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1. Introduction

In the theory of classical elasticity, a material point has only three degrees of free-
dom corresponding to its position in Euclidean space. In the couple-stress elasticity
theory there are three additional, independent degrees of freedom, related to the
rotation of each particle. The couple-stress or Cosserat theory of elasticity has
emerged from the work of the brothers François and Eugène Cosserat at the turn
of the last century [8].

Potential methods for couple-stress elasticity have been developed (see [9, 13]),
extending the classical methods used in linear elasticity. In particular the repre-
sentability of the solution of the first and the second boundary value problem have
been obtained by means of a double layer potential and a simple layer potential
respectively.
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We mention also that corresponding problems in plane, anti-plane deformations
and in the bending of plates have been studied by means of boundary integral
methods in different papers (see [15–19] and the reference therein).

In the present paper we consider the three-dimensional Dirichlet problem in
Cosserat theory. When we try to solve it by means of a simple layer potential, we
get an integral system of the first kind on the boundary. Our aim is to show that
such system can be reduced to a Fredholm one and that the latter is equivalent to
the Dirichlet problem in a precise sense.

Our method, extending the one given in [1] for Laplace operator, hinges on the
theory of reducible operators (see, e.g. [10, 14]) and on the theory of differential
forms (see, e.g. [11,12]). The basic idea is to treat the arising integral system of the
first kind (see (4.1) below) taking the differential of both sides. In this way we obtain
the singular integral system (4.2) in which the unknown is a usual vector function,
while the data is a vector whose components are differential forms of degree one.
We show that this system can be reduced to a Fredholm one, which is equivalent
to the singular integral system in a precise sense. We remark that our method uses
neither the theory of pseudodifferential operators nor the concept of hypersingular
integrals. For a sketch of the method in the simple but significant case of Laplacian
we refer to [7, Sec. 2, p. 2].

Even if in this paper we have considered only connected boundaries, it is very
likely that such a method could be used also in not simply connected domains, in
analogy to other problems (see [5–7]).

The paper is organized as follows. In Sec. 2 we give some notations and defini-
tions. In particular, we generalize the stress operator by analogy with the theory of
elasticity. In Sec. 3 we prove some preliminary results regarding the fundamental
solution and the first derivatives of a double layer potential. In Sec. 4 we will con-
struct a reducing operator which will be useful in the study of the integral system
of the first kind arising in the Dirichlet problem. In Sec. 5 we find the solution of
the Dirichlet problem in terms of a simple layer potential. We show how to reduce
the problem to an equivalent Fredholm system.

2. Definitions

In this paper Ω denotes a bounded domain of R
3 such that its boundary ∂Ω is a

Lyapunov surface Σ (i.e. Σ has a uniformly Hölder continuous normal field of some
exponent l ∈ (0, 1]) and such that R

3 − Ω is connected; ν(y) = (ν1(y), ν2(y), ν3(y))
denotes the outwards unit normal vector at the point y = (y1, y2, y3) ∈ Σ.

Given the set of constants λ, µ, α, ε, v, β satisfying the conditions

α, β, µ, v > 0; 3λ+ 2µ > 0; 3ε+ 2v > 0,

the homogeneous equation of statics of a Cosserat continuum has the form [13, p. 50]{
(µ+ α)∆u + (λ+ µ− α)graddivu+ 2α rotω = 0 in Ω,

(v + β)∆ω + (ε+ v − β)grad divω + 2α rotu− 4αω = 0 in Ω,
(2.1)
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where u = (u1, u2, u3) is the displacement vector and ω = (ω1, ω2, ω3) is the rotation
vector. It is convenient to write the basic equations (2.1) in a matrix form. To this
end let us consider the block-matrix

M =

(
M1 M2

M3 M4

)
,

whose entries are (3 × 3)-matrices of differential operators given by

M1
ij = (µ+ α)δij∆ + (λ+ µ− α)

∂2

∂xi∂xj
,

M2
ij = M3

ij = −2α
3∑

k=1

δijk
∂

∂xk
,

M4
ij = δij [(v + β)∆ − 4α] + (ε+ v − β)

∂2

∂xi∂xj

for i, j = 1, 2, 3, where δkj and δjkp denote the Kronecker delta and the Levi-Civita
symbol, respectively. Equations (2.1) become

MU = 0, (2.2)

where U = (u, ω)′ is a six-components column vector.
We denote by T the stress operator (see [13, p. 59])

T =

(
T 1 T 2

0 T 4

)
, T i = (T i

kj), k, j = 1, 2, 3, i = 1, 2, 4,

where

T 1u = λ(divu)ν + (2µ)
∂u

∂ν
+ (µ− α)(ν ∧ rotu),

T 2u = 2α(ν ∧ u),

T 4u = ε(divu)ν + (2v)
∂u

∂ν
+ (v − β)(ν ∧ rotu).

By analogy with the theory of elasticity, we introduce the generalized stress operator
defined as the block-matrix

S =

(
S1 S2

0 S4

)
, Si = (Si

kj), k, j = 1, 2, 3, i = 1, 2, 4, (2.3)

where each entry is an (3 × 3)-matrix given by

S1u = (λ+ µ− ξ)(div u)ν + (µ+ ξ)
∂u

∂ν
+ (ξ − α)(ν ∧ rotu),

S2u = 2α(ν ∧ u),

S4u = (ε+ v − χ)(divu)ν + (v + χ)
∂u

∂ν
+ (χ− β)(ν ∧ rotu),

(2.4)
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ξ, χ being real parameters. If ξ = µ and χ = v, then S = T is the stress operator.
Further when

ξ =
[
2(µ+ α)(λ + 2µ)

λ+ 3µ+ α
− µ

]
and χ =

[
2(v + β)(ε+ 2v)
ε+ 3v + β

− v

]
, (2.5)

we call S pseudostress operator and we denote it by

T 0 =

(
(T 0)1 (T 0)2

0 (T 0)4

)
.

