)|

σδ(x)
σδ(ti)

+

+
j∑

k=1

|Q2m+1(x)(am+1 − x)Bs(x)|
|Q′2m+1(zk)(am+1 − zk)Bs(zk)(x− zk)|

σδ(x)
σδ(zk)

}
=:

(6.97) =: C‖fσδ‖∞ max
C am/m2≤x≤am

{C1(x) + C2(x)}

By (6.61)

|pm(wα, ti)|e−t
β
i /2
(am
m2

)α/2+1/4
4
√
am − ti ≥

≥ C
∣∣∣∣ ti − xm+1,1

xm+1,1 − xm+1,2

∣∣∣∣ ≥ C , i = 1, . . . , s

and consequently, since ti ∼ am/m2,

|Q2m+1(ti)|σδ(ti) ≥
Ctδi√
am − ti

(
m2

am

)α+1

≥ C√
am − ti

(
m2

am

)α+1−δ

.

Using ∣∣∣∣Bs(x)
B′s(ti)

∣∣∣∣ ≤ s∏
j=1,j 6=i

∣∣∣∣ x− tjti − tj

∣∣∣∣ ≤ C (m2x

am

)s−1

√
am − x ≤

√
am − ti, and (6.93), we have

C1(x) ≤ Cxδ−α−2+s

(
m2x

am

)s−2+δ−α

and taking into account the assumption δ−α−2+s ≤ 0 and x ≥ am/m2, it follows

(6.98) C1(x) ≤ C .
By (6.93)- (6.68) again and using

|Bs(x)| =
s∏
i=1

|x− ti| ≤ (x− t1)s ≤ Cxs

|Bs(zk)| ≥ (zk − ts)s ∼ zsk
we have

C2(x) ≤ C
j∑

k=1,k 6=d

∆zk
|x− zk|

√
am − x√
am − zk

xδ−α−1+s

zδ−α−1+s
k

+

+‖lm+1,d(wα, x) | |pm(wα, x)Bs(x)|(am − x)
|Bs(zd)pm(wα+1, zd)|(am − zd)

σδ(x)
σδ(zd)

.

Using Lemma 6.3, under the assumption 0 ≤ δ−α− 1 + s ≤ 1, by Bs(x) ∼ Bs(xd)
and Lemma 6.2, it follows

(6.99) C2(x) ≤ C logm.
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Combining (6.97)–(6.99), (4.46) follows.
�

7. Approximation of the Hilbert transform

Let H(G; t) be the Hilbert transform of a given function G

H(G; t) =
∫ +∞

0

G(x)
x− t

dx , t > 0 ,

provided the integral exists as a principal value. The Hilbert transform arises
in many fields of the applied sciences and also in singular integral equations of
Cauchy type (see [14],[29]). In [32], we introduced a numerical method in order to
approximate

(7.100) H(fwα; t) =
∫ +∞

0

f(x)
x− t

wα(x) dx , t > 0

where wα(x) = e−x
β

xα, α > −1, β > 1/2 is a generalized Laguerre weight and the
function f can be singular at the origin, having an exponential growth at infinity.

As far as the methods based on the zeros of orthogonal polynomials are con-
cerned, these consist of quadrature rules, like Gaussian-type quadrature rules or
product integration rules. A drawback of the product rules is the heavy effort
in computing their coefficients, while instability phenomena arise using Gaussian
rules, for values of t close to the Gaussian knots [6]. This last problem has been
overcome by suitable Gaussian rules, modified in some sense in order to approxi-
mate Cauchy principal value integrals or weakly singular integrals (see [22], [5], [6],
[7], [30], [25], [8]). However, any of these quadrature rule have to be applied for
any fixed value of t. In the present paper, following an idea introduced in [23], we
propose to approximate the function H(fwα) by a suitable Lagrange interpolating
polynomial based on Laguerre zeros.

The method is based on the following idea: we start from

H(fwα; t) = F(fwα; t) + f(t)H(wα; t) , F(fwα; t) =
∫ ∞

0

f(x)− f(t)
x− t

wα(x) dx ,

and after determining the conditions under which F(fwα) belongs to a weighted
uniform space, we approximate F(fwα) by the truncated Lagrange polynomial
Lm(F(fwα)) (see [20]). Since in the general case the computation of F(fwα)
at the interpolation knots cannot be exactly performed, we approximate them by
using the truncated Gauss-Laguerre rule (see [22]). In order to obtain a convergent
procedure, the choice of the interpolation knots and the degree approximation in
the Gaussian rule have to be carefully performed. Furthermore the interpolation
knots and Gaussian knots have to be chosen sufficiently far among them to avoid
possible numerical cancellation phenomena. This goal is achieved by selecting as
interpolation nodes, the zeros of suitable Laguerre polynomials [31].

7.1. Functional spaces. With X ⊆ [0,∞), 1 ≤ p < +∞ let Lp(X) be defined in
the usual way. Introducing the weight

u(x) = e−x
β/2xγ , γ > −1

p
, β >

1
2
,
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let Lpu(X) be the space of measurable functions f s.t. fu ∈ Lp(X), equipped with
the norm

(7.101) ‖f‖Lpu(X) = ‖fu‖p =
(∫ +∞

0

|f(x)u(x)|p dx
)1/p

.

Moreover with γ ≥ 0, let Lu∞([0,+∞)) =: Cu be the space of functions

Cu =
{
f : fu ∈ C0(R+), lim

x→0+
f(x)u(x) = 0 = lim

x→+∞
f(x)u(x)

}
,

with the norm ‖f‖Cu = supx≥0 |f(x)|u(x).
By

Em(f)u,p = inf
P∈Pm

‖(f − P )u‖p
we denote the error of Lp− weighted approximation of f by algebraic polynomials
of degree ≤ m.

