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Abstract. We introduce a classification method (cumula-
tive discriminant analysis) of the discriminant analysis type
to discriminate between cloudy and clear-sky satellite ob-
servations in the thermal infrared. The tool is intended for
the high-spectral-resolution infrared sounder (IRS) planned
for the geostationary METEOSAT (Meteorological Satellite)
Third Generation platform and uses IASI (Infrared Atmo-
spheric Sounding Interferometer) data as a proxy. The cumu-
lative discriminant analysis does not introduce biases intrin-
sic with the approximation of the probability density func-
tions and is flexible enough to adapt to different strategies to
optimize the cloud mask. The methodology is based on nine
statistics computed from IASI spectral radiances, which ex-
ploit the high spectral resolution of the instrument and which
effectively summarize information contained within the IASI
spectrum. A principal component analysis prior step is also
introduced, which makes the problem more consistent with
the statistical assumptions of the methodology. An initial as-
sessment of the scheme is performed based on global and
regional IASI real data sets and cloud masks obtained from
AVHRR (Advanced Very High Resolution Radiometer) and
SEVIRI (Spinning Enhanced Visible and Infrared Imager)
imagers. The agreement with these independent cloud masks
is generally well above 80 %, except at high latitudes in the
winter seasons.

1 Introduction

Modern meteorological satellites carry infrared sensors on-
board to sense the Earth emission spectrum at very high
spectral resolution. These include, for example, AIRS (At-
mospheric Infrared Sounder), IASI (Infrared Atmospheric
Sounding Interferometer) and CrIS (Cross-track Infrared
Sounder). All of these spectrometers are characterized by
broadband spectral coverage (3.7–15.5 µm) and a spectral
sampling rate in the range 0.25–2 cm−1.

EUMETSAT (European Centre for the Exploitation of
Meteorological Satellites) is also preparing for METEOSAT
(Meteorological Satellite) Third Generation (MTG), which
will carry the infrared sounder (IRS) at a hyperspectral reso-
lution of 0.625 cm−1 wave numbers.

For the MTG programme, a twin configuration – compris-
ing the MTG imaging satellite, called MTG-I, and the MTG
sounding satellite, called MTG-S – has been selected and
consolidated as a baseline. Therefore the MTG-S satellite
will not carry an imager in the visible onboard; as a con-
sequence the cloud-screening process of MTG-IRS spectral
radiances has to rely on a stand-alone system. One could ar-
gue that MTG-IRS has itself imaging capability; however its
spectral coverage is limited below≈ 2200 cm−1 and, there-
fore, it will miss the near-infrared and visible portion of the
spectrum. The need to develop a stand-alone scene analysis
for MTG-IRS has mostly motivated this work, in which the
IASI instrument will be used as a proxy for MTG-IRS.
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MTG-IRS is a hyperspectral sounder orbiting onboard a
geostationary platform, and as such it is expected to further
improve numerical weather prediction (NWP) forecast per-
formance compared with that already reached with hyper-
spectral sensors on polar satellites. The high spectral resolu-
tion of new advanced infrared (polar) sensors has resulted in
better coverage and significantly improved temperature and
moisture soundings capabilities compared with past sound-
ing instrumentation (e.g.Hilton et al., 2012). Infrared data,
however, are frequently affected by clouds. Thus, observa-
tions must be processed for operational data assimilation and
inversion for geophysical parameters, either by screening to
remove cloud-contaminated soundings or by a so-called pro-
cess of cloud clearing. It should be stressed that operational
numerical weather prediction centres currently use cloud-
screened or cloud-cleared data.

As said, IASI will be used as a proxy for MTG-IRS; there-
fore the methodology we present in this paper will be exem-
plified for this instrument. IASI has been developed in France
by the Centre National d’Etudes Spatiales (CNES) and is on-
board the Metop (Meteorological Operational Satellite) plat-
form, a series of three satellites belonging to the EUMETSAT
European Polar System (EPS). The instrument has a spectral
coverage extending from 645 to 2760 cm−1, which, with a
sampling interval1σ = 0.25 cm−1, gives 8461 data points
or channels for each single spectrum. Data samples are taken
at intervals of 25 km along and across track, each sample hav-
ing a minimum diameter of about 12 km. Further details on
IASI and its mission objectives can be found inHilton et al.
(2012).

Most cloud detection methods are based on the definition
of some statistics and related statistical tests that are a mea-
sure of some attribute of the whole spectrum, of a suitable
spectral interval, of radiance at two or very few wavelengths
or even of a single radiance. For example it is widely ac-
knowledged that clouds have a higher reflectance and are
generally colder than the underlying surface, which moti-
vated the use of visible and infrared regions for the discrim-
ination. Earlier statistics have compared radiance observa-
tions with those calculated assuming clear sky conditions
(based on radiative transfer (RT) models), as in the ISCCP
algorithm (Rossow, 1989); essentially they label a pixel as
cloudy if its measured radiance is less than the calculated
clear-sky value by a certain amount that takes into account
the variability of the latter. Such algorithms suffer from the
drawback of a very large variability of clouds and of an un-
derlying land surface, which makes estimating the status of
the pixel inaccurate. Therefore it is nowadays preferred to
develop statistics that involve two or more wavelengths and
that are least sensitive to the underlying surface, especially
on land, thereby being able to discard the estimate of radi-
ance in clear sky conditions. On some occasions ancillary in-
formation is used coming from NWP models. It is useful to
adopt several statistics to discriminate cloudy from clear sky

in specific conditions (e.g. cirrus or phase of the cloud) and
to estimate a sort of probability map of the cloudy condition.

Most statistics of all present operational imagers onboard
satellites are based on this principle, and they differ in the
choice of the involved wavelengths or spectral interval. For
example the CLAVR-x (Cloud Advanced Very High Resolu-
tion Radiometer Extended) cloud mask product for AVHRR
(Advanced Very High Resolution Radiometer) (Heidinger,
2004), which supersedes CLAVR-1 (Stowe et al., 1999), in-
cludes a series of 12 tests based on the six AVHRR spec-
tral radiances depending on the type of surface and, in
some cases, on the time of the day. The MAIA cloud mask
(Lavanant et al., 2007) developed for the AVHRR onboard
Metop uses a similar approach. For MODIS (Moderate-
Resolution Imaging Spectroradiometer) (Ackerman et al.,
1998, 2008) nine statistics and corresponding tests are in-
troduced, each of them involving two or three wavelengths at
most; in the case of SEVIRI (Spinning Enhanced Visible and
Infrared Imager) (EUMETSAT, 2009) about 10 statistics and
corresponding tests are defined depending on the time of the
day (daytime, sun glint, twilight, night-time) and on the sur-
face type (land or sea). Often tests based on spatial coherence
statistics are also introduced that rely on the different spatial
correlation in images in clear and cloudy conditions (Sand-
hya et al., 2004). Besides statistics strictly based on radiance
(thresholding, comparison of radiances or their ratios), many
others have been developed aimed at picking particular fea-
tures that are different in clear and cloudy conditions. For ex-
ample thehs index is introduced inSerio et al.(2000) based
on correlation and cross-correlation of spectral radiances in
the atmospheric infrared window. Many other methodologies
for cloud detection have been developed in the last decade in
the frameworks of statistics and machine learning. It is not
the purpose of the present paper to discuss them here (we de-
fer toTapakis and Charalambides(2012) for a recent review)
because they will not be used for the reasons that are going to
be discussed. In addition, we will focus mostly on the prob-
lem of discriminating the presence of cloud contamination
in the radiances, but not on cloud classification in terms of
phase and top pressure and temperature.

One of the most appropriate approaches for cloud detec-
tion within the footprint or field of view of a sounding in-
strument is its co-location with a suitable imager radiome-
ter, or even better to design and develop the sounder with
a built-in imager. Both approaches have been developed for
IASI. However, the built-in imager has only two channels and
is not appropriate for cloud detection. Co-location of IASI
footprint with AVHRR imagery has been used, for exam-
ple, byLavanant et al.(2007). However, technological con-
straints, such as those envisaged for MTG-IRS, or simply
the need of real-time processing, as required, for example,
in NWP applications, can severely limit the synergy between
sounders and imagers. Thus, in some circumstances a stand-
alone cloud detection strategy for a given sounder is not a
choice but a constraint we are forced to deal with. In this
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case, most limitations are related to the reduced spectral cov-
erage, which for high-spectral-resolution infrared sounders
can miss, for example, the near-infrared or visible portion of
the spectrum. The fact that the spectral regions of interest for
cloud detection are limited motivated this paper to use the
very well consolidated physical arguments already available
for present sensors to IASI, suitably adapted to its design fea-
tures. Therefore in this paper some new or adapted from past
sensor statistics will be introduced.