By W 1,p(Σ) we denote the usual Sobolev space. By Lp
1(Σ) we mean the space

of the differential forms of degree 1 whose components are Lp real-valued functions
in a coordinate system of class C1 (and then in every coordinate system of class
C1). We recall that if v is a k-form in Ω, the symbol dv denotes the differential of
v and ∗v denotes the star Hodge operator. In the sequel, we shall use the symbol
∗
Σ
; it means that, if w is an 2-form on Σ and w = w0dσ, then ∗

Σ
w = w0.

Finally, we recall that if B and B̃ are two Banach spaces and R : B → B̃ is
a continuous linear operator, we say that R can be reduced on the left if there
exists a continuous linear operator R̃ : B̃ → B such that R̃R = I + T , where I
stands for the identity operator on B and T : B → B is compact. One of the main
properties of such operators is that the equation Rα = β has a solution if and
only if 〈γ, β〉 = 0 for any γ such that R∗γ = 0, R∗ being the adjoint of R. A left
reduction is said to be equivalent if N(R̃) = {0}, where N(R̃) denotes the kernel
of R̃ (see, e.g. [14, pp. 19–20]). Obviously this means that Rα = β if and only if
R̃Rα = R̃β.

In the problem considered in the present paper the condition N(R̃) = {0} is not
satisfied. Nevertheless, we still have a kind of equivalence (see Theorem 5.4 below).

3. Preliminaries

3.1. The fundamental solution Ψ

The block-matrix of the fundamental solution of the homogeneous system (2.2) is
given by:

Ψ(x) =

(
Ψ1(x) Ψ2(x)

Ψ3(x) Ψ4(x)

)
, x ∈ R

3\{(0, 0, 0)}, (3.1)

where Ψi(x) = (Ψi
kj(x)) k, j = 1, 2, 3, i = 1, . . . , 4 are the following (3×3)-matrices

(see [13, p. 93]):

Ψ1
kj(x) =

δkj

2π

[
1
µ|x| −

α

µ(α+ µ)
e−σ|x|

|x|
]

+
1

2πµ
∂2

∂xk∂xj

[
− (λ+ µ)

2(λ+ 2µ)
|x| + β + v

4µ
e−σ|x| − 1

|x|
]
,
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Ψ2
kj(x) = Ψ3

kj(x) =
1

4πµ

3∑
p=1

δjkp
∂

∂xp

1 − e−σ|x|

|x| ,

Ψ4
kj(x) =

δkj

2π(β + v)
e−σ|x|

|x| +
1
8π

∂2

∂xk∂xj

[
e−ρ|x| − e−σ|x|

α|x| − e−σ|x| − 1
µ|x|

]
,

σ =

√
4αµ

(µ+ α)(v + β)
and ρ =

√
4α

ε+ 2v
.

(3.2)

Lemma 3.1 ([13, p. 94]). Each column of Ψ(x) (3.1) satisfies (2.2) for any
x ∈ R

3\{(0, 0, 0)}.

Lemma 3.2. The matrix Ψ(x) defined by (3.2) can be written as

Ψ1
kj(x) =

1
4π

[
λ+ 3µ+ α

(µ+ α)(λ + 2µ)
δkj

|x| +
λ+ µ− α

(µ+ α)(λ + 2µ)
xkxj

|x|3
]

+ Ckj(x),

Ψ2
kj(x) = Ψ3

kj(x) = O(1),

Ψ4
kj(x) =

1
4π

[
ε+ 3v + β

(v + β)(ε+ 2v)
δkj

|x| +
ε+ v − β

(v + β)(ε+ 2v)
xkxj

|x|3
]

+Dkj(x),

where

Ckj(x) =
e−σ|x| − 1

|x|
[
− δkj

2πµ
α

µ+ α
+

α

2πµ(µ+ α)
xkxj

|x|2
]

+
1

2πµ
β + v

4µ

(
3xkxj

|x|2 − δkj

)[
(1 + σ|x|)e−σ|x| − 1 + 1

2σ
2|x|2

|x|3
]
, (3.3)

Dkj(x) =
[

δkj

2π(β + v)
− 1

8π

(
1
α

+
1
µ

)
xkxj

|x|2 σ
2

] [
e−σ|x| − 1

|x|
]

+
1

8πα
xkxj

|x|2 ρ
2

[
e−ρ|x| − 1

|x|
]

+
(

3
8πα

xkxj

|x|2 − 1
8πα

δkj

)

×
[

(1 + ρ|x|)e−ρ|x| − 1 + 1
2ρ

2|x|2
|x|3

]
+
[

1
8π

(
1
α

+
1
µ

)
δkj

− 3
8π

(
1
α

+
1
µ

)
xkxj

|x|2
] [

(1 + σ|x|)e−σ|x| − 1 + 1
2σ

2|x|2
|x|3

]
. (3.4)

The functions Ckj(x) and Dkj(x) are bounded.
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The previous lemma can be verified by a straightforward calculation. In partic-
ular we use the following limits

lim
x→0

(1 + σ|x|)e−σ|x| − 1
|x|2 = −σ

2

2
, (3.5)

lim
x→0

(1 + σ|x|)e−σ|x| − 1 + 1
2σ

2|x|2
|x|3 =

σ3

3
,

lim
x→0

e−σ|x| − 1
|x| = −σ.

(3.6)

Denoting by

M ih
x =

(
νi

∂

∂xh
− νh

∂

∂xi

)
(3.7)

we have the following lemma.