We recall the Sobolev space

Ws(u) =
{
f ∈ Cu : f (s−1) ∈ AC(R+), ‖f (s)ϕsu‖∞ <∞

}
, ϕ(x) =

√
x , s ≥ 1 ,

where AC(R+) denotes the set of the functions which are absolutely continuous on
every closed subset of R+, equipped with the norm

(7.102) ‖f‖Ws(u) = ‖fu‖∞ + ‖f (s)ϕsu‖∞ .

The following estimate holds true [27]

(7.103) Em(f)u,∞ ≤ C
(√

am
m

)s
‖f (s)ϕsu‖∞ , C 6= C(m, f) .

7.2. Lagrange interpolation. We need to recall some results about Lagrange
interpolation processes. Let ρ(x) = e−x

β

xη, ρ > −1, β > 1/2 and let {τk}nk=1 be
the zeros of pn(ρ). The polynomial Ln+1(ρ, g) denotes the Lagrange polynomial
interpolating a given function g at the zeros of pn(ρ, x)(an − x), where an is the
M-R-S number w.r.t ρ, i.e.

Ln+1(ρ, g; τi) = g(τi) , i = 1, 2, . . . , n , Ln+1(ρ, g; an) = g(an) .

For any fixed 0 < θ < 1, define

(7.104) τj∗ = τj∗(n) = min {τk : τk ≥ θan, k = 1, 2, . . . , n} .
and setting χj∗ the characteristic function of the segment (0, τj∗), in [20] the authors
introduced the Lagrange polynomial

(7.105) L∗n+1(ρ, g) := Ln+1(ρ, gχj∗) .

The polynomial L∗n+1(ρ, g) belongs to a subspace of Pn, namely P∗n , with

(7.106) P∗n = {q ∈ Pn : q(τi) = q(an) = 0, ξi > τj∗} ⊂ Pn
and L∗n+1(ρ) projects Cu onto P∗n.
About the behaviour of the Lebesgue constants in Cu they prove the following

Theorem 7.1 ([20]). For any g ∈ Cu, under the assumption

(7.107)
η

2
+

1
4
≤ γ ≤ η

2
+

5
4
,

we have

(7.108) ‖L∗n+1(ρ, g)u‖∞ ≤ C‖gu‖∞ log n ,
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where C 6= C(n, f).

Nevertheless, if the parameters η, γ do not satisfy the assumption in the previous
theorem, it is possible to modify the previous process making use of the method
of additional knots. Let ti, i = 1, . . . , ν be some simple knots added in the range
[0, τ1), for instance ti = (i/(ν + 1))τ1, i = 1, 2, . . . , ν and let Bν(x) =

∏ν
i=1(x− ti).

Denote by Ln+1,ν(ρ, f) the Lagrange polynomial interpolating f at the zeros of
pn(ρ, x)Bν(x)(an − x), and define L∗n+1,τ (ρ, f) := Ln+1,ν(ρ, fχj∗). We are able to
determine suitable assumptions on the parameters γ, ν, η under which the above
Lagrange process has optimal Lebesgue constants again.

Theorem 7.2. For any g ∈ Cu, under the assumption

(7.109)
η

2
+

1
4
− ν ≤ γ ≤ η

2
+

5
4
− ν

we have

(7.110) ‖L∗n+1,ν(ρ, g)u‖∞ ≤ C‖gu‖∞ log n ,

where C 6= C(n, f).

The idea of interpolating a truncation fj of the function f was introduced in
[22], where fj is obtained as a link between the function f with zero by a smooth
function, having fj the same smoothness of f .

In the case ν = 1, t1 = 0, Theorem 7.2 was proved in [11].
Theorems 7.1 and 7.2 deal with the construction of optimal Lagrange interpolation
processes, i.e. with Lebesgue constants sequences behaving like logm. Furthermore,
both of the two sequences {L∗m(ρ, f)u}m and {L∗m,ν(ρ, f)u}m, offers some advan-
tages: a reduced computational effort and the possibility of constructing higher
degree approximation for functions f with an exponential growth, avoiding possi-
ble overflow drawbacks.

8. The method

Let t ∈ (0, amθ). We start from the relation

H(fwα; t) = F(fwα; t) + f(t)H(wα; t)

where

F(fwα; t) =
∫ ∞

0

f(x)− f(t)
x− t

wα(x) dx .

Referring to the Section “Numerical tests II” the discussion on the evaluation
of H(wα; t), we focus the attention in approximating the function F(fwα). Let
LR(F(fwα)) be the Lagrange polynomial interpolating F(fwα) at the knots
{ξ1, . . . , ξR}, i.e.

LR(F(fwα); t) =
R∑
k=1

`k(t)F(fwα; ξk), `k(t) =
R∏

i=1,i6=k

z − ξi
ξk − ξi

.

In the general case the quantities F(fwα; ξk), k = 1, . . . , R cannot be computed
exactly and so we will use a suitable Gaussian rule to approximate them. Indeed,



Interlacing properties of Laguerre zeros and some applications. A survey 29

for any fixed 0 < θ < 1, define the zero xN,j(wα) s.t.