In addition a new cloud detection methodology (cumu-
lative discriminant analysis, CDA) will be introduced that
uses several arguments from the statistics framework; it can
be fully considered as a classification methodology where a
training data set is needed to set the thresholds for discrimi-
nating clouds from clear sky. CDA relies on the nonparamet-
ric empirical cumulative distribution function of each statis-
tic in clear and cloudy conditions that has optimal properties
from the statistical point of view. To choose the thresholds
of the tests, a cost function is to be introduced to be mini-
mized. Starting from the estimate of the type I and type II
errors, CDA is flexible enough to adapt to the requirements
of the user in terms of preferring the eype I or type II er-
ror or a mixture of the two, also putting some constraints on
the minimum acceptable rate for one of them. When the cost
function is the sum of type I and type II errors, the method-
ology reverts to the classical discriminant analysis for a loss
function of 0–1. It can also naturally handle receiver oper-
ating characteristics (ROC) graphs relying on sensitivity and
specificity (seeFawcett, 2004) and other measures of a test’s
accuracy (e.g. F measure, G measure). The CDA is extended
in this paper to more statistics assuming their independence.
To partially overcome the approximation of independence, a
principal component analysis prior transform has been ap-
plied as inAmato et al.(2008), giving rise to a very fast and
accurate methodology. By its very construction, the method-
ology naturally provides a quality indicator of the retrieved
status for each pixel (clear or cloudy).

The present paper is mostly concerned with the scientific
basis of CDA. An initial evaluation of the cloud mask is per-
formed with global and regional IASI data complemented
with cloud masks derived from AVHRR and SEVIRI.

The paper is organized as follows. Section2 deals with
the data used for developing statistics, training and validating
the cloud detection scheme. The series of statistics defined
and used in the paper are described in Sect.3. Section4 in-
cludes the full statistical development of CDA. Experiments
are shown in Sect.5, while conclusions are drawn in Sect.6.

2 Data sets

We have individuated and developed two data sets of IASI
spectra to train, cross-check and validate the cloud detection
scheme. These are referred to as IASI1 and IASI2, and their
characteristics are listed below:

IASI1. It comprises 888 380 IASI spectra corresponding
to a 12 h global acquisition on 17–18 November 2009
(Lavanant et al., 2011). The set is qualified for sky type
(clear/cloudy) through the CMS (Centre de Meteorolo-
gie Spatiale, Lannion, France) cloud mask (Lavanant et
al., 2011), which is based on the co-location of the IASI
footprint with AVHRR imagery.

IASI2. It comprises 1 072 050 spectra corresponding to
a 15 h global acquisition on 22–23 July 2007. Also in
this case the set is qualified for sky type (clear/cloudy)
through the CMS cloud mask.

Both sets have been endowed with skin temperature fields
from the ECMWF (European Centre for Medium-range
Weather Forecasts) analysis, co-located in space and time
with the IASI footprints.

To take into account the possible dependence of the
test statistics and of ancillary data (reference spectra and
ECMWF skin temperature) on season and air mass type, we
have defined 10 climatic zones. To increase statistics homo-
geneity, some models are also split into submodels according
to the hemisphere (Northern Hemisphere, NH, or Southern
Hemisphere, SH) or to the time of the day. The climate zones
are listed in Table1.

It is important to stress that the definition of the climatic
zones 1 to 5 does not include sea ice or snow/ice in the case
of land. For these models we assume the skin temperature to
be above the freezing point of 273 K. The cases of sea ice and
land ice/snow are also split with latitude. Also note that we
have included Antarctica as a special climate zone because
this region is covered with permanent ice.

Only for the tropical zone do the two data sets play a com-
plementary role (one for training and the other one for valida-
tion). In the other climatologies some data sets are populated
with only a few IASI spectra, which makes it impossible to
use them as training and/or validation data sets; therefore we
had to merge them with homogeneous zones in order to reach
a statistically significant size. In some cases, we had no data
at all and the cloud mask thresholds were not produced.

This is indeed a limitation for operational uses. However,
as already mentioned the main goal of this paper is to show
the scientific basis of the methodology and to outline its ini-
tial evaluation.

2.1 Silver standard

Choice of the reference training data set is an important step
in classification, because properties of the statistics in clear
and cloudy sky conditions are estimated from it. Due to its
importance, this data set is also called “gold” standard, for
which the class label of each sample of the data set is as-
sumed to be exactly known. Often, this is obtained by an
expert who manually trains each sample of the data set and
assigns the class. In practice in many applications this is
not possible, or it is possible only for a limited sample; as
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Table 1.Definition of climate zones as a function of latitude and season.

Model Climatic zone Latitude Season (months) Data set
(degrees)

1 Tropical −35 to 35 Jan–Dec Both
21 Mid-lat summer NH 35 to 60 Apr–Oct IASI2
22 Mid-lat summer SH −60 to−35 Nov–Mar IASI1
31 Mid-lat winter NH 35 to 60 Nov–Mar IASI1
32 Mid-lat winter SH −60 to−35 Apr–Oct IASI2
41 High-lat summer NH 60 to 90 Apr–Oct IASI2
42 High-lat summer SH −90 to−60 Nov–Mar IASI1
51 High-lat winter NH 60 to 90 Nov–Mar IASI1
52 High-lat winter SH −90 to−60 Apr–Oct IASI2
61 Sea ice NH 0 to 90 Jan–Dec Both
62 Sea ice SH −90 to 0 Jan–Dec Both
71 Land below 1 km with snow/ice NH 0 to 90 Jan–Dec IASI1
72 Land below 1 km with snow/ice SH −60 to 0 Jan–Dec IASI2
81 Land above 1 km with snow/ice NH 0 to 90 Jan–Dec IASI2
82 Land above 1 km with snow/ice SH −60 to 0 Jan–Dec IASI1
9 Antarctica below 1 km Jan–Dec IASI1
10 Antarctica above 1 km Jan–Dec IASI1

a consequence the sample is not fully representative of the
full population and the statistical properties estimated from
the data set are not accurate. In the case of cloud detection
there is a further problem coming from the fact that it can be
difficult to recognize clouds from satellite imagery even for
a well-trained expert in particular conditions like night-time
or cirrus. When a gold standard is not available or not fully
representative, it is usual to choose a training data set start-
ing from the results of another classification algorithm that is
proven to be very reliable. In this case this data set is called
“silver” standard. The silver standard used in the present pa-
per relies on the CMS cloud mask which has been used as
the IASI reference cloud mask.

2.1.1 The CMS reference cloud mask

The IASI reference cloud mask we have used in our analysis
has been developed at CMS (Lavanant et al., 2011); in turn,
it is based on the cloud mask derived from the AVHRR data
at full resolution (Lavanant et al., 2007).

AVHRR pixels are co-located with IASI footprints. Within
each IASI footprint, the cloud fraction,Cf , is determined ac-
cording to the ratio

Cf = 100
Ncloudy

Ntotal
× 100,

with Ncloudy andNtotal being the number of AVHHR cloudy
and total pixels, respectively.Cf ranges from 0 to 100, with
0 corresponding to a totally clear IASI observation. For the
present analysis, the training of the IASI cloud mask has been
performed considering a thresholdCf = 5; that is, the IASI
footprint is considered clear if the AVHRR-based cloud frac-
tion is below or equal to 5 %.

The CMS-AVHRR cloud detection scheme is based on a
series of tests, which use the AVHRR observations in its six
channels and take advantage of a priori or background in-
formation for the surface and atmospheric parameters. The
a priori state vector is based on the ECMWF 12–18 h forecast
for the total water vapour content and land surface tempera-
ture and on climatologies for the other parameters (Lavanant
et al., 2007, 2011). In addition to the tests based on the visi-
ble channels, the AVHRR cloud detection scheme also uses a
series of thermal infrared brightness temperature tests and a
series of local uniformity tests, which are designed to detect
cloud edges, thin cirrus and small cumulus, by using their
high spatial variations in the visible, near infrared or infrared
channels.