Lemma 3.3. Let S be the generalized stress (2.3) and let Ψ be the fundamental
solution (3.1). The matrix SΨ can be written as

SΨ =

(
(SΨ)1 (SΨ)2

(SΨ)3 (SΨ)4

)
,

where

(SΨ)1kj =
1
4π

[
(µ+ ξ)(λ + 3µ+ α)

(µ+ α)(λ + 2µ)
− 2
]
M jk

x

(
1
|x|
)

+ O
(

1
|x|2−l

)
, (3.8)

(SΨ)2kj = O
(

1
|x|
)
, (3.9)

(SΨ)3kj = O
(

1
|x|
)
, (3.10)

(SΨ)4kj(x) =
1
4π

[
(χ+ v)(ε+ 3v + β)

(v + β)(ε+ 2v)
− 2
]
M jk

x

(
1
|x|
)

+ O
(

1
|x|2−l

)
, (3.11)

l ∈ (0, 1] being the Lyapunov exponent of the surface Σ.

Proof. Keeping in mind (2.4), (3.2) and (3.7) we find

(SΨ)1kj(x) = −(µ+ ξ)Mkp
x Ψ1

pj(x) +
1
2π
Mkj

x

(
1
|x|
)

+
1
2π
δkj

∂

∂ν

1
|x| ,

(SΨ)2kj(x) = −(µ+ ξ)Mkp
x Ψ2

pj(x) −
(µ+ α)

4πµ
δjpqνp

∂

∂xk

∂

∂xq

1 − e−σ|x|

|x|

− α

4π
δkpqνq

∂2

∂xp∂xj

(
e−ρ|x| − e−σ|x|

α|x| − e−σ|x| − 1
µ|x|

)
,
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(SΨ)3kj(x) = −(χ+ v)Mkp
x Ψ3

pj(x) −
(v + β)

4πµ
νpδjpq

∂2

∂xk∂xq

1 − e−σ|x|

|x|

− (v + β)
4πµ

δjkqνp
∂2

∂xp∂xq

1 − e−σ|x|

|x| ,

(SΨ)4kj(x) = −(χ+ v)Mkp
x Ψ4

pj(x) +
1
2π
νk

∂

∂xj

e−ρ|x|

|x|

+
1
2π
δkj

∂

∂ν

e−σ|x|

|x| − 1
2π
νj

∂

∂xk

e−σ|x|

|x| .

By means of the expressions of Ψi
kj found in Lemma 3.2 we obtain

(SΨ)1kj(x) =
δkj

2π
∂

∂ν

1
|x| +

1
4π

[
(µ+ ξ)(λ + 3µ+ α)

(µ+ α)(λ + 2µ)
− 2
]
M jk

x

(
1
|x|
)

+
1
4π

(µ+ ξ)(λ+ µ− α)
(µ+ α)(λ + 2µ)

Mpk
x

(
xpxj

|x|3
)

+ (µ+ ξ)Mpk
x [Cpj(x)],

(SΨ)2kj(x) = −(µ+ ξ)Mkp
x

[
1

4πµ
δjpk

∂

∂xk

1 − e−σ|x|

|x|
]

− (µ+ α)
4πµ

δjpqνp
∂

∂xk

∂

∂xq

1 − e−σ|x|

|x|

− α

4π
δkpqνq

∂2

∂xp∂xj

(
e−ρ|x| − e−σ|x|

α|x| − e−σ|x| − 1
µ|x|

)
, (3.12)

(SΨ)3kj(x) = −(χ+ v)Mkp
x

[
1

4πµ
δjpk

∂

∂xk

1 − e−σ|x|

|x|
]
− (v + β)

4πµ
νpδjpq

× ∂2

∂xk∂xq

1 − e−σ|x|

|x| − (v + β)
4πµ

δjkqνp
∂2

∂xp∂xq

1 − e−σ|x|

|x| , (3.13)

(SΨ)4kj(x) =
1
2π
δkj

∂

∂ν

1
|x| +

1
4π

[
(χ+ v)(ε+ 3v + β)

(v + β)(ε+ 2v)
− 2
]
M jk

x

(
1
|x|
)

− 1
4π

(χ+ v)(ε+ v − β)
(v + β)(ε+ 2v)

Mkp
x

(
xpxj

|x|3
)

+ D̃kj(x) − (χ+ v)Mkp
x [Dpj(x)],

(3.14)

where

D̃kj(x) =
1
2π
νk(x)

∂

∂xj

e−ρ|x| − 1
|x| − 1

2π
νj(x)

∂

∂xk

e−σ|x| − 1
|x|

+
1
2π
δkj

∂

∂ν

e−σ|x| − 1
|x| . (3.15)
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Regarding (SΨ)1kj(x) we have

∂

∂ν

1
|x| = − xh

|x|3 νh = O
(

1
|x|2−l

)
,

Mpk

(
xpxj

|x|3
)

=
(
νp

∂

∂xk
− νk

∂

∂xp

)(
xpxj

|x|3
)

=
(
δkj − 3

xkxj

|x|2
)
νp

xp

|x|3 = O
(

1
|x|2−l

)
,

Mpk
x [Cpj(x)] = O

(
1
|x|
)
.

The last equality holds because we have, in view of (3.5) and (3.6),

∂

∂xj

e−σ|x| − 1
|x| =

xj

|x|3 − xjσe
−σ|x|

|x|2 − xje
−σ|x|

|x|3

= − xj

|x|
[
(1 + σ|x|)e−σ|x| − 1

|x|2
]

= O(1),

∂

∂xj

xkxj

|x|2 =
xk

|x|2 + δkj
xj

|x|2 − 2xjxjxk

|x|4

= O
(

1
|x|
)
,

∂

∂xj

(1 + σ|x|)e−σ|x| − 1 + 1
2σ

2|x|2
|x|3

= −3
xj

|x|2
[

(1 + σ|x|)e−σ|x| − 1 + 1
2σ

2|x|2
|x|3

]

− σ2 xj

|x|2
[
e−σ|x| − 1

|x|
]

= O
(

1
|x|
)
.