(8.111)
xN,j(wα) = xN,j(N)(wα) =

= min {xN,k(wα) : xN,k(wα) ≥ θaN , k = 1, 2, . . . , N} ,

and replace F(fwα; zk) with

FN (fwα; ξk) =
j(N)∑
i=1

λN,i(wα)
f(xN,i(wα))− f(ξk)

xN,i(wα)− ξk
, k = 1, . . . , R

where {λN,k(wα)}Nk=1 are the Christoffel numbers w.r.t. the weight wα.
Therefore we approximate H(fwα) by

HR(f ; t) := LR(FN (fwα); t) + f(t)H(wα; t) .

Now we have to select the interpolation knots far enough from the Gauss-
ian nodes in order to avoid numerical instability in computing the denominators
(xN,i(wα) − ξk)−1. In the meantime this choice have to guarantee an optimal in-
terpolation process in the space Cu, i.e. such that the corresponding Lebesgue
constants sequence has a logarithmic behaviour.

Regarding the good distance between the knots, by Proposition 2.1 it follows
that the minimal distance between xN+1,k(wα) and xN,k(wα+1) behaves like the
distance between two consecutive zeros of pN (wα+1) (see [31],[13]), the knots
{xN+1,k(wα)}N+1

k=1 , {xN,k(wα+1)}Nk=1 are sufficiently far among them.
In view of the results presented in the previous Section about Lagrange interpo-

lation processes, we are now able to select either the interpolation knots and the
degree N of the truncated Gauss-Laguerre rule. We assume −1/4 < α < 1. Indeed
the cases α ≥ 1 can be easily treated setting f(x)x[α] instead of f and with weight
w̃α(x) = e−x

β

xα−[α].
We distinguish now two different cases.

−1/4 < α ≤ 0 . By Proposition 2.1, the zeros of the polynomial pm+1(wα)pm(wα+1)
are sufficiently far apart. Therefore we choose as Gaussian knots the zeros
{xm+1,i(wα)}m+1

i=1 of the polynomial pm+1(wα). Moreover, from Theorem 7.2 with
τ = 1, η = α+ 1, t1 = (1/2)xm,1(wα+1) we select as interpolation knots

(A) {xm,i(wα+1)}mi=1 ∪ {am} ∪ {t1} .

So we will have

(8.112) H(fwα; t) = H(A)
m (f ; t) := L∗m+1,1(wα+1,Fm+1(fwα); t) + f(t)H(wα; t) .

α > 0 . In this case we choose as Gaussian knots the zeros {xm,i(wα)}mi=1 of the
polynomial pm(wα). Moreover, from Theorem 7.1 with η = α − 1, we select as
interpolation knots

(B) {xm+1,i(wα−1)}m+1
i=1 ∪ {am} .

So we will have

(8.113) H(fwα; t) = H(B)
m (f ; t) := L∗m+2(wα−1,Fm(fwα); t) + f(t)H(wα; t) .

About the stability of the proposed procedure, we are able to prove the following
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Theorem 8.1. Let f ∈ Cu. Under the assumption

(8.114)
α

2
− 1

4
≤ γ < α+

1
4
,

we have

(8.115) sup
t>0
|L∗m+2(wα−1,Fm(fwα); t)|u(t) ≤ C‖fu‖∞ logm , α > 0

(8.116) sup
t>0
|L∗m+1,1(wα+1,Fm+1(fwα); t)|u(t) ≤ C‖fu‖∞ logm , −1

4
< α ≤ 0

where 0 < C 6= C(m, f).

About the error estimate, we are able to prove the following

Theorem 8.2. Let f ∈W∞s+1(u) , and assume t ∈ (0, θam), and

(8.117)
α

2
− 1

4
≤ γ < α+

1
4
.

For −1/4 < α ≤ 0

(8.118) |H(fwα; t)−H(A)
m (fwα; t)|u(t) ≤ C

(√
am
m

)s
‖f (s+1)ϕs+1u‖∞ logm

and for 0 < α < 1

(8.119) |H(fwα; t)−H(B)
m (fwα; t)|u(t) ≤ C

(√
am
m

)s
‖f (s+1)ϕs+1u‖∞ logm,

where 0 < C 6= C(m, f).

As we can see the method is easy to carry out, since it uses tools like the Gaussian
rule and Lagrange interpolation, both of them w.r.t. generalized Laguerre polyno-
mials. We point out that the coefficients in the three-term recurrence relation for
the sequence {pm(w)}m are not always known, even if there exist efficient numerical
procedures to calculate them [2].

9. Numerical tests II

First of all we show how to compute the Hilbert transform of the weight wα(x) =
e−x

β

xα, α > −1, β > 1/2 for some choices of the the parameter β.
In the case β = 1 , i.e. for the classical Laguerre weight, it is [34, p.325 n.16]∫ +∞

0

e−x

x− t
dx = −e−tEi(t) , α = 0

(9.120)
∫ +∞

0

e−xxα

x− t
dx = −πtαe−t cot((1+α)π)+Γ(α)1F1(1, 1−α,−t) , α 6= 0

where Ei(t) is the exponential integral function and 1F1(a, b, x) is the Confluent
Hypergeometric function.



Interlacing properties of Laguerre zeros and some applications. A survey 31

Let β ∈ N . We will use for β > 1∫ +∞

0

e−x
β

xα

x− t
dx =

1
β

∫ +∞

0

y(α+1)/β−1

y1/β − t
e−y dy =

=
1
β

β−1∑
k=0

tβ−1−k
∫ +∞

0

y(α+1+k)/β−1

y − tβ
e−y dy ,

and for α 6= 0 by (9.120)∫ +∞

0

e−x
β

xα

x− t
dx =

1
β

β−1∑
k=0

tβ−1−k
{
−πtα+1+k−βe−t

β

cot((
α+ 1 + k

β
)π)+

+ Γ
(
α+ 1 + k

β
− 1
)

1

F1(1, 2− α+ 1 + k

β
,−tβ)

}
.