Comparisons of CMS with CLAVR-x show an agreement
which is close to 90 % (Lavanant et al., 2007). To have an
idea of the quality and accuracy of AVHRR-based cloud
masks, we quote the validation of CLAVR-x (Heidinger et
al., 2012) on the basis of a data set that coincides with the
training one. The validation indicates that the cloud mask is
estimated with an accuracy ranging from 78 to 94 % accord-
ing to the surface type (best for deep ocean, worst for Antarc-
tica). Because of the good agreement between CLAVR-x and
CMS, we can conclude that these figures are representative
of the accuracy of the CMS cloud mask as well.

For the specific case of IASI, the CMS cloud mask has
been intercompared with other IASI cloud detection schemes
in Lavanant et al.(2011). The best agreement is achieved
with schemes relying themselves on the AVHRR imager. The
agreement ranges from 78 to 85 %.
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2.1.2 Validation data set based on the SEVIRI
cloud mask

To have an independent validation data set, we have also used
the SEVIRI cloud mask (Derrien and Le Gléau, 2005). A
portion of the data set IASI2, covering the African continent,
has been co-located with SEVIRI imagery, and the SEVIRI
cloud mask has been used to identify clear and cloudy IASI
pixels.

A second, smaller, independent validation data set makes
use of observations collected over Europe/Africa from
25 September to 4 October 2012 in the framework of the
inter-calibration IASI/SEVIRI experiment, performed within
the activities of EUMETSAT GSICS (Global Space-based
Inter-Calibration System).

Validation of the SEVIRI cloud mask is provided inDer-
rien and Le Gléau(2005) and then updated inDerrien(2012)
according to the latest release of the product. It is based on
a subset of case studies (366 298 pixels over the European
and African areas along the period from 10 December 2010
to 21 March 2011) where corresponding in situ observations
were available in terms of octal in the framework of the
World Meteorological Organization synoptic code (sufrace
synoptic observation, SYNOP). Results show that the SE-
VIRI cloud mask agrees with SYNOP for 96.5 % of pixels,
with percentages reaching 98.9 % during daytime and 95.7 %
during night-time.

These two SEVIRI validation data sets have to be con-
sidered silver standards, since they rely on the operational
SEVIRI cloud mask.

3 Statistics

This section summarizes the statistics computed from the
IASI radiances that will be used to discriminate between
cloudy and clear pixels. A detailed account about their defini-
tion and capability to discriminate between cloudy and clear
scenes can be found inSerio et al.(2013). For the sake of
brevity, in this section we limit ourselves to showing the ba-
sic aspects of the statistics, insisting more on the ones which
are less common or rely on an implementation specifically
developed for this work.

First we provide some notations that will be used in the pa-
per. Brightness temperature, BT; spectrum,T (σ); and spec-
tral radiance,R(σ), at wave numberσ are related through
the Planck function

R(σ) =
C1σ

3

exp(C2σ/T (σ )) − 1
,

where wave numberσ is in units of cm−1, R(σ) is in
units of W m−2 (cm−1)−1 sr−1, C1 = 1.1911× 10−8 W m−2

(cm−1)−4 sr−1 and C2 = 1.4388 K-(cm−1)−1. As a conse-
quenceT (σ ) is in units of K. We shall denote byRσ and

Table 2. Definition of the brightness temperatures involved in the
statistics.

BT (K) Spectral range[σ1,σ2] (cm−1)

T790.5 790.5
T791.75 791.75
T 832 [830,834]
T 874 [872.5,875.5]

T 900 [899.5,900.5]

T 1168 [1167.5,1168.5]

T 2003 [2001,2005]
T 2700 [2650,2750]

Tσ the observed radiance and the corresponding BT at wave
numberσ , respectively.

Many of the statistics are defined as a function of suitable
BT in the atmospheric window (see Table2 for the definition
of the BT).

The two BTsT790.5 andT791.75 are defined at specific wave
numbers. The other temperatures are computed as averages
over the corresponding spectral ranges listed in Table2:

T σ =
1

Nσ

σ2∑
τ=σ1

Tτ ,

whereσ is the central wave number of the temperatures (832,
874, 900, 1168, 2003 and 2700 cm−1, orderly),σ1 andσ2 are
the range of the spectral interval for each central wave num-
ber (see Table2) andNσ is the number of spectral ordinates
within the spectral range.

Table3 summarizes the nine statistics computed from the
IASI radiances. It should be stressed that at the present stage
of defining statistics we do not discuss the estimate of the
thresholds for discriminating clear and cloudy pixels, be-
cause this task will be accomplished with the CDA method-
ology (Sect.4). CDA objectively determines the appropriate
threshold for each statistic.

The four statisticsW1, W2, W3 and W4 are Inoue-like
window slope statistics (Inoue, 1985; Inoue and Ackerman,
2002). W1 is the classical Inoue slope test, which is highly
sensitive to cirrus clouds.W2 is a variant ofW1 and is mostly
effective in the case of surface features rapidly changing with
the wave number, such as desert sand. The statisticW4 has
been widely used in AVHRR-based cloud detection (e.g.La-
vanant et al., 2007) and is motivated by the fact that the cirrus
and stratus cloud types have a reflectance at 3.7 µm which
is higher than that of most surface features. The channel at
3.7 µm has been used both during night-time and daytime.
Among the fourW statistics,W3 is the most original one and
has been defined to be sensitive to low and thin water clouds.
The water droplet mode radius of most cloud types is 5 µm
(e.g. Liou, 1992), which means that at 5 µm (2000 cm−1)
scattering effects dominate over absorption. The reverse hap-
pens at 12 µm (833 cm−1), where the absorption dominates
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Table 3.Statistics derived from the IASI radiances. Temperatures are defined in Table2.

Number Statistic Method

1 hs Based on shape similarity between a couple of spectra (observation, reference)
2 χ2

s Based on aχ2-like variable defined on a couple of skin temperature values(T̂s,T
R
s ), with T̂s estimated

from the spectrum andT R
s a suitable reference

3 T0 Based on the BTT 832
4 1TCO2 Split window test based on the CO2 Q-branch at 791 cm−1, 1TCO2 = T790.5 − T791.75
5 W1 Based on the differenceT 900− T 832
6 W2 Based on the differenceT 900− T 1168
7 W3 Based on the differenceT 832− T 2003
8 W4 Based on the differenceT 832− T 2700
9 sh Spatial homogeneity statistic based on the standard deviation ofT0 corresponding to a cluster ofn × n

nearby pixels. For IASI we consider the cluster of 2× 2 pixels within a given field of view.

over scattering. Thus, in the presence of a semi-transparent
water cloud a strong contrast is expected between the BT at
5 µm and that at 12 µm.W3 is expected to play a significant
role over land in detecting warm clouds during night-time.
Over land, because of emissivity, the two equivalent, long-
wave statisticsW1 andW2 can have a variability in clear sky,
which is much larger than that expected for cloudy sky. In
contrast, we expect thatW3 can assume only positive values
in clear sky and negative ones in the case of cloudy scenes.

A slope window test would be almost useless without
suitable driver (non ho capito driver) thermal contrast tests
which capture the physical evidence that, normally, the land
is warmer than the cloud top. We have basically two thermal
contrast statistics. The first one is just the brightness tem-
perature at 833 cm−1, that is,T0. Sea surface emissivity has
a peak at 833 cm−1, and at this wave number natural land
features have the smallest emissivity variability. In clear sky
conditions, independently of the kind of surface, the channel
at 833 cm−1 is the brightest point in the spectrum.

The spatial homogeneity statistic, sh, is similar to those
used with AVHRR-based cloud detection. It uses the stan-
dard deviation ofT0 corresponding to a cluster of 2×2 IASI
pixels. This statistic is normally very well suited to detect
cloud edges; however for IASI it has not proved to be effec-
tive because of the discontinuous IASI scan pattern geometry
and the relatively large field of view. Furthermore, in contrast
it is expected to be very effective for MTG-IRS because of
the imaging capability of the instrument and the smaller field
of view.

The CO2 in-band–out-band statistic,1TCO2 (Masiello et
al., 2003), exploits the strong thermal contrast which is
present in clear sky conditions between the lower and up-
per troposphere. It is based on the absorption feature of the
weak CO2 Q-branch at 791 cm−1. CO2 absorption yields
a very well defined and sharp spectral feature centred at
791.75 cm−1 in between a window region with weak water
vapour absorption.

