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Abstract—The dynamic behaviour of beams with linearly varying cross-section is examined, in the presence
of rotationally and axially flexible ends. The equation of motion is solved in terms of Bessel functions,
and the boundary conditions lead to the frequency equation which is a function of four flexibility
coefficients. For some particular cases of perfect constraints some known results of the literature can be
recovered. Numerical results end the paper. Copyright © 1996 Elsevier Science Ltd

1. INTRODUCTION

The dynamic analysis of tapered beams has been
the subject of countless scientific investigations.
Starting from the early 1960s, a number of papers by
Mabie and Rogers [1—4] presented the exact frequency
equations for various tapered beams with classical
boundary conditions, by using the Bessel function
theory. The presence of a concentrated mass should
be noted. Essentially, they based their analysis on some
results from Ref. [5], and on the monumental treatise
by Watson [6],

Later on, Goel generalized the Mabie-Rogers
analysis [7] in order to take into account more com-
plex structures with rotational springs at the ends,
and Craver and Jampala [8] were able to deduce
the frequency equation for a cantilever beam with
intermediate translational spring.

The same structural system as in Ref. [7] has been
treated by means of the approximate Rayleigh—Ritz
and Rayleigh-Schmidt techniques by Grossi and
co-workers [9, 10}, together with some other classical
boundary conditions. The performances of these
approximate methods were surprisingly good.

The optimized Rayleigh—Ritz method has been used
by Alvarez et al. [11}, in order to study the vibrations
of an elastically restrained, non-uniform beam with
translational and rotational springs, and with a tip
mass.

Finally, a different approach, by means of Fourier
expansions of the mass and moment of inertia
should be noted [12], because it is suitable for all
variations of cross-sectional properties, including
both continuously varying systems and stepped
beams.

In this paper a tapered beam with rotational and
translational springs at the ends is examined, in which
both the height and the depth of the cross section
are supposed to vary according to a linear law. The
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differential equation of motion is solved in terms of
Bessel functions, and the boundary conditions are
imposed, in order to deduce the frequency equation.
A number of particular cases with classical constraints
can be immediately deduced for limiting values of
the flexibilities, and some result from the literature
has also been recovered.

Some numerical examples have been presented,
in which the frequency equation has been solved by
means of the false position method, in order to deduce
the values of the first nondimensional frequency
coeflicients.

2. THE EQUATION OF MOTION

The differential equation of motion of a slender
Euler-Bernoulli beam is given by
62
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where v(z,1) is the transverse displacement, z is the
abscissa, ¢ is the time, E is the Young modulus, /(z)
is the cross-sectional inertia, A(z) is cross-sectional
area, and L is the span of the beam.

The solution of the previous equation can be
expressed as

v(z, t) = V(z)e*, )

where w is the circular frequency, and i=./—1,
so that eqn (1) becomes

(

If the cross-section of the beam is supposed to vary
according to a linear law, as illustrated in Fig. 1, then
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Fig. 1. The structural system.

area and inertia of the section will vary according to
the following laws:

z 2
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where A4, and I, are the cross-sectional area and
inertia at z =0, and « = A, /hy = b, /b, is the taper
ratio of the beam. Finally, h, and h, are the cross-
section heights at z=0 and z = L, respectively,
and by, b, are the cross-section widths at the same
abscissae.

If eqns (4) and (5) are inserted into the differential
equation of motion (3) it is possible to write
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It is convenient to define the following non-
dimensional coefficient:

X=(oz—l)%+1 ©)

which is equal to 1 at z=0 and to a at z=L.
Equation (6) simplifies as follows:

av d*v av
4 3 2
X——dX4+8X s
Lk
— X = 7
[(a_l)] 0
with
A 2
Kt = B2 @®)

EL,

The general solution of this equation is
1
v = [4%,1q/X1+ BY:[g/X]
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where A4, B, C, D are integration constants, ¢ = 2Lk /
(@ —1), J; is the Bessel function of I degree and
order 2, Y, is the Bessel function of II degree and
order 2, I, is the modified Bessel function of I degree
and order 2, and finally X, is the modified Bessel
function of II degree and order 2.

3. THE BOUNDARY CONDITIONS

The boundary conditions, in the presence of
constraints with rotational stiffnesses kg,, kg, and
transverse stiffnesses k1, and k, are given by
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at z =0, and:
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It is convenient to define the following non-
dimensional stiffness coefficients:

1= -EI-O“ > 2 = EE— >
T, =k1111;3, T2=kT£II]‘3, (14)
so that the boundary conditions become
g%—(&f_l—l)% = (15)
3;:2+%+( f‘1)3V=0 (16)
dZV (a]izl) j; an
; %zil; * _j% - (o:Ti-L:)3 v=0. (9

If the general solution (9) is inserted into these
boundary conditions, then a homogeneous system of
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four equations is obtained, for the four integration
constants. In order to have a non-trivial solution, the
determinant of this system must be zero. After some
algebra, the terms of the determinant can be written
down as follows:

R
ay =qJilq]+ zﬁja[‘ﬂ (19)
R,
ap = qY.,[q] + 2( 1 Ys[‘l] (20)
al}"q14[q]+2( IJ[Q] @2n
014—4K4[‘11+2 K3[‘i] (22)
2 3 T
ay =8q°J,{q] — ¢ J5[q]+8( 1)3-]2[‘11 (23)
T,
ay = 84*Y,[q]—¢° Ys[q]+8( 7 s Yalq]l  (24)
2 3 T
ay =8q°Liql+¢q Is[q]+8( l)glz[q] (25)
3 T,
a2 =8¢°K[q) — ¢ ¢Kslql+8 s Kilgl (29
I ACNL] 1-2 “f Ja[qf o] 7
R,
a = g¥lg\/a] =20 f) ACNE) (28)
agz—qmqfwz ‘/Iaqul (29)
= gKi[q /o] -2 2‘/ Kl N (30)
a4,=8q214[q\/31—q3 ACNS
T,
P ”,leql 31
I R AUNLIET R A CNLY
T
—8(~2—°‘1—)3 Y.lg/2] (32)
g =8¢°L[g/2) + ¢*Ls[q/%]
T,a?
ah e JACNCIED

A = sqzkd[q\/—a] qSKS[Q\/—a]
- 8-——2 : K \/-a 34
( 1)3 Z[q ] ( )

199

4. PARTICULAR CASES

If the nondimensional stiffness coefficients are
allowed to become zero or infinity, then the limiting
cases of perfect constraints can be easily recovered.
For example, if R, =R,=T,=0 and T, —c0, then
the frequency equation of the simply supported-
clamped beam is obtained, if R, = T} =0 and R, — oo,
T, — 00, then the frequency equation of the cantilever
beam can be studied, both the determinants are equal
to the determinants given by Mabie-Rogers in Ref. [1].
Other interesting limiting cases can be listed as shown
on the next page.

S. NUMERICAL EXAMPLES

Let k;L be the nondimensional free frequency co-
efficient. The frequency equation will be numerically
solved by the modified bisection method (false position
method), and the whole procedure has been greatly
simplified by using the powerful Mathematica soft-
ware [13].

In Table 1 the first five nondimensional free
frequency coefficients are given for 7,=7,—
and a = 2, for various values of the nondimensional
rotational stiffness coefficients R, and R,. For the
sake of comparison, in the same table the approxi-
mate values given in Ref. [7] are also reported.

In Table 2 the first four nondimensional co-
efficients are given for R, = T,— o0 and a = 1.4, for
various values of R, and T,. Two limiting cases, in
which the cantilever beam and the simply supported
clamped beam are recovered, can be compared with
the results given in Ref. {2].

Table 1. First five nondimensional frequency coefficients

for T),=T,— o and a =2, for various values of the
nondimensional rotational stiffness coefficients R, and R,
R, R, kL kL k,L kL ksL
0 0 3.7300 7.6302 11.4217 15.2083 18.9954
0 0.0l 3.7345 7.6317 11.4226 152089 18.9959
0 0.1 3.7737 7.6447 11.4306 15.2147 19.0004
0 1 4.0635 7.7619 11.5054 152695 19.0436
0 10 47549 82846 119277 15.6221 19.3456
1 0 3.7984 7.6803 11.4604 15.2397 19.0218
I 0.1 38409 7.6946 11.4693 152461 19.0267
1 1 3.1249 7.8105 11.5436 15.3007 19.0698

Table 2. First four nondimensional coefficients for
R,=T,— o and « = 1.4, for various values of R, and T}

R, T kL kL kL kL
o 44320 7.8008  11.2061  14.6219
0 1000 43755 74772 102215 128572
10 28554 54414 87426 121196
1 24420 53805 87280 12.1141
0.1 23834 53745 87265 121136
0 23766 53739 87264 121135
o 100 S.0171  8.4939  11.8929  15.2933
10 48490 81441  11.4959  14.8703
1 45172 78562 112476  14.6550
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Finally, the determinant given by Goel [77] for a beam with rotationally flexible ends should be corrected as follows (R, #0, R, #0, T, > 00, T, — 00):
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Table 3. First four nondimensional frequencies as functions
of Ty and T, with a = 1.4, R, =R, =0

R, T, kL k,L kL kiL

© © 3.4159  6.8687 10.2978  13.7260
1000 1000 3.3755  6.5696  9.2888  11.5626
100 100 3.0724  5.0667 6.7115 9.0709
10 10 21010 3.1302 5.3938 8.6415

1 1 1.2140  1.7851 5.2122 8.6003

Finally, in Table 3 the rotational stiffness co-
efficients are set equal to zero, « is assumed to be
equal to 1.4, and the first four nondimensional
frequencies are given as functions of 7, and T).

6. CONCLUSIONS

The frequency equation for a slender tapered beam
in the presence of elastic ends has been deduced,
and various classical boundary conditions have been
treated as limiting cases of the general system.
Numerical examples and comparisons from the
literature end the paper.
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