As far as (SΨ)2kj(x) is concerned, since

∂2

∂xp∂xj

(
e−ρ|x| − e−σ|x|

|x|
)

=
∂2

∂xp∂xj

[
(e−ρ|x| − 1) − (e−σ|x| − 1)

|x|
]
,

the right-hand side of (3.12) is a finite linear combination of the following
derivatives:

∂2

∂xp∂xj

e−σ|x| − 1
|x| .
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Thanks to (3.5) and (3.6), we can write

∂2

∂xp∂xj

e−σ|x|

|x| = − δpj

|x|3 +
3xpxj

|x|5 + σ2 xpxj

|x|3 − δpj

|x|
[
(σ|x| + 1)e−σ|x| − 1

|x|2
]

+ 3
xpxj

|x|3
[
(σ|x| + 1)e−σ|x| − 1

|x|2
]

+ σ2 xpxj

|x|2
[
e−σ|x| − 1

|x|
]

= − δpj

|x|3 +
3xpxj

|x|5 + O
(

1
|x|
)

=
∂2

∂xp∂xj

1
|x| + O

(
1
|x|
)
.

This implies (3.9).
Similar arguments show that (3.13) and (3.14) lead to (3.10) and (3.11),

respectively.

The vector function U(x) = (u, ω)′ ∈ R
6 defined as

U(x) =
∫

Σ

Ψ(y − x)Φ(y)dσy , x ∈ R
3 (3.16)

is the simple layer potential with density Φ = (ϕ, ϑ)′ whose components are writ-
ten as 

uj(x) =
∫

Σ

[Ψ1
jh(y − x)ϕh(y) + Ψ2

jh(y − x)ϑh(y)]dσy , x ∈ R
3,

ωj(x) =
∫

Σ

[Ψ3
jh(y − x)ϕh(y) + Ψ4

jh(y − x)ϑh(y)]dσy , x ∈ R
3

for h, j = 1, 2, 3.
The vector function W(x) ∈ R

6

W(x) =
∫

Σ

[(SΨ)(y − x)]′Φ(y)dσy , x ∈ R
3 (3.17)

is the double layer potential with density Φ = (ϕ, ϑ)′ whose components are:
Wi(x) =

∫
Σ

[(SΨ)1ji(y − x)ϕj(y) + (SΨ)3jiϑj(y)]dσy , i, j = 1, 2, 3,

Wi+3(x) =
∫

Σ

[(SΨ)2ji(y − x)ϕj(y) + (SΨ)4jiϑj(y)]dσy , i, j = 1, 2, 3,

(3.18)

S being given by (2.3).

3.2. On the first derivatives of a double layer potential

We define the operator Θs as

Θs(ϕ)(x) = ∗
∫

Σ

dx[s1(y − x)] ∧ ϕ(y) ∧ dxs, ϕ ∈ Lp
1(Σ), (3.19)
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where

s1(y − x) = − 1
4π|y − x|

∑
j

dxjdyj.

In the sequel we use the following identity proved in [1, p. 187]:

1
4π

∂

∂xs

∫
Σ

u(y)
∂

∂νy

1
|x− y|dσy = Θs(du)(x), x ∈ Ω, u ∈W 1,p(Σ). (3.20)

Theorem 3.1. Let W be the double layer potential (3.17) with density U =
(u, ω)′ ∈ [W 1,p(Σ)]6. We have for any x ∈ Ω

∂

∂xs
Wj(x) = Kjs(du)(x) +

∂

∂xs

∫
Σ

(SΨ)3kj(y − x)ωk(y)dσy, (3.21)

∂

∂xs
Wj+3(x) = Fjs(dω)(x)

+
∂

∂xs

∫
Σ

[D̃kj(y − x)ωk(y) + (SΨ)2kj(y − x)uk(y)]dσy , (3.22)

where du = (du1, du2, du3), dω = (dω1, dω2, dω3),

Kjs(ψ)(x) = 2Θs(ψj)(x) − δ123pkq

∫
Σ

∂

∂xs
[H1

jp(y − x)] ∧ ψk(y) ∧ dyq,

ψ ∈ [Lp
1(Σ)]3, (3.23)

Fjs(ϕ)(x) = 2Θs(ϕj)(x) − δ123pkq

∫
Σ

∂

∂xs
[H2

jp(y − x)] ∧ ϕk(y) ∧ dyq,

ϕ ∈ [Lp
1(Σ)]3, (3.24)

H1
jp(y − x) =

1
4π

[
(µ+ ξ)(λ + 3µ+ α)

(µ+ α)(λ + 2µ)
− 2
]

δjp

|y − x|

+
1
4π

(µ+ ξ)(λ+ µ− α)
(µ+ α)(λ + 2µ)

1
|y − x|

∂

∂yj
|y − x| ∂

∂yp
|y − x|

+ (µ+ ξ)Cjp(y − x), (3.25)

H2
jp(y − x) =

1
4π

[
(χ+ v)(ε+ 3v + β)

(v + β)(ε+ 2v)
− 2
]

δjp

|y − x|

+
1
4π

(χ+ v)(ε+ v − β)
(v + β)(ε+ 2v)

1
|y − x|

∂

∂yj
|y − x| ∂

∂yp
|y − x|

+ (χ+ v)Djp(y − x). (3.26)

Here S, D̃jp, Cjp and Djp are given by (2.3), (3.15), (3.3) and (3.4), respectively.
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Proof. It follows from (3.18) and (3.8) that

Wj(x) =
1
2π

∫
Σ

uj(y)
∂

∂νy

1
|y − x|dσy

+
1
4π

[
(µ+ ξ)(λ + 3µ+ α)

(µ+ α)(λ + 2µ)
− 2
]∫

Σ

uk(y)M jk
y

(
1

|y − x|
)
dσy

+
1
4π

(µ+ ξ)(λ+ µ− α)
(µ+ α)(λ+ 2µ)

∫
Σ

uk(y)Mpk
y

[
(yj − xj)(yp − xp)

|y − x|3
]
dσy

+ (µ+ ξ)
∫

Σ

uk(y)Mpk
y [Cjp(y − x)]dσy +

∫
Σ

(SΨ)3kj(y − x)ωk(y)dσy.