The χ2
s statistic makes use of information provided by

NWP forecasts and/or analysis for sea and surface temper-
ature,Ts. This temperature is contrasted with that directly
estimated by IASI time–space co-located observations.

For the case of sea surface, the IASI estimate ofTs re-
lies on the classical split window algorithm for the estima-
tion of skin temperature. It is based on the two temperatures
T 874 andT 900. The algorithm we have developed for IASI
is dependent on the field-of-view angle and on the type of
air mass. For the calculation of the regression coefficients in-
volved in the algorithm we have assumed the Northern and
Southern Hemisphere to be climatically equivalent. For prac-
tical computations, one needs a suitable database of atmo-
spheric and surface parameters. To this end, we have used
the ECMWF Chevalier database (Chevalier, 2001). The ac-
curacy of the split window technique ranges between 0.3 and
1 K, depending on the columnar load of water vapour.

The statisticχ2
s for sea surface comparesT̂s, estimated by

the IASI split window technique, against a suitable reference,
Ts,R. We have

χ2
s =

(T̂s− Ts,R)
2

v2
I + v2

R

,

wherev2
I andv2

R are the squared uncertainties (variances) of
T̂s andTs,R, respectively.

If appropriately built up, and in absence of biases affecting
estimated and referenceTs, the statisticχ2

s is distributed ac-
cording to aχ2 density function with one degree of freedom.
As far asv2

R is concerned, its value depends on the quality of
the reference. In the present implementation,Ts,R is obtained
from the ECMWF analysis, which is generally recognized to
be accurate within 1 K. Again, a detailed account of the IASI
split window andχ2 test for sea surface can be found inSerio
et al.(2013).

For sea surface, theχ2 test is most powerful; the quality
of the split window and the overall reliability of the statis-
tic have been variously assessed through IASI spectra co-
located in time and space with ECMWF analysis. Figure1
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Fig. 3. Visual representation of Type I and II errors by density (top
panel) and cumulative distribution (bottom panel) functions.

Figure 1. Example of the performance of the split window tech-
nique for the estimation of the skin temperature. Panel(b) compares
the IASI Ts obtained from the spectra shown in(a) with the time–
space co-located ECMWF analysis.

shows an example obtained over the Mediterranean area with
a sample of spectra covering the period March–October 2010
and qualified for clear sky according to the methodology de-
veloped in this work.

For land, mostly motivated by the lack of a robust and fast
method to estimate the surface temperature, theχ2 test is
substituted by a statistic which considers the difference

|T 832− Ts,R|,

where again the reference temperature is obtained from the
ECMWF analysis. In other words,T 832 is considered as a
proxy of the surface temperature. The fact thatT 832 could
be affected by water vapour is not of any concern here, be-
cause our aim is not to estimate the surface temperature. The

statistic is used to capture the high thermal contrast expected
among clear and cloudy conditions.

Unlike the statistics so far described, spatial homogeneity
statistichs (Maseillo et al., 2002; Serio et al., 2000; Masiello
et al., 2003) fully exploits the hyperspectral capabilities of
IASI with regard to MTG-IRS.

Basically, it is designed to exploit the unique spectral sig-
nature of sea/land surface in the atmospheric window region
800–950 cm−1. It uses the observed spectrum and a clear-sky
reference spectrum,T O

σ andT R
σ , respectively, both converted

to BT, according to the formula

hs =

∑NL
j=1

∣∣∣rO
j − rR

j

∣∣∣∑NL
j=1

∣∣∣rOR
j

∣∣∣ ,

whererO
j , rR

j andrOR
j are correlation and cross-correlation

coefficients of(T O
σ ,T R

σ ) andNL is the number of considered
wave number lags (e.g.Maseillo et al., 2002; Serio et al.,
2000). In the present paper the reference spectra for sea sur-
face are obtained byσ -IASI (Amato et al., 2002) with a set
of atmospheric profiles derived from the Chevalier data set
(Chevalier, 2001) using Masuda’s emissivity model for sea
surface (Masuda et al., 1988). In the case of land surface, un-
certainty associated with surface emissivity could make the
method less effective, mostly due to troubles in defining a
suitable reference spectrum. Therefore we have developed an
approach that is as independent of surface emissivity as pos-
sible: instead of the radiance spectrum, we consider its first
difference

1Rσ = Rσ+1σ − Rσ ,

which is an approximation of the differential of the spectrum
with respect to the wave number,σ . This is a high-pass filter,
which removes the relatively smooth, and hence slow, com-
ponent introduced from surface emissivity.

Figure2 shows a demonstration of the procedure, compar-
ing Rσ and1Rσ within the spectral range[800,950] cm−1

for very different surface emissivities. It is seen that in
the most transparent regions the filter largely suppresses
the surface emission component and leaves the atmospheric
line component unaffected. This atmospheric component is
largely affected by the presence of clouds.

With regard to MTG-IRS the use of computed reference
spectra to calculatehs is envisaged at the very beginning of
its operational life. Once we have collected enough observa-
tions, it is desirable to use directly MTG-IRS observations,
suitably screened for clear sky.

To summarize, among the nine statistics we consider for
the problem of cloud detection,W1, W2 ,W4, T0, χ2

s and sh
are heritage of AVHRR/MODIS cloud detection algorithms;
W3 is quite new since the channel at 2003 cm−1 is not avail-
able with current satellite radiometer imagers; the thermal
contrast statistic1TCO2 relies on the high spectral resolution
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Fig. 3. Visual representation of Type I and II errors by density (top
panel) and cumulative distribution (bottom panel) functions.

Figure 2. Top panel: radiance spectra in the atmospheric window
segment [800–950] cm−1 for very different surface emissivities.
Bottom panel: the same radiance spectra after first-order differentia-
tion. The synthetic spectra are based on the same set of atmospheric
parameters; only emissivity is changed according to the surface fea-
tures listed in the legend.

of IASI and, in perspective, of MTG-IRS and cannot be de-
signed, for example, for imagers like AVHRR. Finally,hs is
specialized for hyperspectral instrumentation and heavily re-
lies on the concept of spectrum and/or spectral radiance, as
opposed to the coarse spectral resolution of radiance which
up to now has characterized coarse- and moderate-spectral-
resolution satellite imagers, such as AVHRR, MODIS and
SEVIRI.

4 Cumulative discriminant analysis

Estimate of suitable thresholds for each statistic is required to
produce a cloud mask. This is accomplished by (a) choosing
the most effective statistics among the considered ones and
by (b) actually determining the corresponding thresholds. To-
wards this objective, this section introduces the cumulative
discriminant analysis, which is the engine that will drive the
discrimination/classification methodology for producing the
final cloud mask. It is important to stress that we look at dis-
crimination/classification in a probabilistic fashion. Also the
CDA engine has to be run only once to discriminate the most
effective statistics and to generate thresholds. This is done
on the basis of a suitable training data set. Once we get the
thresholds, we do not need to run CDA again to apply the
scheme to a given IASI spectrum. Of course, the full proce-
dure is needed in case the training data set is changed.

4.1 Notations

We begin with some notations to make clear conventions that
will be used in the paper. We assume clear as the target sky
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Fig. 3. Visual representation of Type I and II errors by density (top
panel) and cumulative distribution (bottom panel) functions.

Figure 3. Visual representation of type I and II errors by density
(top panel) and cumulative distribution (bottom panel) functions.

condition. Then type I error is defined as the fraction of pix-
els being clear and classified as cloudy; this fraction is also
called false positives, FP, or miss. Analogously we define as
type II error the fraction of pixels being cloudy and classified
as clear (also called false negatives, FN, or false alarm). The
fraction of pixels exactly classified as clear or cloudy will be
denoted by true positives, TP, and true negatives, TN, respec-
tively. The performance of the classification scheme can be
summarized through the fraction,S, of successful classifica-
tions,

S =
TPNclear+ TNNcloudy

Nclear+ Ncloudy
, (1)

with Nclear andNcloudy being the number of true clear and
cloudy pixels, respectively.

As a graphical representation (see Fig.3, top) we plot the
probability density function of two classes, withx being a
generic statistic. We also assume that the classifier acts by
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means of a thresholdθ that gives back class 1 ifx ≤ θ and
class 2 ifx > θ . Therefore in the plot true negatives are given
by the area below the higher peaked function (continuous
line) up to the thresholdθ (the black and light-grey areas);
true positives are given by the area below the lower peaked
function (dashed line) from the threshold upwards (dark-grey
and white areas). Analogously, false positives (type I error)
are given by the dark-grey area and false negatives (type II
error) by the light-grey area. An alternative graphical repre-
sentation can be given in terms of the cumulative distribution
functions (Fig.3, bottom).