In the case α = 0 the exponent (α + 1 + k)/β − 1 = 0 for k = β − 1 and then we
have ∫ +∞

0

e−x
β

x− t
dx =

1
β

β−2∑
k=0

tβ−1−k
{
−πtα+1+k−βe−t

β

cot((
α+ 1 + k

β
)π)+

+ Γ
(
α+ 1 + k

β
− 1
)

1

F1(1, 2− α+ 1 + k

β
,−tβ)

}
−

−1
2
e−t

β

Ei(tβ) .

Consider now β = p/q , with p, q ∈ N, q > 1∫ +∞

0

e−x
p/q

xα

x− t
dx =

q

p

∫ +∞

0

e−yy(α+1)q/p−1

yq/p − t
dy =

q

p

p−1∑
k=0

tp−1−k
∫ +∞

0

e−yyδk

yq − tp
dy

and

(9.121)

∫ +∞

0

e−x
p/q

xα

x− t
dx =

q

p

p−1∑
k=0

t(p−1−k)p/q

qt(q−1)p/q

{
−
∫ +∞

0

e−yyδk

y − tp/q
dy+

+
∫ +∞

0

e−yyδk

∑q−2
j=0 bj y

j t(bj−1)p/q∑q−1
j=0 y

j tbjp/q
dy

}

where bj = (q − j − 1), j = 0, 1, . . . , q − 2, δk = (α + 1 + k)q/(p − 1). The Cauchy
principal value of the integrals in (9.121) can be computed using (9.120) again.
About the regular integrals in (9.121), in some cases they can be expressed in
terms of special functions again. For instance, with q = 2, we can use the Stiltjies
transform [10, p.217, n.(17)] to obtain∫ +∞

0

e−yyδk
b0

y + t
p
2
dy = Γ (1 + δk) tδk p/2 et

p/2
Γ
(
−δk, tp/2

)
,
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where Γ(a, b) is the incomplete Gamma function. In the general case we observe
that the poles of the rational functions are sufficiently far from the integration
interval and the integrand function is very smooth. Therefore, the integrals can be
computed successfully by a truncated Gaussian rule.

Now we show the performance of our method by some numerical examples. Let
j the integer defined as

(9.122) xn,j(σ) = min
1≤i≤n

{xn,k(σ) : xn,k(σ) ≥ θan} ,

where

n = m σ = wα+1 , if we use H
(A)
m (fw)

n = m+ 1 σ = wα−1 , if we use H
(B)
m (fw)

Example 1. ∫ +∞

0

cos(log(1 + x))
x− t

e−x dx ,

wα(x) = e−x , u(x) = e−x/2 , f ∈Ws(u) , ∀ s ≥ 1 .

In this case α = 0, and we use H(A)
m (fwα) to approximate H(fwα). Since γ = 0,

there are fulfilled the assumptions in order to (8.118) holds true.

m j t = 0.1 t = 1.5 t=5
20 13 1.259 -0.7498 -0.0815
60 37 1.259397 -0.7498893 -0.081515
80 49 1.2593971 -0.74988935 -0.0815154
90 55 1.25939717 -0.749889351 -0.081515457
110 68 1.2593971718 -0.7498893518 -0.0815154576
190 116 1.259397171841 -0.7498893518853 -0.081515457671
210 128 1.2593971718412 -0.74988935188533 -0.081515457671181

The function f is smooth and the machine precision is attained with m = 210,
but j = 128.

Example 2. ∫ +∞

0

sinh(x/4)|x− 0.5|7

x− t
√
xe−x dx ,

wα(x) =
√
x e−x , u(x) = e−x/2 , f ∈W6(u) .

In this case α = 0.5, γ = 0 and we use H(B)
m (fwα) to approximate H(fwα). The

estimate (8.119) holds true since the hypothesis (8.114) is fulfilled. Here f has an
exponential growth and it is less regular then the previous example. However, the
machine precision is attained with j = 142.
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m j t = 0.1 t = 1.5 t=5
32 30 5.37e+3 6.371e+3 1.229e+4
50 46 5.3775062e+3 6.3713515e+3 1.2292521e+4
64 58 5.37750622e+3 6.37135157e+3 1.22925217e+4
128 114 5.3775062230e+3 6.371351571e+3 1.229252173e+4
175 133 5.37750622304e+3 6.3713515719e+3 1.22925217399e+4
256 142 5.377506223011475e+3 6.371351571909615e+3 1.229252173992784e+4

Example 3. ∫ +∞

0

sin(x)
x− t

e−x
3
dx ,

wα(x) = e−x
3
, u(x) = e−x

3/3 , f ∈Ws(u) , ∀ s ≥ 1 .

Here α = 0, γ = 0 and we useH(A)
m (fwα) to approximateH(fwα) inside (0, θam),

where in this case am ∼ m1/3. Therefore, for these selections of m, and θ = 0.6 we
have to choose t < 1.51

m j t = 0.1 t = 0.5 t=1.5
16 10 1.02 0.51 -0.6
32 20 1.026 0.516 -0.648
64 40 1.02669 0.516715 -0.648546
128 79 1.026694395 0.516715317 -0.64854614
175 120 1.026694395671 0.5167153177437 -0.648546146289
256 158 1.02669439567133 0.51671531774378 -0.64854614628959

Example 4. ∫ +∞

0

e−x
2

(x− t)(1 + x4)8
dx ,

w(x) = e−x
2
, u(x) = e−x

2/2 , f ∈Ws(u) , ∀ s ≥ 1

m j t = 0.1 t = 1 t=1.5
16 11 -0.3 -0.74 -0.40
32 21 -0.34 -0.745 -0.4096
64 30 -0.34818 -0.7457 -0.4096838
128 103 -3.4818430 -0.745766 -0.40963867
256 120 -3.481843089 -0.7457660923 -0.4096386720

Here α = 0, γ = 0 and we use H(A)
m (fwα) to approximate H(fwα). We point

out that the value of the seminorm in the error expression cannot be overlooked.
Indeed, for s = 10, it is ‖f (10)ϕ10u‖∞ ∼ 108 and this large value justify a slow
approximation rate.