The first and last integrals on the right-hand side are compact operators because
of the weak singularities. Integrating by parts and keeping in mind that M ih

y are
tangential operators, we find

Wj(x) =
1
2π

∫
Σ

uj(y)
∂

∂νy

1
|y − x|dσy −

∫
Σ

H1
jp(y − x)Mpk

y [uk(y)]dσy

+
∫

Σ

(SΨ)3kj(y − x)ωk(y)dσy .

Finally, because of

M ih
y u(y)dσ = δ123ihp du(y) ∧ dyp

and in view of (3.20), we obtain (3.21). With similar calculations we achieve (3.22).

4. The Integral Equation of the First Kind and Its Reduction

If we look for the solution of the Dirichlet problem MU = 0 in Ω, U = f on Σ,
f ∈ [W 1,p(Σ)]6, in the form of a simple layer potential (3.16), we get the following
integral system of the first kind∫

Σ

Ψij(y − x)γj(y) dσy = fi(x) (4.1)

on Σ. Our method consists at first in taking the differential of both sides, obtaining
the following singular integral system∫

Σ

dx[Ψij(y − x)]γj(y) dσy = dfi(x). (4.2)

Note that in this system the unknown is a usual vector (γ1, . . . , γ6) whose com-
ponents are scalar functions, while the data is the vector (df1, . . . , df6) whose com-
ponents are differential forms of degree 1.

Then we show that system (4.2) can be reduced to an equivalent Fredholm
system.
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We recall that if η ∈ Σ is a Lebesgue point for f ∈ L1(Σ), we get

lim
x→η

∫
Σ

f(y)∂xs

(yl − xl)(yj − xj)
|x− y|3 dσy

= 2π(δlj − 2νj(η)νl(η))νs(η)f(η)

+
∫

Σ

f(y)∂ηs

(yl − ηl)(yj − ηj)
|η − y|3 dσy, (4.3)

where the limit has to be understood as an internal angular boundary valuea and
the integral in the right-hand side is a singular integral. Further, let ψ ∈ Lp

1(Σ) and
write ψ as ψ = ψhdx

h withb

νhψh = 0, (4.4)

then, for almost every η ∈ Σ,

lim
x→η

Θh(ψ)(x) = −1
2
ψh(η) + Θh(ψ)(η), (4.5)

where Θh is given by (3.19) and the limit has to be understood again as an internal
angular boundary value.

Jump formulas (4.3) and (4.5) are proved in [5, Lemmas 3.2 and 3.3].

Lemma 4.1. Let ψ ∈ Lp
1(Σ). Let us write ψ as ψ = ψhdx

h and suppose that (4.4)
holds. Then, for almost every η ∈ Σ,

lim
x→η

δ123lik

∫
Σ

∂xsH
1
lj(y − x) ∧ ψ(y) ∧ dyk

= −
[
µ+ λ− ξ

2µ+ λ
νj(η)ψi(η) +

ξ − α

µ+ α
νi(η)ψj(η)

]
νs(η)

+ δ123lik

∫
Σ

∂ηsH
1
lj(y − η) ∧ ψ(y) ∧ dyk,

lim
x→η

δ123lik

∫
Σ

∂xsH
2
lj(y − x) ∧ ψ(y) ∧ dyk

= −
[
v + ε− χ

2v + ε
νj(η)ψi(η) +

χ− β

v + β
νi(η)ψj(η)

]
νs(η)

+ δ123lik

∫
Σ

∂ηsH
2
lj(y − η) ∧ ψ(y) ∧ dyk,

(4.6)

where H1
lj and H2

lj are defined by (3.25) and (3.26) respectively and the limits have
to be understood as internal angular boundary values.

aFor the definition of internal (external) angular boundary values see, e.g. [4, p. 53] or [13, p. 293].
bAssumption (4.4) is not restrictive, because, given the 1-form ψ on Σ, there exist scalar functions
ψh defined on Σ such that ψ = ψhdx

h and (4.4) holds (see [3, p. 41]).
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Proof. Let us consider

δ123lik

∫
Σ

∂xsH
1
lj(y − x) ∧ ψ(y) ∧ dyk = δ123lik δ

123
rhk

∫
Σ

∂xsH
1
lj(y − x)ψh(y)νr(y)dσy

= δli
rh

∫
Σ

∂xsH
1
lj(y − x)ψh(y)νr(y)dσy .

In view of (3.25) and (4.3) we have that

lim
x→η

δ123lik

∫
Σ

∂xsH
1
lj(y − x) ∧ ψ(y) ∧ dyk

=
δli
rh

2

[
(µ+ ξ)(λ+ µ− α)
(µ+ α)(λ + 2µ)

(δlj − 2νj(η)νl(η))

+
[
(µ+ ξ)(λ+ 3µ+ α)

(µ+ α)(λ + 2µ)
− 2
]
δlj

]
νs(η)νr(η)ψh(η)

+ δ123lik

∫
Σ

∂ηsH
1
lj(y − η) ∧ ψ(y) ∧ dyk

=
[

(ξ − α)
(µ+ α)

δlj − (µ+ ξ)(λ + µ− α)
(µ+ α)(λ + 2µ)

νj(η)νl(η)
]
νs(η)(νl(η)ψi(η)

− νi(η)ψl(η)) + δ123lik

∫
Σ

∂ηsH
1
lj(y − η) ∧ ψ(y) ∧ dyk.

Because of (4.4) we can write this expression as

lim
x→η

δ123lik

∫
Σ

∂xsH
1
lj(y − x) ∧ ψ(y) ∧ dyk

=
(ξ − α)
(µ+ α)

νs(η)νj(η)ψi(η) − (ξ − α)
(µ+ α)

νs(η)νi(η)ψj(η)

− (µ+ ξ)(λ+ µ− α)
(µ+ α)(λ + 2µ)

νs(η)νj(η)ψi(η) + δ123lik

∫
Σ

∂ηsH
1
lj(y − η) ∧ ψ(y) ∧ dyk

= − (λ+ µ− ξ)
λ+ 2µ

νs(η)νj(η)ψi(η) − ξ − α

µ+ α
νs(η)νi(η)ψj(η)

+ δ123lik

∫
Σ

∂ηsH
1
lj(y − η) ∧ ψ(y) ∧ dyk.