Intercept of the threshold line with the two cumulative dis-
tribution functions for the two classes locates the true neg-
atives (below the intercept) and the false positives (above)
from the curve of the first class and the true positives (above
the intercept) and false negatives (below) from the curve of
the second class.

4.2 Nonparametric estimates

Many classification methodologies require estimate of the
probability density function of the classes. While this can
be accomplished relying on parametric methods, most den-
sity functions coming from real applications are not well
approximated by such methods for their poor ability to fit
actual distributions. For this reason nonparametric density
functions are resorted where the shape of the density func-
tions is not assigned from the beginning through a family
of functions but is the result of the approximation. The most
widespread of such methods is kernel density estimation (Sil-
verman, 1986). Despite its popularity, however, nonparamet-
ric density estimation requires tuning of one or more param-
eters (choice of the kernel function, bandwidth). In particu-
lar, bandwidth heavily affects accuracy of the nonparametric
density estimate through its smoothness: the larger the band-
width (i.e. the width of the kernel function), the smoother the
density estimate. Some criteria, both based on asymptotic ar-
guments and on the actual data, have been developed (Wand
and Jones, 1995) for its estimation; however choice of the
bandwidth continues to be the crux of the methodology.

On the other hand if we consider the cumulative distribu-
tion function, an estimator exists that enjoys many optimal
theoretical properties and is very attractive from the compu-
tational point of view: the empirical cumulative distribution
functionF(ϑ). Given the samplexi , i = 1, . . . ,N , it is easily
defined as

F(ϑ) =
Number of elements≤ ϑ

N
=

1

N

N∑
i=1

1{xi ≤ ϑ}.

The most important result is that the estimator almost
surely converges to the true cumulative distribution function
asymptotically; therefore the estimator is consistent (van der
Vaart, 1998). In addition convergence holds uniformly over
ϑ . From the computational point of view the estimator is
simply computed by sorting the samplexi , i = 1, . . . ,N , in

O(N logN) operations. We observe that no parameter exists
to be tuned.

4.3 Cumulative discriminant analysis

Basing on the theoretical properties of the cumulative dis-
tribution functions, a CDA methodology is proposed for the
classification.

We first consider the univariate case corresponding to one
statistic. We suppose that the classifier is of the discriminant
analysis type where the decision rule0(x,x) is based on a
thresholdϑ as

0(x;x) =

{
1 (Clear) ifx ≤ ϑ;

2 (Cloudy) otherwise,
(2)

wherex ≡ {x1, . . . ,xN } is the sample statistic of sizeN that
defines the training data set andx is the actual statistic to be
classified basing on the training data set.

Classical discriminant analysis would yield a threshold
rule similar to Eq. (2) under the assumption of Gaussianity of
the density function of the statistic for both clear and cloudy
conditions, which does not occur in practice. By relying on
the CDA we refrain from assuming this hypothesis and in-
stead use an optimal estimate of the cumulative distribution
function.

Now an estimate of the threshold has to be given in order
that the method is fully operative. For this purpose we define
a cost functionC(x,ϑ) whose minimization gives back the
estimate of the optimal threshold,ϑ̂ :

ϑ̂ = argminϑC(x,ϑ).

An example of cost function could be the following one.
Let EI be the type I error andEII the type II one. Clearly it
is

EI
= 1− F Clear(ϑ) andEII

= F Cloudy(ϑ). (3)

Then we define the cost function as

C(x,ϑ) = EI
+ EII

= 1− F Clear(ϑ) + F Cloudy(ϑ).

Such a formula is of the linear discriminant analysis type
without the assumption of Gaussianity of the density func-
tion. Indeed it aims at minimizing the number of misclassifi-
cations.

A second possibility is given by the following:

C(x,ϑ) =max(EI,EII ) =

max(1− F Clear(ϑ),F Cloudy(ϑ)). (4)

The rationale behind choice (4) is that we want to simulta-
neously minimize both type I and II errors, and our objective
is a proper balancing of the error between the two classes.
Actually, a classical discriminant analysis could be mislead-
ing in the case of the training data set not being balanced
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between the two classes, cloudy and clear. Then, since the
cost function minimizes the overall error, the threshold nat-
urally outweighs the most populated class that will be better
classified at the possible detriment of the smaller class. If the
actual scene to be classified is poorly balanced in favour of
the other one (less populated in the training data set), then
the overall misclassifications will increase. This problem is
very common in cloud detection scenes because the relative
fraction of clear and cloudy pixels depends on seasonal and
meteorological arguments and therefore is very variable with
the actual scene.

In the present project we use the cost function (4) since
the objective is to estimate the rate of misclassifications for
both clear and cloudy conditions. This choice is the least non-
committal with respect to the average conditions of the sky,
cloudy or clear. We observe that it corresponds to assume that
clear and cloudy classes have equal size, which has a coun-
terpart with a uniform prior of discriminant analysis. If one
were to take account of real or different relative size of the
clear and cloudy sample, a weighted CDA could be devised
by introducing proper weights to the type I and II errors,
in analogy with prior probabilities in classical discriminant
analysis.

Note that at the minimum of the cost function (4) it is EI
=

EII ; that is, type I and II errors coincide when no weights
are introduced in Eq. (4); otherwise the minimum of the cost
function is given by the ratio of the weights.

Finally we mention that, in minimizing the cost function
with respect to the thresholdϑ , we have to include in the
decision rule also the sign direction of the rule, that is,x ≤ ϑ

or x ≥ ϑ for clear conditions. In the latter case the decision
rule becomes

0(x;x) =

{
1 (Clear) ifx ≥ ϑ

2 (Cloudy) otherwise,
(5)

and the type I and II errors are written as

EI
= F Clear(ϑ), EII

= 1− F Cloudy(ϑ).

4.4 Multivariate CDA

Formulas of the cost function can be generalized to the case
of D statistics giving rise to a procedure that can be imple-
mented effectively.

Generalization of the decision rule (2) results in

0(x1,x2, . . . ,xD
;x) =

{
1 (Clear) ifxd

≤ ϑd , 1 ≤ d ≤ D;

2 (Cloudy) otherwise;
(6)

analogously, generalization of the rule (5) becomes

0(x1,x2, . . . ,xD
;x) =

{
1 (Clear) ifxd

≥ ϑd , 1 ≤ d ≤ D;

2 (Cloudy) otherwise.
(7)

In a similar way all 2D decision rules with mixed inequal-
ity signs can be built.

We assume that the theory underlying the computation of
the type I and II errors falls in the framework of the prob-
ability of the union of two or more events that are not mu-
tually exclusive. For such events in the case of decision rule
(7) we have the generalization of the type I error to the two-
dimensional case as

EI
= F Clear

1 (ϑ1) + F Clear
2 (ϑ2) − F Clear

1 (ϑ1)F
Clear
2 (ϑ2).

Generalization to the three-dimensional case is

EI
=F Clear

1 (ϑ1) + F Clear
2 (ϑ2) + F Clear

3 (ϑ3)

− F Clear
1 (ϑ1)F

Clear
2 (ϑ2) − F Clear

1 (ϑ1)F
Clear
3 (ϑ3)

− F Clear
2 (ϑ2)F

Clear
3 (ϑ3)

+ F Clear
1 (ϑ1)F

Clear
2 (ϑ2)F

Clear
3 (ϑ3) (8)

and so on for higherD.
Similar formulas, not written here for the sake of brevity,

can be devised forEII and other decision rules. For example
for the decision rule (6) andD = 3, the type I and II errors of
(3) generalize to

EI
=1− F Clear

1 (ϑ1)F
Clear
2 (ϑ2)F

Clear
3 (ϑ3)

EII
=F

Cloudy
1 (ϑ1)F

Cloudy
2 (ϑ2)F

Cloudy
3 (ϑ3). (9)

Furthermore, Eq. (9) can be obtained from Eq. (8) and
vice-versa with abuse of notation via

F Clear
1 (ϑ1) = 1− F Clear

1 (ϑ1), F
Cloudy
1 (ϑ1) = 1− F

Cloudy
1 (ϑ1);

F Clear
2 (ϑ2) = 1− F Clear

2 (ϑ2), F
Cloudy
2 (ϑ2) = 1− F

Cloudy
2 (ϑ2);

F Clear
3 (ϑ3) = 1− F Clear

3 (ϑ3), F
Cloudy
3 (ϑ2) = 1− F

Cloudy
3 (ϑ3).