All the computations, except those regarding zeros and Christoffel numbers with
β 6= 1, were performed in double machine precision 2.2204 × 10−16. In the case
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β 6= 1, the coefficients in the three term recurrence relation for the polynomi-
als {pm(w)}m are not always known. Therefore the computation of zeros and
Christoffel numbers can be performed by using the package “OrthogonalPolynomi-
als” in MATHEMATICA [2]. This procedure uses “high” variable precision and
requires an higher computational effort. It seems that some difficulties appear for
m > 400, probably due to almost 500−digits precision required in computing the
coefficients of the recurrence relation.

10. The proofs: second part

First we need some auxiliary results and notations.

Lemma 10.1. With wα = e−x
β

xα, −1/4 < α < 1, β > 1/2

(10.123) ‖H(wα)‖2 ≤ C ,
with C 6= C(t).

Proof. We start from

(10.124) H(wα; t) =
∫ 2t

0

wα(x)
x− t

dx+
∫ +∞

2t

wα(x)
x− t

dx =: I1(t) + I2(t) .

For any α > −1

(10.125) I1(t) ≤
∫ 2t

0

dx

x− t
= 0 .

Now let us assume t > 1. For any α > −1

I2(t) ≤ e−t
β

∫ +∞

2t

e−x
β/2xα

x− t
dx =

= wα(t)
∫ ∞

2

e−(ty)β/2 yα

y − 1
dy ≤ wα(t)

∫ ∞
2

e−y
β/2 yα

y − 1
dy ≤ Cwα(t) .

Consider now 0 < t ≤ 1 and α > 0. Using x− t > x/2,

I2(t) ≤ 2e−t
β

∫ +∞

0

e−x
β/2xα−1 dx ≤ Ce−t

β

.

Finally for be 0 < t ≤ 1 and −1/4 < α < 0, using x− t > x/2,

(10.126) I2(t) ≤ 2α+3/4e−t
β

tα−1/4

∫ +∞

2t

e−x
β/2

x3/4
dx ≤ C wα(t)√

ϕ(t)
.

Combining estimates (10.125)–(10.126) with 10.124, we have

‖H(w)‖2 ≤ C
∥∥∥∥ wα√ϕ

∥∥∥∥
2

and under the assumption α > −1/4, the Lemma follows.
�

For 1 ≤ p ≤ +∞ we introduce the following Zygmund-type spaces,

Zps (u) =
{
f ∈ Lpu([0,+∞)) : ‖f‖Zps (u) := ‖fu‖p + sup

t>0

Ωrϕ(f, t)u,p
ts

<∞, r > s

}
,
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where, setting ϕ(x) =
√
x,

Ωrϕ(f, t)u,p = sup
0<h≤t

‖(∆̄r
hϕf)u‖Lp(Irh) ,

Irh = [8(rh)2, Ch∗], C an arbitrary constant, h∗ = 1/h2/(2β−1) and

∆̄r
hϕ =

r∑
i=0

(−1)i
(
r

i

)
f
(
x+

(r
2
− i
)
h
√
x
)
.

In the next we need two additional results. The first is a weaker version of the
Jackson inequality, the second is the so called Salem-Stechkin inequality.

Theorem 10.2 ([27]). Let f ∈ Lpu, 1 ≤ p ≤ ∞, such that∫ √am/m
0

Ωrϕ(f ; t)u,p
t

dt <∞ ,

r ≥ 1. Then we have

Em(f)u,p ≤ C
∫ √am/m

0

Ωrϕ(f ; t)u,p
t

dt ,

with m > r and C 6= C(m, f).

Theorem 10.3 ([27]). Let f ∈ Lpu, 1 ≤ p ≤ ∞. Then for every m, r ∈ N, with
m > r ≥ 1 we have

(10.127) Ωrϕ(f ; t)u,p ≤ Ctr
[1/t]∑
i=0

(
1 + i
√
ai

)r
Ei(f)u,p

1 + i
,

with m > r and 0 < C 6= C(m, f) and C = C(r).

Lemma 10.4. For any f ∈ Z∞s+1(u), under the assumption 0 ≤ γ < α + 1/4, the
function F(fwα) ∈ Z∞s (u).

Proof. First we prove

(10.128) Em−1(F(fwα))u,2 ≤ CEm(f)u,∞ .

Consider the polynomial

(10.129) Qm−1(t) =
∫ +∞

0

Pm(x)− Pm(t)
x− t

wα(x) dx ,

where Pm ∈ Pm is a polynomial of quasi best approximation of f in Cu, i.e. such
that (see [27]),

(10.130) ‖(f − Pm)u‖∞ ≤ CEm(f)u,∞ , C > 1 .

