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SUMMARY. This paper presents a dynamic model for the vibration of rotating tapered beams 

including rotary inertia. The governing differential equations of motion of the beam in free 

vibration are derived using Lagrange’s equations and include the effect of an arbitrary hub radius. 

Three linear partial differential equations are derived. Two of the linear differential equations are 

coupled through the stretch and chordwise deformation, the other equation is an uncoupled one for 

the flapwise deformation. An approximate method based on the Rayleigh-Ritz solution is proposed 

to solve the natural frequency of very slender rotating beam at high angular velocity. The 

parameters for the hub radius, rotational speed, tapered ratio, rotary inertia and slenderness ratio 

are incorporated into the equation of motion. The theory is valid for a wide range of applications 

in rotating machinery design. 

1 INTRODUCTION 

There are many engineering example which can be idealized as rotating beams, such as 

helicopter blades, turbine blades, satellite booms, aircraft rotary wings, etc. Rotating beam differs 

from a non-rotating beam in having additional centrifugal force and Coriolis effects on its 

dynamics. The stretching causes the increment of the bending stiffness of the structures, which 

naturally results in the variation of natural frequencies and mode shapes.  Vibration in many cases 

greatly affects the nature of engineering designs. Consequently, considerable attention has been 

paid in free vibration analysis involving the study of natural frequencies and mode shapes of such 

structures. Identifying such structural properties is essential to the analysis of structural dynamics 

and the suppression of unwanted vibrations. Numerous methods such as experimental, analytical 

and numerical methods have been developed and used to analyse the structural dynamics of beam-

like structures. In this respect, the modal analysis is a well-known practical technique for 

investigation of the dynamic response and vibrations of beams. Indeed transverse free vibrations 

of non-uniform beams have been studied by numerous researchers in both aeronautical and 

mechanical engineering fields either analytically or numerically. Added to this, several analytical 

solutions, most of which are applied for linearly tapered beams, have been represented in terms of 

orthogonal polynomials [1], power series by differential transformation method  [2], and finite 

element analysis [3]. Recently, Gunda et al [4] used the linear combination of terms of the 

functions derived from the exact solution of the governing static differential equation of a stiff-

string and that of a non-rotating beam 

In the present study, the equations of motion of rotating Rayleigh beam are derived by the 

Lagrange’s equation. In order to capture all inertia effect and coupling between extensional and 

flexural deformation, the consistent linearization of the fully geometrically non-linear beam theory. 

The problem with many discrete degrees of freedom is studied through the adoption of orthogonal 

polynomial functions satisfying the essential conditions only. 



 

2 MATHEMATICAL FORMULATIONS 

Considered a tapered Rayleigh beam length L rigidly mounted on the periphery of rigid hub 

with radius r rotating about its axis fixed in space at a constant angular velocity Ω. Figure 1 show 

the deformation of the neutral axis of the beam. The origin of the coordinate system is chosen to 

be the intersection of the centroid axes of the hub and the beam. A generic point P
0
 the 

undeformed position is given of the vector: 
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Hr x x x= +r . (1) 

 

 

 

 

 

 

 

 

 

 

 Figure 1: Deformed of the blade neutral axis 

 

If the beam now in deforms as a result of flexure and also under tension due to the centrifugal 

force, the position vector of the deformed point would now be given of the r : 
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Hr x u x u x u x u x u = + + − − + + r  (2) 

The velocity of a material point in deformed state is given by:
3

( )= + Ω ×v r e rɺ   
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Hu x u x u x u u r x u x u x u u = − Ω + − − + Ω + + − Ω + v ɺ ɺ ɺ ɺ ɺ   (3) 

the time derivative are defined with a dot. 

From a geometrical point of view the length, s, is a function of Cartesian coordinates and is 

given by the following relationship: 
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(4) 

where (,1) represents  the partial derivative with respect to the integral domain variable x1 and τ is 

dummy variable. The governing differential equations of motion of the rotating tapered beam in 

free vibration are derived by applying Lagrange’s equation which requires the expression for 

kinetic and strain energies. The kinetic energy of the system is given by 

  ( ) 2 2 2

1 2 3 1

0

1 1

2 2

L

V A

T m dV v v v dAdx
A

ρ
 = = + + ∫ ∫ ∫v vi  . (5) 

The stain energy U of the rotating Rayleigh beam is defined [3] 
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U EA s EI u EI u EI u u dx = + + + ∫  (6) 

E is Young’s modulus of the beam. For x2, x3 principal axes of inertia I23 = 0, therefore, I2 and 

I3 are the principal second area moments of the cross-section. In the present study, s, u2 and u3 are 

approximated by spatial functions and the corresponding coordinates. By employing the Rayleigh-

Ritz method the variables are approximated as follows: 

  
1 1 1 2 1 2 2 3 1 3 3

( , ) , ( , ) , ( , ) .T T Ts x t u x t u x t= = =Φ q Φ q Φ q
 (7) 

q1, q2  and q3 are the generalized coordinates, ΦΦΦΦ1, ΦΦΦΦ2 and ΦΦΦΦ3 are the orthogonal polynomials for  s, 

u2 and u3; [1]. 