4.5 Limitations of CDA

CDA is based on the assumption that the decision rule in-
volves one threshold for each statistic. If we recall how a dis-
criminant analysis based on the probability density function
works, this means that the threshold has to split the domain
of the statistic in two parts, and in each of them one of the
density functions in turn has to be higher than the other one in
general. Visually, this occurs when the two density functions
look to be translated between each other. From the cumula-
tive distribution function point of view, we require that the
two functions do not cross (or cross at very far tails). This
condition strictly occurs with parametric discriminant anal-
ysis (LDA, QDA), due to the hypothesis of Gaussianity of
the density functions. For the IASI data this assumption is
verified for most statistics. Actually CDA could be similarly
generalized to eventually two and more thresholds.

We already mentioned the assumption of independence of
statistics; for the generalD-dimensional case this means fac-
torization of the multivariate density functions into univariate
functions. In addition, the multidimensional decision rule is
chosen as the cartesian product of unidimensional rules based
on thresholds.
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We noticed that in the case of multiple statistics a pixel is
labelled as clear if all corresponding tests are satisfied with
the right directions (e.g. Eq.6). This procedure is common
to several operational cloud mask algorithms. However when
the number of statistics and corresponding tests increases, the
probability that a pixel is labelled as cloudy just due to the
intrinsic randomness of the statistic, while the pixel was ac-
tually clear, increases. As a consequence there is an increase
of the type I error. To overcome this effect it is advisable to
adopt a strategy of Bonferroni or false discovery rate (FDR)
(Benjamini et al., 1995) correction.

Finally, CDA also assumes a binary (2-class) problem;
generalization to more classes could be accomplished, for ex-
ample, with the same techniques that apply to support vector
machines (SVM) (e.g. dealing with all couples of bands and
then adopting a voting strategy).

4.6 Computational aspects

The code for the computation of the multidimensional CDA
has been developed in Matlab. In particular, an optimized
one-dimensional version has been implemented where a di-
rect minimization of the cost function is performed by means
of a direct exhaustive search over the step-wise estimated cu-
mulative distribution function.

Its generalization to the fully generalD-dimensional case
is not computationally possible due to the exponential in-
crease of the computational cost withD. Therefore the hy-
pothesis of independence of statistics is resorted to, and min-
imization of the cost function is accomplished with an opti-
mization method that is derivative-free (Nelder–Mead, based
on simplex).

We observe by simple arguments that increase of the num-
ber of involved statistics can not degrade the cost function.
In fact, by setting the threshold of the new statistic to+∞

or −∞ according to the sign of the inequality,≤ or ≥, re-
spectively, makes the decision rule not depend on the new
threshold. As a consequence the cost function is the same,
and therefore it can only improve with the number of dimen-
sions by properly choosing all thresholds.

We also observe that of course, when the number of statis-
tics increases, all the thresholds will vary as well in gen-
eral, even though we should not expect dramatic variations.
For this reason the initialization of the Nelder–Mead opti-
mization is performed starting fromD-independent unidi-
mensional optimizations of the thresholds (indeed also of the
corresponding inequality signs). Then the threshold of the
statistic that, singularly taken, yields the minimum value of
the cost function is used as initialization; for the remaining
thresholds an intermediate value between the optimal one-
dimensional case and±∞ (according to the estimated sign
of the inequality) is set.

Finally we do not perform a full optimization of the
sign of threshold inequalities in theD-dimensional case be-
cause the number of cases to be considered would explode

exponentially withD as 2D. We assume that the sign of the
threshold inequality is preserved when moving from one to
more dimensions.

Starting from the formulation (9) the algorithm for the
computation of the cost function forD statistics goes through
the following steps:

– compute unidimensional cumulative distribution func-
tionsF Clear

d , F
Cloudy
d , d = 1, . . . ,D, for each statisticd

starting from the training set;

– compute directional cumulative distribution functions,
F̃ Clear

d , F̃
Cloudy
d , d = 1, . . . ,D, according to the selected

direction of threshold inequalities:

F̃ Clear
d (xd) =

{
F Clear

d (xd), if xd
≤ ϑd ⇒ Clear

1− F Clear
d (xd), if xd

≥ ϑd ⇒ Clear

F̃
Cloudy
d (xd) =

{
F

Cloudy
d (xd), if xd

≤ ϑd ⇒ Clear

1− F
Cloudy
d (xd), if xd

≥ ϑd ⇒ Clear;

– compute type I and II errors as

EI
=1−

D∏
d=1

F̃ Clear
f (xd)

EII
=

D∏
d=1

F̃
Cloudy
f (xd);

– compute the cost function as

C = max(EI,EII ).

4.7 Principal component analysis

In the case of strong departures from the assumed hypothesis
of independence of statistics, Eq. (8) and similar ones are not
strictly valid anymore forD > 1. On the other side type I and
II errors can be easily generalized; for example in the case of
decision rule (6) we get

EI
=1− F Clear(ϑ1,ϑ2, . . . ,ϑD)

EII
=F Cloudy(ϑ1,ϑ2, . . . ,ϑD).

However a direct efficient generalization of the algorithm
described in Sect.4.6is not possible because it would require
a direct estimation of the fullD-dimensional cumulative dis-
tribution functions and therefore an exponential growth with
D of the computational cost and of the memory requirement.
For this reason a specific full algorithm can be developed
only for the caseD = 2.
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Figure 4. Example of covariance matrix of the vectorx for the case
of the tropical climate zone and sea surface; top panel, covariance
matrix (numbering of rows and columns is consistent with the statis-
tic numbering shown in Table3); bottom panel, eigenvalues.

One way to partially overcome the independence assump-
tion is to perform a previous transform of statistics to nearly
independent ones. This can be accomplished by a classi-
cal principal component analysis, PCA (that gives indepen-
dence under the assumption of Gaussian density functions of
the statistics), or independent component analysis, ICA, that
does not need the hypothesis of Gaussianity. PCA also allows
one to easily reduce dimensionality of the problem by retain-
ing only a small number of principal components, PC (for
ICA this is more questionable because according to theoreti-
cal arguments independent components are not sorted and no
agreed consolidated methodology exists for their selection).
In the case that one or two principal components are suffi-
cient to approximate the statistics, then the approximation of
independence is completely avoided.
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Fig. 5. Exemple of cumulative distribution function, F , of the 1-
st PC score of the statistic-vector x (Eq. (10)) over sea surface. a)
tropical climatic zone; b) mid-latitude winter (NH) climatic zone.

Figure 5. Example of cumulative distribution function,F , of the
first PC score of the statistic vectorx (Eq. 10) over sea surface.
(a) tropical climatic zone;(b) mid-latitude winter (NH) climatic
zone.

Use of principal components is easily accomplished by
performing a transform of the original radiance data(x) into
principal components(c) by PCA, then retaining the first
D ≤ D principal componentsc1, . . . ,cD, and finally straight-
forwardly applying the algorithms described in the present
section to them.

5 Results

This section will show the main results of the numerical ex-
periments worked out on the databases IASI1 and IASI2 and
with the additional validation data set qualified for clear sky
with the SEVIRI cloud mask. Finally, a comparison with the
IASI level 2 cloud mask implemented at EUMETSAT will
be shown.
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Table 4. CDA results based on coinciding training and test data sets over sea surface and ice. The percentage of hit or success (TP) and of
correct non-events (TN) can be obtained by 100− FP and 100− FN, respectively.

Climate zone PC FN FP Merit
(miss) (false alarm) function

Tropical 1 17.4 17.4 82.6
Mid-lat summer NH 1 15.2 15.2 84.8
Mid-lat summer SH 1 11.2 11.2 88.8
Mid-lat winter NH 1 9.4 9.4 90.6
Mid-lat winter SH 1 16.4 16.4 83.6
High-lat summer NH 1,2 7.1 7.1 92.9
High-lat summer SH 1 7.1 7.1 92.9
High-lat winter NH 1 7.8 7.8 92.2
High-lat winter SH 1,2 11.6 11.6 88.4
Sea ice NH day 1 23.4 9.6 85.0
Sea ice SH day 1,2 21.4 23.7 77.8
Sea ice NH night 1,2 44 15 84.0
Sea ice SH night 1 31 1.8 97.4

The present work is not intended to yield a fully opera-
tive cloud detection algorithm, which requires extensive and
independent training and validation data sets covering all cli-
matologies. Rather, we work out some sample test cases to
prove feasibility of the full methodology.