Setting rm(f) = f − Pm, we get

(10.131) ‖[F(fwα)−Qm−1]u‖2 ≤ ‖H(rm(f)wα)u‖2 + ‖rm(f)uH(w)‖2 .
Using Lemma 10.1, ‖H(wα)‖2 ≤ C since α > −1/4, and

‖[F(fwα)−Qm−1]u‖2 ≤ ‖H(rm(f)wα)u‖2 + ‖rm(f)u‖∞‖H(w)‖2 ≤
≤ ‖H(rm(f)wα)u‖2 + CEm(f)u,∞ .

Setting ϕ(x) =
√
x, and recalling [1, p.115]∥∥∥∥ 1
√
ϕ
H(gϕ)

∥∥∥∥
2

= π‖g√ϕ‖2, ∀ g ∈ L2(R+) ,
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we have, since u(t)
√
ϕ(t) ≤ C,

‖H(rm(f)wα)u‖2 ≤
∥∥∥∥ 1
√
ϕ
H(rm(f)wα)

∥∥∥∥
2

=

= π

∥∥∥∥rm(f)w
√
ϕ

∥∥∥∥
2

≤ C
∥∥∥∥ w

u
√
ϕ

∥∥∥∥
2

Em(f)u,∞ ≤ CEm(f)u,∞ ,

where last inequality holds since
∥∥w/u√ϕ∥∥

2
≤ C under the assumption α−γ+1/4 >

0. Therefore

(10.132) ‖[F(fwα)−Qm−1]u‖2 ≤ CEm(f)u,∞ ,

and (10.128) follows.
By (10.128) and using the Jackson theorem

Em−1(F(fwα))u,2 ≤ CEm(f)u,∞ ≤ C
∫ √am/m

0

Ωrϕ(f ; t)u,∞
t

dt

and under the assumption f ∈ Z∞s+1(u), it follows

(10.133)

Em−1(F(fwα))u,2 ≤ C sup
t>0

Ωrϕ(f ; t)u,∞
ts+1

∫ √am/m
0

ts dt ≤

≤ C
(√

am
m

)s+1

‖f‖Z∞s+1(u) .

Now we prove F(fwα) ∈ Z2
s+1(u), i.e.

(10.134) sup
t>0

Ωrϕ(F(fwα); t)u,2
ts+1

<∞ .

Using the Salem-Stechkin inequality (10.127) and estimates (10.133) and am(
√
wα)∼

m1/β , we have

Ωrϕ(F(fwα); t)u,2
ts+1

≤ C‖f‖Z∞s+1(u)t
r−s−1

[1/t]∑
i=1

(√
ai
i

)s+1−r 1
i+ 1

≤ C‖f‖Z∞s+1(u)t
r−s−1

[1/t]∑
i=1

i(1/2β−1)(s+1−r)−1

with β > 1/2 and r > s+ 1. Then we have

Ωrϕ(F(fwα); t)u,2
ts+1

≤ Ctr−s−1

∫ [1/t]

0

x(1/2β−1)(s+1−r)−1 dx ≤ C .

Using then Theorem 4.5 in [27], with g ∈ L2
u, under the assumption∫ 1

0

Ωrϕ(g; t)u,2
t2

dt < +∞ ,

we have

‖gu‖∞ ≤ C
(
‖gu‖2 +

∫ 1

0

Ωrϕ(g; t)u,2
t2

dt

)
,

and
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(10.135)

Em(g)u,∞

Ωrϕ

(
g;
√
am
m

)
u,∞

 ≤ C
∫ √am/m

0

Ωrϕ(g; t)u,2
t2

dt .

Therefore, by two last inequalities it follows Z2
s+1(u) ⊂ Z∞s (u). Thus F(fwα) ∈

Z2
s+1(u) ⊂ Z∞s (u) and the Lemma is completely proved.

�

Lemma 10.5. For any f ∈ Z∞s+1(u), under the assumption 0 ≤ γ < α+ 1/4,

(10.136) Em(F(fwα))u,∞ ≤ C
(√

am
m

)s
‖f‖Z∞s+1(u) ,

(10.137) Em(Fm(fwα))u,∞ ≤ C
(√

am
m

)s
‖f‖Z∞s+1(u) ,

where C is independent on f,m.

Proof. By Lemma 10.4 under the assumption 0 ≤ γ < α+ 1/4, f ∈ Z∞s+1(u) =⇒
F(fw) ∈ Z2

s+1(u) and therefore by (10.135), we have

(10.138) Em−1(F(fwα))u,∞ ≤ C
∫ √am/m

0

Ωrϕ(F(fwα); t)u,2
t2

dt .

Using then inequality (10.127) and (10.128)

Ωrϕ(F(fwα); t)u,2 ≤ Ctr
[1/t]∑
i=0

(
i+ 1
√
ai

)r
Ei(f)u,∞
i+ 1

≤

≤ C‖f‖Z∞s+1(u)t
r

[1/t]∑
i=1

(√
ai
i

)s+1−r 1
i

≤ C‖f‖Z∞s+1(u)t
r

[1/t]∑
i=1

i

(
(1/2β)−1

)
(s+1−r)−1

with β > 1/2 and r > s+ 1. Then we have

Ωrϕ(F(fwα); t)u,2 ≤ C‖f‖Z∞s+1(u)t
r

∫ [1/t]

0

x

(
(1/2β)−1

)
(s+1−r)−1 dx ≤

≤ C‖f‖Z∞s+1(u)t
s+1 .

Therefore

(10.139)

Em−1(F(fwα))u,∞ ≤ C‖f‖Z∞s+1(u)

∫ √am/m
0

ts−1 dt ≤

≤
(√

am
m

)s
‖f‖Z∞s+1(u) .

and (10.136) follows. We omit the proof of (10.137) since it is very similar.
�
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We slightly change the notation in the following two lemmas, setting xk :=
xm,k(wα), k = 1, 2, . . . ,m.