The jump formula (4.6) is obtained with similar calculations.

Lemma 4.2. Let (ψ, ϕ) ∈ [Lp
1(Σ)]3 × [Lp

1(Σ)]3. Then, for almost every η ∈ Σ,

lim
x→η

(λ+ µ− ξ)Kjj(ψ)(x)νi(η) + (µ+ α)Kij(ψ)(x)νj(η) + (ξ − α)Kji(ψ)(x)νj(η)

= (λ+ µ− ξ)Kjj(ψ)(η)νi(η) + (µ+ α)Kij(ψ)(η)νj(η)

+ (ξ − α)Kji(ψ)(η)νj(η), (4.7)
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lim
x→η

(ε+ v − χ)Fjj(ψ)(x)νi(η) + (v + β)Fij(ψ)(x)νj(η) + (χ− β)Fji(ψ)(x)νj(η)

= (ε+ v − χ)Fjj(ψ)(η)νi(η) + (v + β)Fij(ψ)(η)νj(η)

+ (χ− β)Fji(ψ)(η)νj(η), (4.8)

K and F being as in (3.23) and (3.24), respectively, and the limits have to be
understood as internal angular boundary values.

Proof. Let us write ψi as ψi = ψihdx
h with

νhψih = 0, i = 1, 2, 3. (4.9)

Keeping in mind (4.5) and Lemma 4.1 we have that

lim
x→η

Kjs(ψ)(x) = −ψjs(η) +
[
(λ+ µ− ξ)
(λ+ 2µ)

νj(η)ψhh(η) +
ξ − α

µ+ α
νh(η)ψhj(η)

]
νs(η)

+Kjs(ψ)(η).

Therefore

lim
x→η

(λ + µ− ξ)Kjj(ψ)(x)νi(η) + (µ+ α)Kij(ψ)(x)νj(η) + (ξ − α)Kji(ψ)(x)νj(η)

= Φi(ψ)(η) + (λ + µ− ξ)Kjj(ψ)(η)νi(η)

+ (µ+ α)Kij(ψ)(η)νj(η) + (ξ − α)Kji(ψ)(η)νj(η).

From (4.9) we get

Φi(ψ) = (λ+ µ− ξ)
[
−ψjj +

(
µ− ξ + λ

2µ+ λ
νjψhh +

α− ξ

µ+ α
νhψhj

)
νj

]
νi

+ (µ+ α)
[
−ψij +

(
µ+ λ− ξ

2µ+ λ
νiψhh +

α− ξ

µ+ α
νhψhi

)
νj

]
νj

+ (ξ − α)
[
−ψji +

(
µ+ λ− ξ

2µ+ λ
νjψhh +

α− ξ

µ+ α
νhψhj

)
νi

]
νj

= (λ+ µ− ξ)
[
−ψjjνi +

µ+ λ− ξ

2µ+ λ
νiψhh

]

+ (µ+ α)
[
µ+ λ− ξ

2µ+ λ
νiψhh

]
+ (ξ − α)νhψhi

+ (ξ − α)
[
−ψjiνj +

µ+ λ− ξ

2µ+ λ
ψhhνi +

α− ξ

µ+ α
νhψhjνiνj

]

=
[
(λ+ µ− ξ)

(
−1 +

(λ+ µ− ξ)
λ+ 2µ

)
+
λ+ µ− ξ

2µ+ λ
(µ+ α+ ξ − α)

]
ψhhνi

≡ 0

and (4.7) is proved. Analogously we obtain (4.8).
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Lemma 4.3. Let W = (w, ζ)′ be the double layer potential (3.17) with density
(u, ω)′ ∈ [W 1,p(Σ)]3 × [W 1,p(Σ)]3. Let

Lj(x) =


∫

Σ

(SΨ)3kj(y − x)ωk(y)dσy∫
Σ

[D̃kj(y − x)ωk(y) + (SΨ)2kj(y − x)uk(y)]dσy

 (4.10)

and let W0 = W −L be the vector whose components are (w0, ζ0)′. Then

S1
+,i(w

0) = S1
−,i(w

0) = (λ+ µ− ξ)Kjj (du)νi

+ (µ+ α)Kij (du)νj + (ξ − α)Kji(du)νj ,

S4
+,i(ζ

0) = S4
−,i(ζ

0) = (ε+ v − χ)Fjj(dω)νi

+ (v + β)Fij(dω)νj + (χ− β)Fji(dω)νj ,

a.e. on Σ, where Sh
+, S

h− denote the internal and external angular boundary limit of
Sh, h = 1, 4 respectively and Kij and Fij are given by (3.23) and (3.24), respectively.

Proof. The results are immediate consequence of Theorem 3.1 and Lemma 4.2.

Let us introduce now the following block-matrix of singular operators:

R̃ =

(
R̃1 0

0 R̃4

)
, (4.11)

where R̃1, R̃4 : [Lp
1(Σ)]3 → [Lp(Σ)]3 are defined as

(R̃1ψ)i = (λ+ µ− ξ)Kjj(ψ)νi + (µ+ α)Kij(ψ)νj + (ξ − α)Kji(ψ)νj ,

(R̃4ψ)i = (ε+ v − χ)Fjj(ψ)νi + (v + β)Fij(ψ)νj + (χ− β)Fji(ψ)νj ,

i, j = 1, 2, 3.