We will present the results obtained by a transform to PCs.
We will not show the optimal thresholds because they make
sense only if endowed with the prior PC transform that, as is
well known, is unique only apart from rotations. All thresh-
olds and transform matrices are available upon request. For
the present work, the statistic sh (see Table3) was not con-
sidered, mostly because it added a poor value or no value to
the remaining eight statistics.

Let us define the vector of statistics,x, as

x =

(
hs,χ

2
s ,T0,1TCO2,W1,W2,W3,W4,

)T
, (10)

where the superscript T stands for transpose. Note that the
statistics are ordered in the vector according to their list num-
ber as defined in Table3. For the case of tropical climate zone
and sea surface, Fig.4 (left) shows the covariance matrix of
x used to build up the PC basis along with the eigenvectors.
The covariance matrix was obtained on the basis of the data
set IASI2. It is seen that the matrix is not diagonal, which
supports the transformation ofx to principal components.
The plot of eigenvalues, shown in the same figure (right) in-
dicates that the first component exhibits most variance of the
statistics. It is also noteworthy that the vectorx is made up
of unlike quantities, some dimensionless and others in units
of K. In principle we could standardize it before the transfor-
mation; however we did not get better results. We also have
to keep in mind that if the units are changed (e.g. Kelvin to
centigrade degrees for temperature), then the thresholds have
to be re-estimated.

5.1 Validation – coinciding training and
validation data sets

To summarize the performance of the cloud mask we intro-
duce the merit function

M= 100(1− C).

M is, indeed, the fraction of successful classificationsS

(see Eq.1).
The CDA methodology has been applied to select the

thresholds for the cloud detection scheme. In doing so, the
statistics introduced in Sect.3 have been transformed to the
PC space as in Sect.4.7. In the training phase the thresholds
have been estimated on the basis of IASI1 or IASI2 data set
depending on which population has the larger size for the
climate zones at hand. In the present Section validation is
made for the same training set; later on (Sect.5.2) validation
will be made on the other (smaller) data set. For example we
used IASI2 as a training data set and will use IASI1 as a val-
idation one in Sect.5.2 for the mid-latitude climatic zone in
winter (96 522 and 40 941 samples, respectively); we made
the reverse choice in summer (81 729 samples for IASI1 and
40 177 for IASI2). Both data sets are quite equivalent for the
tropical climatology (186 787 samples for IASI1 and 230 267
for IASI2). Note that we could have jointly used both data
sets in the training phase when training and validation data
sets coincide; however we kept their distinction to have the
same training data set in both experiments of coinciding (this
section) and different (Sect.5.2) training and validation data
sets.

Thresholds have been estimated for all the climatic zones
of Table1.
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Table 5.CDA results based on coinciding training and validation data sets for daytime soundings over land. The percentage of hit or success
(TP) and of correct non-events (TN) can be obtained by 100− FP and 100− FN, respectively.

Climate zone PC FN FP Merit
(miss) (false alarm) function

Tropical 1 8.4 8.4 91.6
Mid-lat summer NH 1 17.6 17.6 82.4
Mid-lat summer SH 1 6.9 6.9 93.1
Mid-lat winter NH 1 11.1 11.1 89.9
Mid-lat winter SH 1 10.4 10.4 89.6
High-lat summer NH 1 11.8 11.8 88.2
High-lat winter NH 1 10.3 10.3 89.7
Land below 1 km with snow/ice NH 1 17.6 23 77.3
Land below 1 km with snow/ice SH 1 16.3 14.1 85.3
Land above 1 km with snow/ice NH 1 7.5 7.5 92.5
Land above 1 km with snow/ice SH 1 16.2 12.4 86.4
Antarctica below 1 km with snow/ice 1 7.4 7.4 82.6
Antarctica above 1 km with snow/ice 1 34.9 34.9 65.1

Table 6. CDA results based on coinciding training and validation data sets for night-time soundings over land. The percentage of hit or
success (TP) and of correct non-events (TN) can be obtained by 100− FP and 100− FN, respectively.

Climate zone PC FN FP Merit
(miss) (false alarm) function

Tropical 1 17.8 17.8 82.2
Mid-lat summer NH 1 12.2 12.2 87.8
Mid-lat summer SH – – – –
Mid-lat winter NH 1 10.1 10.1 89.9
Mid-lat winter SH 1 12 12 88.0
High-lat summer NH 1 8.5 8.5 91.5
High-lat winter NH 1 13.7 13.7 86.3
Land below 1 km with snow/ice NH 1 35.7 10 81.2
Land below 1 km with snow/ice SH 1 19.5 18.5 81.3
Land above 1 km with snow/ice NH 2 12 53 69.0
Land above 1 km with snow/ice SH 1 10 45 65.0
Antarctica below 1 km with snow/ice 2 35.2 35.2 65.0
Antarctica above 1 km with snow/ice 2 26.3 26.3 73.7

5.1.1 Sea surface

The performance of the CDA methodology for the relevant
climatic zones is summarized in Table4. We found that CDA
always selects only the first principal component to optimally
discriminate clear from cloudy sky, but high-lat summer NH,
high-lat winter SH and two sea ice climatologies seem to
yield a better score with the first and second principal com-
ponents.

Figure5 exemplifies the cumulative distribution function,
F , for clear and cloudy sky as estimated from the training
data set. Figure5a applies to tropics and it is seen that the
right tail of F Cloudy has a relatively wide overlap withF clear.
This overlap is likely due to warm clouds, which tend to
be radiometrically equivalent to the colder clear-sky scenes.
Another source of possible misclassification is due to IASI

sub-pixel clouds, that is, broken clouds which do not uni-
formly fill the IASI filed of view. At nadir, the IASI field of
view is 12 km (compare with the 1 km pixel size of AVHRR).
Finally, it should be stressed that the overlap could also be
the result of a non-perfect AVHRR reference/training cloud
mask. However, whatever its origin may be, because of this
overlap the performance for the tropics is 82.6 % with error
of first and second type of 17.4 % (see Table4).

Figure5b exemplifies the case of the mid-lat winter (NH)
climate zone. It is now possible to see that the overlap zone is
smaller than that observed for the previous case. As a result,
we have a total performance above 90 %, while the error of
first and second type is smaller than 10 % (see Table4).

For sea ice, it was not possible to find an optimal solu-
tion with both the fraction of miss and false alarm below
20 %. This fraction was considered to be a sort of limiting
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condition for an acceptable cloud scene analysis. When this
was not possible, we chose to keep, whenever possible, the
false alarm fraction below 20 %, and the thresholds were in-
dividuated by trial and error in order to meet this condition.

The lack of optimal thresholds (according to the cost func-
tion of Eq.4) for sea ice is mostly due to the loss of thermal
contrast between clouds and surface, which becomes very se-
vere during polar nights at high latitudes. Once again, the
performance for sea ice is also a result of the difficulty to
develop a good training data set for these surface features.

5.1.2 Land surface

We recall that for land surface we distinguish between day
and night for each climatic zone of Table1. Tables5 and
6 summarize the results of CDA for day and night, respec-
tively. Missing values mean that there were not enough data
available to perform the CDA analysis. We see that the per-
formance of the cloud detection, according to the thresholds
selected by CDA, is quite close to 90 %, with the type II error
close to 10 % for most cases.

For land, surface temperature is strongly driven by the
daily sun cycle and yields a very high thermal contrast during
daytime. This contrast makes it quite easier to discriminate
clouds form clear sky at the tropics. Its effect is reflected in
the shape of the cumulative distribution function,F Clear, as it
is possible to see from Fig.6a, which applies to the tropical
climatic zone during daytime. It is seen that the right far tail
F Clear has no overlap withF Cloudy. Because of the daytime
thermal contrast between clouds and surface, the cloud de-
tection performance is quite close to 90 %, apart from a few
cases corresponding to snow/ice.