In order to prove next lemma, we recall the Posse-Markov-Stieltjes inequalities
[12, p.33]. For any function g s.t. g(k)(x) ≥ 0, k = 0, 1, . . . 2m − 1,m > 1, for
x ∈ (0, xd), d = 2, 3, . . . ,m, then we have

(10.140)
d−1∑
k=1

λm,k(wα)g(xk) ≤
∫ xd

0

g(x)wα(x) dx ≤
d∑
k=1

λm,k(wα)g(xk) .

For any function g s.t. (−1)kg(k)(x) ≥ 0, k = 0, 1, . . . 2m − 1,m > 1, for
x ∈ (xd,+∞), d = 1, 2, . . . ,m− 1, then we have

(10.141)
m∑

k=d+1

λm,k(wα)g(xk) ≤
∫ +∞

xd

g(x)wα(x) dx ≤
m∑
k=d

λm,k(wα)g(xk) .

Lemma 10.6. Let ρ(x) = e−x
β

xδ, δ > −1/4, β > 1/2 and let xd be a zero of
pm(wα) closest to t, i.e. xd−1 < t < xd+1. We have

(10.142)
∫ +∞

0

∣∣∣∣∫ xd−1

0

ρ(x)
x− t

dx

∣∣∣∣2 dt ≤ C
(10.143)

∫ +∞

0

∣∣∣∣∣
∫ +∞

xd+1

ρ(x)
x− t

dx

∣∣∣∣∣
2

≤ C

with C 6= C(t).

Proof. We prove (10.142). Start from∣∣∣∣∫ xd−1

0

ρ(x)
x− t

dx

∣∣∣∣ ≤ |H(ρ; t)|+

∣∣∣∣∣
∫ +∞

xd−1

ρ(x)
x− t

dx

∣∣∣∣∣ =:

(10.144) =: |H(ρ; t)|+ |H(ρµ; t)| ,

where µ(t) is the characteristic function of the interval (xd−1,+∞).
Using Lemma 10.1, taking into account the assumption δ > −1/4, (10.142)

follows. We omit the proof of (10.143) since it follows by similar arguments used
in the proof of (10.143).

�

Lemma 10.7. For any f ∈ Z∞s+1(u), under the assumption 0 ≤ γ < α+ 1/4,

Fm(fwα; t) =
j∑

k=1

λm,k(wα)
f(xk)− fj(t)

xk − t
∈ Z∞s (u) .

Proof. First we prove

(10.145) Em−1(Fm(fwα))u,2 ≤ CEm(f)u,∞
Let Pm ∈ Pm a polynomial of quasi best approximation of f and consider the
polynomial

(10.146) Qm−1(t) =
j∑

k=1

λm,k(wα)
Pm(xk)− Pm(t)

xk − t
.
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Setting rm(f) = f − Pm,

|Fm(fwα; t)−Qm−1(t)|u(t) =

∣∣∣∣∣
j∑

k=1

λm,k(wα)
rm(f, xk)− rm(f, t)

xk − t

∣∣∣∣∣u(t) ≤

≤ ‖rm(f)u‖∞

{
j∑

k=1

λm,k(wα)
u(xk)|xk − t|

+
j∑

k=1

λm,k(wα)
|xk − t|

}
=:

(10.147) =: ‖rm(f)u‖∞{S1(t) + S2(t)} ,

and therefore

(10.148) ‖(Fm(fwα)−Qm−1)u‖2 ≤ ‖rm(f)u‖∞ (‖S1‖2 + ‖S2‖2) .

Consider first S1. Using

(10.149) λm,k(wα) ∼ ∆xkwα(xk), ∆xk = xk+1 − xk, k = 1, 2, . . . ,m ,

we get

S1(t) =
j∑

k=1

wα(xk)∆xk
u(xk)|xk − t|

=

{
d−2∑
k=1

+
d+1∑

k=d−1

+
j∑

k=d+2

}
wα(xk)∆xk
u(xk)|xk − t|

,

where xd is a zero of pm(wα) closest to t.
We have

(10.150)
d−2∑
k=1

wα(xk)∆xk
u(xk)(t− xk)

≤ C
∫ xd−1

0

wα(x)
u(x)(t− x)

dx .

Similarly we obtain

(10.151)
j∑

k=d+2

wα(xk)∆xk
u(xk)(xk − t)

≤ C
∫ xj

xd+1

wα(x)
u(x)(x− t)

dx

Moreover,

(10.152)
λm,d(wα)

u(xd)|t− xd|
∼ ∆xdwα(xd)
u(xd)|t− xd|

≤ Cwα(t)
u(t)

.

The same estimate holds for the terms of indices d− 1 and d+ 1.
Combining (10.150)–(10.152), we have

(10.153)

‖S1‖2 ≤ C

[∫ +∞

0

[(∫ xd−1

0

wα(x)
u(x)(t− x)

dx

)2

+

+

(∫ xj

xd+1

wα(x)
u(x)(x− t)

dx

)2

+
(
wα(t)
u(t)

)2
 dt

1/2

≤ C ,

where the last bound follows by virtue of Lemma 10.6, which holds true under the
assumption α− γ + 1/4 > 0.
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Consider S2.

(10.154) S2(t) =
d−2∑
k=1

λm,k(wα)
t− xk

+
j∑

k=d+2

λm,k(wα)
xk − t

+
d+1∑

k=d−1

λm,k(wα)
|t− xk|

.