Proposition 4.1. Let R be the matrix

R =

(
R1

R4

)
, (4.12)

where R1, R4 : [Lp(Σ)]6 → [Lp
1(Σ)]3 are given by

(R1Φ)j(x) =
∫

Σ

[dx[Ψ1
jh(y − x)]ϕh(y) + dx[Ψ2

jh(y − x)]ϑh(y)]dσy ,

(R4Φ)j(x) =
∫

Σ

[dx[Ψ3
jh(y − x)]ϕh(y) + dx[Ψ4

jh(y − x)]ϑh(y)]dσy .

Let R̃ be the matrix (4.11). Then

R̃RΦ = −Φ +H2Φ + JΦ, (4.13)
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where H is the integral operator

HΦ(x) =
∫

Σ

Sx[Ψ(y − x)]Φ(y)dσy ,

and J is a compact operator from [Lp(Σ)]6 into itself.

Proof. Let U = (u, ω)′ be the simple layer potential (3.16) with density Φ =
(ϕ, ϑ)′ ∈ [Lp(Σ)]3 × [Lp(Σ)]3. From (4.12) we have that

(R̃1R1ϕ)i = (λ+ µ− ξ)Kjj(du)νi + (µ+ α)Kij(du)νj + (ξ − α)Kji(du)νj ,

(R̃4R4ϑ)i = (ε+ v − χ)Fjj(dω)νi + (v + β)Fij(dω)νj + (χ− β)Fji(dω)νj .

From Lemma 4.3 we have

(R̃1R1ϕ)i = S1
i (w0), i = 1, 2, 3, a.e. on Σ,

(R̃4R4ϑ)i = S4
i (ζ0), i = 1, 2, 3, a.e. on Σ.

Since

SW0 =

(
S1w0 + S2ζ0

S4ζ0

)
,

R̃RΦ =

(
S1w0

S4ζ0

)
= SW0 −

(
S2ζ0

0

)
.

In view of (4.10), we have W = W0 + L, and then

R̃RΦ = SW + JΦ,

where J : [Lp(Σ)]6 → [Lp(Σ)]6, defined as

JΦ = −
(
S2ζ0

0

)
− SL,

is a compact operator. On the other hand, from the Green representation for-
mula [13]

W(x) = −2U(x) +
∫

Σ

Ψ(y − x)SU(y)dσy , x ∈ Ω

and from the following jump formula [13, p. 493][
S

(∫
Σ

Ψ(y − x)ϕ(y)dσy

)]+
= ϕ(x) +

∫
Σ

Sx(Ψ(y − x))ϕ(y)dσy , x ∈ Σ,

we have

SW(x) = S

[
−2U(x) +

∫
Σ

Ψ(y − x)SU(y)dσy

]
= −S[U(x)] +

∫
Σ

Sx[Ψ(y − x)]SU(y)dσy
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= −S
[∫

Σ

Ψ(y − x)Φ(y)dσy

]
+
∫

Σ

Sx[Ψ(y − x)]Sy

[∫
Σ

Ψ(z − y)Φ(z)dσz

]
dσy .

Then

SW(x) = −Φ(x) −
∫

Σ

Sx[Ψ(y − x)]Φ(y)dσy +
∫

Σ

Sx[Ψ(y − x)]Φ(y)dσy

+
∫

Σ

Sx[Ψ(y − x)]
∫

Σ

Sy[Ψ(z − y)]Φ(z)dσzdσy

= −Φ(x) +
∫

Σ

Sx[Ψ(y − x)]
∫

Σ

Sy[Ψ(z − y)]Φ(z)dσzdσy

= −Φ(x) +H2Φ(x).

Theorem 4.1. The operator R defined by (4.12) can be reduced on the left. A
reducing operator is given by R̃ with ξ and χ as in (2.5).

Proof. Replacing in (4.13) χ and ξ given by (2.5), we obtain that the operator H
is compact, because the coefficients of the singular parts in (3.8) [ (µ+ξ)(λ+3µ+α)

(µ+α)(λ+2µ) −2]

and [ (χ+v)(ε+3v+β)
(v+β)(ε+2v) − 2] vanish. Then, the kernel of H has only a weak singularity:

T 0
x [Ψ(y − x)] = O(|y − x|l−2),

l ∈ (0, 1] being the Lyapunov exponent of surface Σ.

5. Representation Theorem

As a by-product of our method, we obtain the representability of the solution of
the Dirichlet problem with datum f given in [W 1,p(Σ)]6 by means of a simple layer
potential. The density of such a potential is obtained as a solution of a Fredholm
equation.

Theorem 5.1. Given w ∈ [Lp
1(Σ)]6, there exists a solution Φ ∈ [Lp(Σ)]6 of the

following singular integral system

RΦ = w a.e. x ∈ Σ, (5.1)

where R is defined as in (4.12) if and only if∫
Σ

γi ∧ wi = 0 (5.2)

for every γ = (γ1, . . . , γ6) ∈ [Lq
1(Σ)]6, (q = p/(p− 1)) such that γi, i = 1, . . . , 6, is

a weakly closed 1-form.
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Proof. Consider the adjoint of R (see (4.12)), R∗ : [Lq
1(Σ)]6 → [Lq(Σ)]6, i.e. the

operator whose components are given by

R∗
jψ(x) =

∫
Σ

ψi(y) ∧ dy[Ψij(y − x)].

Theorem 4.1 implies that the integral system (5.1) has a solution Φ ∈ [Lp(Σ)]6 if
and only if the compatibility conditions∫

Σ

ψi ∧ wi = 0

hold for any ψ = (ψ1, . . . , ψ6) ∈ [Lq
1(Σ)]6 such that R∗ψ = 0. On the other hand

R∗ψ = 0 if and only if ψi is a weakly closed 1-form, i.e.∫
Σ

ψi ∧ dg = 0 ∀ g ∈ C̊∞(R3).