Conversely, for night-time the performance tends to de-
crease because of loss of thermal contrast, which is more
severe in the case of snow/ice. For snow/ice the cloud detec-
tion becomes much more difficult becauseF ClearandF Cloudy

tend to overlap (see, e.g., Fig.6b). When this occurs the
thresholds have been tuned ad hoc in some cases to com-
pensate for the driving effect of the cloudy population. When
it was not possible to keep the fraction of false alarms below
20 %, we used the alternate rule to have a total performance
higher than 65 %. These rules are somewhat arbitrary and
just reflect the difficulty to have a good cloud detection over
snow/ice.

5.2 Validation – different training and
validation data sets

Apart from the tropics, the data sets IASI1 and IASI2 cover
different climatic zones. Therefore we present results only
for the tropical climatic zone.

For the case of sea surface we have used the data set IASI2
for the training and the data set IASI1 for validation. Perfor-
mance of the methodology is shown in Table7.

Figure 6. Example of cumulative distribution function,F , of the
first PC score of the statistic vectorx (Eq. 10) over land surface.
(a) Tropical climatic zone (daytime);(b) land above 1 km with
snow/ice (NH, night-time).

The same experiment has been carried out for land, where
we distinguish between day and night (results also shown
in Table7). During daytime the data set used for training is
IASI1, whereas validation is performed on the data set IASI2.
The reverse occurs during night-time because of the better
coverage of the latter.

Comparing Table7 with Table4, it is seen that the perfor-
mance obtained on the validation data set is largely consistent
with the case of coinciding training and validation data sets.
This occurs even when the two data sets are largely nonho-
mogeneous, showing the robustness of the methodology.
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Table 7. Validation results using data sets IASI1 and IASI2. The total score (S) or equivalently merit function, false alarms and miss are
shown in percentage.

Area Training FN FP Merit
set size (miss) (false alarm) function

Tropics, sea surface 186 787 15.2 16.7 83.3
Tropics, land daytime 172 216 15.5 6.7 93.3
Tropics, land night-time 85 882 5.4 20.0 80.0

Table 8. Validation results based on the co-location of IASI/SEVIRI. The first row refers to the IASI2 data set and the second row to the
GSICS data set.

Area Training FN FP Merit
set size (miss) (false alarm) function

IASI2 set (Europe/Africa) 47 160 7.9 5.7 96.7
GSICS set (Europe/Africa) 4277 11.3 16.7 86.7

5.3 Validation with SEVIRI

Validation has been also performed with a cloud mask in-
dependent of CMS, on which the training data set relies. For
southern Europe and the African continent three consecutive,
daytime, IASI orbits belonging to the set IASI2 have been
co-located with SEVIRI imagery.

The IASI footprints considered in this experiment are
shown in Fig.7. The first IASI footprint observation took
place on 22 July 2007 at 06:42:12 UTC, and the last observa-
tions at 10:14:18 UTC. To have an idea of the cloud coverage
and type over the target area, Fig.7 shows an RGB compos-
ite SEVIRI full-disk image starting at 09:27:43 UTC of the
same day.

Since the orbits are in the daytime, the SEVIRI cloud mask
also benefits from visible channels. In contrast only informa-
tion in the infrared spectral region is used with IASI. The
IASI footprints have been co-located with the SEVIRI op-
erational cloud mask and flagged as clear sky if 100 % of
SEVIRI pixels falling within the IASI field of view are them-
selves clear sky. In this way we have a SEVIRI-based cloud
mask for IASI which can be compared with that obtained
with our procedure.

The results for this experiment are shown in Table8. It is
seen that the agreement with the SEVIRI-based cloud mask
is excellent, which further testifies the very good perfor-
mance of the cloud detection over land in the case of the
tropical climatology.

The SEVIRI cloud mask has been also used to classify
a data set independent of IASI1 and IASI2. We have used
a set of IASI data co-located with SEVIRI imagery from
25 September to 4 October 2010. It was acquired over Eu-
rope/Africa in the framework of the IASI/SEVIRI inter-
calibration experiment, performed within the activities of
EUMETSAT GSICS. We have a total of 4277 IASI spectra,
whose footprints are shown in Fig.8.

As for the previous exercise, the IASI footprints have
been co-located with the SEVIRI operational cloud mask and
flagged as clear sky if 100 % SEVIRI pixels falling within the
IASI field of view are themselves clear sky. The results are
shown in the second row of Table8.

Again we have a very good comparison with a total score
of 86.7 %. In this case we have an excess of false alarms with
respect to the Africa case study also shown in Table8. How-
ever, we have ascertained that the problem is likely due to the
IASI/SEVIRI co-location used in the GSICS system.

6 Conclusions

With regard to developing a cloud mask for MTG-IRS, we
have designed and implemented a stand-alone cloud detec-
tion tool expected to run only using MTG-IRS spectral radi-
ances.

The strategy has been implemented and tested using IASI
as a proxy for MTG-IRS. The scheme relies on a set of
nine statistics. Six of them are heritage of the AVHRR-based
cloud classification and discrimination, while three more
have been specifically designed to take into account the hy-
perspectral characteristics of MTG-IRS.

Furthermore, a methodology (cumulative discriminant
analysis) has been developed in the context of classification
of binary variables, which, using all the statistics, optimally
computes thresholds needed to classify a given pixel as clear
or cloudy. The system necessitates a training data set as well
as a corresponding reference cloud mask. Once the training
has been performed, the algorithm only needs the thresholds
and therefore is very fast from the computational point of
view. The probabilistic approach allows us to quantify the
type I (miss) and type II (false alarm) errors. Within the
methodology, the two types of error can have the role of de-
sign parameters, so that the cloud detection scheme can have
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Figure 7. SEVIRI full-disk imagery starting at 09:27:43 UTC for
the day 22 July 2007. The IASI scan patterns used for the validation
exercise are the three coloured rectangles.

Figure 8. Footprint positions of IASI observations for the GSICS
IASI/SEVIRI inter-calibration experiment.

a prescribed rate of false alarms. Alternately, we can design
and develop a cloud detection scheme in which both types of
error are simultaneously minimized.

The methodology we have developed is much more than a
classification tool. In fact, the nine statistics are intended to
summarize the information content of the IASI spectra into
a limited number of variables as an input to the classification
methodology. Once a transform of the statistics into princi-
pal components has been performed, CDA discriminates how
many and which principal components are needed for an ef-
fective cloud detection. Nevertheless, CDA is general enough
to be coupled with different other statistics.

Apart from a few situations, we have found that the first
principal component of the statistics is enough to build up an
effective cloud screening. This largely simplifies the scene
analysis algorithm because we need to compute thresholds
just for one principal component; moreover it circumvents
assumption of independence of statistics; finally the overall
algorithm is very efficient.

Basically, the methodology relies on a training data set and
a reference cloud mask. It is recommended that the training
data set be made up of real observations, having a global cov-
erage and a full coverage of the possible real clear and cloudy
scenes.

The reference cloud mask is needed to extract from the
training data set the two classes of spectra, one for clear sky
and the second one for cloudy sky. At present, we rely on
the AVHRR cloud mask, which is operationally produced by
CMS.

The algorithm has been tested against independent data
sets as well as cloud masks. As a result, we have the agree-
ment being normally well above 80 %, apart from regions
covered by sea ice or land snow/ice, where also the reference
cloud masks tend to have a relatively high rate of failure. We
think that, once applied to real MTG-IRS scenes, the cloud
detection should even improve performance because MTG-
IRS is an imager and its pixel size is expected to be 4 times
smaller than that of IASI.

The paper has been mostly dealing with the scientific ba-
sis of CDA and an initial evaluation of the scheme. Although
the methodology yields results which are equivalent or bet-
ter than those of concurrent schemes for IASI (e.g.Lavanant
et al., 2011), we think that the scheme still deserves a more
comprehensive training/validation. In this respect, we now
have new evidence (Lavanant and Roquet, 2013) that all
weather types (hence cloud types) are present on the full disk
whatever the day considered. This is particularly true over
sea, whereas over land the situation is a bit more compli-
cated. In fact, because of orography all weather types are not
all found in both hemispheres simultaneously, and in general
the amount of clouds is smaller during the NH summer than
during the NH winter. These findings support our choice of
the 2-day global data set, with 1 day in the NH Summer and
the other in the NH Autumn, which we have used for train-
ing. However, at least 2 more days would be needed for a
better and comprehensive validation. Towards this objective
and with regard to future use of the methodology for opera-
tional applications, we are currently developing an appropri-
ate seasonal and global IASI/AVHRR/SEVIRI data set along
the lines suggested byLavanant and Roquet(2013).
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