2.1 Equations of motion 

The Lagrange’s equations for free vibration of a distributed parameter are given by 

  0, 1,2....
i i i

d T T U
i n

dt q q q

 ∂ ∂ ∂
− + = = 

∂ ∂ ∂ ɺ
 (8) 

where n is the total number of modal coordinates. The partial derivatives of T and U with respect 

to the generalized coordinates are needed. By substituting the partial derivatives into eq. (8), the 

linearized equations of motion can be obtained as follows: 

  ( )11 12 2 11 2

1 2 1 1 12 ( )s r− Ω + − Ω − Ω + =M q M q K M q P Q 0ɺɺ ɺ  (9) 

  ( )2 22 21 2 2 2 22 2

2 1 2
( ) 2R B Rρ + + Ω + + Ω − − = M M q M q K M M M q 0ɺɺ ɺ  (10) 

  ( ) ( )3 33 3 2 3 2 3

3 3

R B Rρ+ + + Ω − Ω =M M q K M M q 0ɺɺ . (11) 

Introducing the following parameters 

 2 4 2 2 4 2 2
1 0 0 0 0 3, , ( ) , , ( ).Hx L r L A L E I A L E I r I A Lξ δ γ ρ λ ω ρ= = = Ω = =  

2.2 Flapwise bending vibration analysis 

The flapwise bending vibration of the rotating beam is governed by equation (11) which is not 

coupled with equations (9) end (10).  From equation (11), an eigenvalue problem for the flapwise 

bending vibration of a rotating cantilever beam can be formulated by assuming that the u3 ,s are 

harmonic function of  t.  

2.3 Chordwise bending vibration analysis 

Equation (9) is couped with equation (10) through gyroscopic coupling terms. The coupling 

terms are often assumed negligible and ignored. This assumption is usually reasonable since the 

first stretching natural frequency of beams is far separated from the first bending natural frequency. 

With this assumption, equation (10) can be simplified as 

 

  ( )2 22 2 2 2 22 2

2 2
( )R B Rρ + + + Ω − − = M M q K M M M q 0ɺɺ . (12) 

3 NUMERICAL RESULTS 

In order to obtain accurate numerical result s, several assumed modes are used to construct the 

matrices defined in Eq. (9-12). Any compact set of functions which satisfy the essential boundary 



 

condition of the Rayleigh beam can be used as the test functions ; [1]. The normalized modes of a 

non-rotating cantilever beam, the orthogonal polynomial can be used as test functions in the 

numerical calculation. The span-wise variation of the cross sectional are and the second moments 

of area of the beams are defined by:   
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 (13)   

In Table 1, the first five natural frequencies of the rotating tapered Rayleigh beam is given for 

three rotational speeds, γ=0, γ=5 and γ=10. 

β=0   Present     [2]   

α=0,5 γ=0 γ=5 γ=10 γ=0 γ=5 γ=10 
λ1 3,818 6,7391 11,4978 3,818 6,7356 11,4856 

λ2 18,1688 21,7362 29,9639 18,2245 21,7911 30,0232 

λ3 46,3265 49,9288 59,3794 46,5757 50,1876 59,6737 

λ4 87,1368 90,7623 100,8026 87,7974 91,4413 101,5422 

λ5 139,487 143,0885 153,3487 140,8192 144,4462 154,7865 

Table 1: Natural frequency of vibration λI of rotating tapered cantilever Rayleigh beams as a 

function of the rotational speed parameter with δ=0 and r=1/30: flapwise bending. 

4 CONCLUSIONS 

In this work, three sets of linear equations of motion for rotating tapered Rayleigh cantilever 

beams.  The Rayleigh-Ritz approach is used and the Boundary Characteristic Orthogonal 

Polynomials are chosen as trial functions; (BCOPs method). The natural frequencies were shown 

to increase as the angular speed and hub radius increase. In the dynamic analysis, this method is 

applied to determine the natural frequencies of tapered beams and the results compare very well 

with the published. The effects of the slenderness ratio, hub radius ration, and rotational speed on 

the natural frequencies are investigated; the frequencies increase with the increasing rotational 

speed due to the stiffening effect of the centrifugal force induced from the rotation.  

The advantage of the procedure used is the generality of polynomial functions which only need 

to satisfy the essential conditions. The numerical examples have been completely carried through 

by means of the powerful symbolic software. Finally, the present method can be easily extended to 

non-uniform rotating beams with discontinuities, as well as other end conditions. 
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