In fact, if ∫
Σ

ψj(y) ∧ dy[Ψij(y − x)] = 0 a.e. x ∈ Σ, (5.3)

we have ∫
Σ

pi(x)dσx

∫
Σ

ψj(y) ∧ dy[Ψij(y − x)] = 0 ∀ pi ∈ Cλ(Σ)

and then

0 =
∫

Σ

ψj(y) ∧ dy

∫
Σ

pi(x)Ψij(y − x)dσx =
∫

Σ

ψj ∧ dUj

for any smooth solution U of (2.2). Therefore we have∫
Σ

ψj(y) ∧ dy[Ψij(y − x)] = 0 ∀x ∈ CΩ.

Let us consider

zi(x) =
∫

Σ

ψj(y) ∧ dy[Ψij(y − x)].

If v ∈ [C∞(R3)]6 and η ∈ [C1(Ω)∩C2(Ω)]6 are such that Mη = Mv in Ω and η = 0
on Σ, we have∫

Ω

zi(Mv)idx =
∫

Ω

zi(Mη)idx =
∫

Ω

(Mη)i(x)dx
∫

Σ

ψj(y) ∧ dy[Ψij(y − x)]

=
∫

Σ

ψj(y) ∧ dy

∫
Ω

(Mη)i(x)Ψij(y − x)dx.

From the Gauss–Green formula (see, e.g. [13, p. 146]) we have∫
Ω

(UMV − VMU)dx =
∫

Σ

(UTV − VTU)dσx,

where U and V are smooth vector functions. Keeping in mind that η = 0 on Σ and
that the column vectors (Ψ1j ,Ψ2j , . . . ,Ψ6j)′, j = 1, . . . , 6, are solutions of (2.2) (see

1350037-18



2nd Reading

May 6, 2013 15:26 WSPC/S0129-167X 133-IJM 1350037

On an Integral Equation of the First Kind Arising in the Theory of Cosserat

Lemma 3.1), it follows that∫
Ω

Ψij(Mη)idx =
∫

Σ

Ψij(Tη)idσ.

In view of (5.3), we find∫
Ω

zi(Mv)idx =
∫

Σ

ψj(y) ∧ dy

∫
Σ

(Tη)i(x)Ψij(y − x)dσy

=
∫

Σ

(Tη)i(x)dσy

∫
Σ

ψj(y) ∧ dy[Ψij(y − x)] = 0.

Therefore

0 =
∫

R3
zi(Mϕ)idx =

∫
R3

(Mϕ)idx

∫
Σ

ψj(y) ∧ dy[Ψij(y − x)]

=
∫

Σ

ψj(y) ∧ dy

∫
R3

(Mϕ)i(x)Ψij(y − x)dx =
∫

Σ

ψj(y) ∧ dϕj ,

for any ϕ ∈ [C̊∞(R3)]6. This shows that ψj is weakly closed form and the theorem
is proved.

By Sp we denote the class of simple layer potentials (3.16) with density belonging
to [Lp(Σ)]6.

Theorem 5.2. Given f ∈ [W 1,p(Σ)]6, the BVP
U ∈ Sp,

MU = 0 in Ω,

dU = df on Σ

(5.4)

admits solution. It is given by (3.16) where its density γ solves the singular integral
system Rγ = df, where R is given by (4.12).

Proof. There exists a solution of (5.4) if and only if there exists a solution γ ∈
[Lp(Σ)]6 of the singular integral system (4.2). In view of Theorem 5.1, there exists
a solution γ ∈ [Lp(Σ)]6 of such a system because conditions (5.2) are satisfied.

Lemma 5.1. Let C ∈ R
6. The following BVP

V ∈ Sp,

MV = 0 in Ω,

V = C on Σ

(5.5)

has one and only one solution V given by a simple layer potential with density
belonging to [Cλ(Σ)]6, 0 < λ < l ≤ 1.
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Proof. It is known that there exists a unique solution of MV = 0 in Ω, V = C on Σ
belonging to [C1,λ(Ω)]6, 0 < λ < l ≤ 1. This result can be proved as in [13, Theorem
5.3, p. 367]. It is also known that the following BVP

U ∈ Sp,

MU = 0 in Ω,

TU = TV on Σ

has solution. This means that the solution U of the problemMU = 0 in Ω, TU = TV
on Σ can be represented by a simple layer potential (see [13, p. 501]). It follows from
the uniqueness theorem (see [13, Theorem 4.2, p. 148]) that there exist a, b ∈ R

3

such that

U = V +

(
(a ∧ x) + b

a

)
.

Since the column vector Z = (a ∧ x) + b, a)′ is a solution of the problem: MZ = 0
in Ω, TZ = 0 on Σ, it can be represented by means of a simple layer potential with
an Hölder continuous density. Therefore, V = U − Z satisfies the assertion of the
lemma.

Theorem 5.3. The following Dirichlet BVP
U ∈ Sp,

MU = 0 in Ω,

U = f on Σ, f ∈ [W 1,p(Σ)]6
(5.6)

admits a unique solution U . In particular, the density Φ of U can be written as
Φ = Φ0 + Γ0, where Φ0 solves the singular integral system∫

Σ

dx[Ψij(y − x)]Φ0j(y)dσy = dfi(x), i = 1, . . . , 6, a.e. x ∈ Σ

and Γ0 is the density of a simple layer potential which is constant on Σ.

Proof. Let Ũ be a solution of (5.4). Since d Ũ = df on Σ and Σ is connected,
Ũ = f − C on Σ, C ∈ R

6. Then U = Ũ + V , V being solution of (5.5), solves (5.6).
The uniqueness follows from [13, Theorem 4.1, p. 148].

Theorem 5.4. If f ∈ [W 1,p(Σ)]6, the singular integral system RΦ = df is equiva-
lent to the Fredholm system R̃RΦ = R̃(df).

Proof. As in [2, pp. 253–254], one can show that N(R̃R) = N(R). This implies
that, if g is such that there exists a solution Φ of the equation RΦ = g, then this
equation is satisfied if and only if R̃RΦ = R̃g. Since we know that the equation
RΦ = df is solvable, we have that RΦ = df if and only if R̃RΦ = R̃(df).
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