Using (10.140)–(10.141),

(10.155)
d−2∑
k=1

λm,k(wα)
t− xk

≤ λm,d−2(wα)
t− xd−2

−
∫ xd−1

0

w(x)
x− t

dx

m∑
k=d+2

λm,k(wα)
xk − t

≤ λm,d−2(wα)
xd−2 − t

+
∫ +∞

xd+2

w(x)
x− t

dx .

By (10.149) and taking into account ∆xd(wα) ∼ |t− xd|, we get

(10.156)
λm,d(wα)
|t− xd|

∼ ∆xdwα(xd)
|t− xd|

≤ Cwα(t)

The same estimate holds for the terms indexed by d− 2 to d+ 2. Then, combining
(10.155)–(10.156) in (10.154), and using Lemma 10.6,

(10.157)

‖S2‖2 ≤ C

[∫ +∞

0

[(∫ xd−1

0

wα(x)
(t− x)

dx

)2

+

+

(∫ xj

xd+1

wα(x)
(x− t)

dx

)2

+ wα(t)2

 dt
1/2

≤ C .

By (10.153), (10.157) and (10.148) it follows

(10.158) ‖[Fm(fwα)−Qm−1]u‖2 ≤ CEm(f)u,∞

and taking the infimum of Qm−1 ∈ Pm−1, (10.145) follows.
Following the same arguments used in the proof of the Lemma 10.4, the assertion
is completely proved.

�
We omit the proof of Theorem 7.2 since it can be easily obtained by the same
arguments used in the proof of Theorem 3.5 in [24, p.34]. (See also [31])

Proof of Theorem 8.1 We prove (8.115). By Theorem 7.1 under the assumption
α/2− 1/4 ≤ γ < α+ 1/4,

(10.159) sup
t>0
|L∗m+2(w−α ,Fm(fwα); t)|u(t) ≤ C‖Fm(fwα)u‖∞ logm.

Since

|Fm(fwα; t)|u(t) ≤ ‖fu‖∞

{
j∑

k=1

λm,k(wα)u(t)
|xm+1,k(w)− t|u(xm+1,k(w))

+

+
j∑

k=1

λm,k(wα)
|xm+1,k(w)− t|

}
,
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taking into account (10.148) and using estimates (10.153) and (10.157),

|Fm(fwα; t)|u(t) ≤ ‖fu‖∞ .

We omit the proof of (8.115) since it follows by similar arguments.
�

In order to prove Theorem 8.118 we recall some additional results. Let xm,j(wα+1)
defined as

xm,j(wα+1) = xm,j(m)(wα+1) =

= min {xm,k(wα+1) : xm,k(wα+1) ≥ θam , k = 1, 2, . . . ,m} ,
and define the following subspace

(10.160)
P∗m+1 = {q ∈ Pm+1 : q(xm,i(wα+1)) = q(am) = 0,

xm,i(wα+1) > xm,j(wα+1)} .
In [20] the authors proved , that for any polynomial Qm+1 ∈ P∗m+1 ⊂ Pm+1, it is
L∗m+1(w̄, Qm+1) = Qm+1. Moreover, setting

Ẽm(f)u,∞ := inf
Pm∈P∗m

‖[f − Pm]u‖∞

they estimate Ẽm(f)u,∞ by the best approximation error EM (f)u,∞, where M is
a proper fraction of m,

(10.161) Ẽm(f)u,∞ ≤ C
{
EM (f)u + e−Am‖fu‖∞

}
, ∀ f ∈ Cu

where M =
[
m(θ/(1 + θ))β

]
, the constants 0 < A 6= A(m, f), 0 < C 6= C(m, f) [20].

Proof of Theorem 8.2. We prove (8.118). Let Qm+1 ∈ P∗m+1.

|H(fwα; t)−H(A)
m (fwα; t)|u(t) ≤ |F(fwα; t)−Qm+1(t)|u(t)+

+|L∗m+1,1(wα+1,Fm+1(fwα)−Qm+1; t)|u(t) .

Since the assumptions of Theorem 7.2 are satisfied with η = α+1, τ = 1, for α < 1,
we have

|H(fwα; t)−H(A)
m (fwα; t)|u(t) ≤ C|F(fwα; t)−Qm+1(t)|u(t)+

+|Fm+1(fwα; t)−Qm+1(t)|u(t) logm

Taking the infimum on Qm+1 ∈ P∗m+1 and by (10.161),

|H(fwα; t)−H(A)
m (fwα; t)|u(t) ≤ C {‖[Fm(fwα)−Qm+1]u‖∞ logm+

+ ‖[F(fwα)−Qm+1]u‖∞} .
Taking the infimum on Qm+1 ∈ P∗m+1 and by (10.161),

|H(fwα; t)−H(A)
m (fwα; t)|u(t) ≤ C {EM (F(fwα))u,∞+

+EM (Fm+1(fwα))u,∞ logm} ,

where M =
[
m (θ/(1 + θ))β

]
∼ m. By Lemmas 10.4 and 10.7, (8.118) follows.

We omit the proof of (8.119) since it follows by similar arguments.
�
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[29] S.G. Mikhlin & S. Prössdorf, Singular integral operator, Springer-Verlag, Berlin, Heidel-

berg, New York, Tokyo, 1986.

[30] I. Notarangelo, Approximation of the Hilbert transform on the real line using Freud
weights, Proceedings of the International Conference Approximation & Computation,

dedicated to the 60−th anniversary of G. Milovanovič, NiǍugust 25–29, 2008.
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[37] P. Vértesi, On the Lebesgue function of weighted Lagrange interpolation II, J. Austral.

Math., 65(1998), 145–162.
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