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Abstract. Satellite time series offer great potential for a quantitative assessment 
of urban expansion, urban sprawl and for monitoring of land use changes and 
soil consumption. This study deals with the spatial characterization of 
expansion of urban areas by using spatial autocorrelation techniques applied to 
multi-date Thematic Mapper (TM) satellite images. The investigation focused 
on several very small towns close to Bari. Urban areas were extracted from 
NASA Landsat images acquired in 1976, 1999 and 2009, respectively. To cope 
with the fact that small changes have to be captured and extracted from TM 
multi-temporal data sets, we adopted the use of spectral indices to emphasize 
occurring changes, and spatial autocorrelation techniques to reveal spatial 
patterns. Urban areas were analyzed using both global and local autocorrelation 
indexes. This approach enables the characterization of pattern features of urban 
area expansion and it improves land use change estimation. The obtained results 
showed a significant urban expansion coupled with an increase of irregularity 
degree of border modifications from 1976 to 2009.  

Keywords: Urban morphology, Remote sensing, Autocorrelation, Change 
Detection. 

1 Introduction 

Urbanization and industrialization are the key factors for social and economical 
development and represent specific response to economic, demographic and 
environmental conditions. In many European regions abandonment of agricultural land 
has induced a high concentration of people in densely populated urban areas during the 
last few decades. This phenomenon has been observed throughout the world. In 1950, 
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only 30% of the world's population lived in urban areas. By 2000 that proportion rose 
up to 47%, and by 2030 the estimated number will be around 60% [25]. 

Such a rapid industrialization and expansion of urban areas has caused strong and 
sharp land cover changes and significant landscape transformations, which 
significantly impact local and regional environmental conditions. Nowadays, the 
increase of concentration of people in densely populated urban areas is considered as 
a pressing issue in developing countries. For example, following land reform initiated 
in 1987, vast areas of China have been involved in a rapid urban expansion and new 
urban settlements [4], so that in a few years, several cities rapidly have become big 
centres or regional nodes.  

The analysis of city size distribution deals with different disciplines such as 
geography, economy, demography, ecology, physics, statistics, etc., because the 
evolution of a city is a dynamic process involving a number of different factors. An 
issue of great importance in modelling urban growth includes spatial and temporal 
dynamics, scale dynamics, man-induced land use changes. Although urban growth is 
perceived as necessary for a sustainable economy, uncontrolled or sprawling urban 
growth can cause various problems, such as loss of open space, landscape alteration, 
environmental pollution, traffic congestion, infrastructure pressure, and other social 
and economical issues. To face such drawbacks, a continuous monitoring of urban 
growth evolution in terms of type and extent of changes over time is essential for 
supporting planners and decision makers in future urban planning.  

Many recent researches have also explored ways of measuring dynamics of urban 
morphology. Shen [22], among others, compared the morphology of 20 urban areas in 
USA obtaining a wide range of results, due to the different size and character of each 
case study. Also, Frankhauser [6] used fractal dimension in the examination of 
outskirt areas in European cities, trying to obtain a typology of urban agglomerations. 
Finally, Benguigui et al. [2] examined the built-up settlement of Tel Aviv and 
concluded that fractal dimension tends to increase through time.  

A critical point for understanding and monitoring urban expansion processes is the 
availability of both (i) time-series data set and (ii) updated information relating to 
current urban spatial structure to define and to locate evolution trends. In such a 
context, an effective contribution can be offered by satellite remote sensing 
technologies, which are able to provide both an historical data archive and up-to-date 
imagery. Satellite technologies represent a cost-effective mean for obtaining useful 
data that can be easily and systematically updated worldwide. Nowadays, medium 
resolution satellite images, such as Landsat TM or ASTER can be downloaded free of 
charge from NASA web site.  

The use of satellite imagery along with spatial analysis techniques can be used for 
monitoring and planning purposes as these enable the reporting of ongoing trends of 
urban growth at a detailed level. Nevertheless, exploitation of satellite Earth 
Observation in the field of urban growth monitoring is a relatively new tool, although 
during the last three decades great efforts have been addressed to the application of 
remote sensing in detecting land use and land cover changes. A number of 
investigations were carried out using different sets of remotely sensed data [23] [14] 
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[18] [12] [21] and diverse methodological approaches to extract information on land 
cover and land use changes. 

This study analyzes urban expansion over time in several towns of southern Italy, 
using satellite images. Sample towns are located south of Bari, one of the most 
important cities in southern Italy. Analyzes were carried out using Landsat images 
acquired in 1976, 1999 and 2009. The obtained results showed a significant urban 
expansion and an increase of irregularity degree in the fabric of the city. Such a 
variation is related to economic factors, industrial expansion and population growth. 

2 Materials and Methods 

2.1 Change Detection 

Over the years, different techniques and algorithms were developed for change 
detection from the simplest approach based on (i) a visual interpretation and/or 
manual digitization of change [11] [15] to the computation and filtering such as (ii) 
image algebra change detection [9], image regression, image rationing [10] and 
vegetation index differencing [20] [11] [15].  

The effectiveness of change detection algorithms is strongly dependent on surface 
characteristics of the study area, on spectral and spatial resolution of available 
historical data sets, and on decision makers needs. All these critical aspects make it 
difficult to develop a general methods effective and reliable for all applications in 
different regions.  

This study deals with the spatial characterization of expansion of urban areas in 
southern Italy, by using geospatial analysis applied to multi-date Thematic Mapper 
(TM) satellite images.  

Over the years, satellite time series data sets, such as Landsat MSS and TM images 
have been used to assess urban growth, mainly for big cities [16] [26] [27]. The 
investigation herein presented focused on assessment of the expansion of several very 
small towns very close to Bari (one of the biggest cities in southern Italy). To cope 
with the fact that small changes have to be captured and extracted from TM multi-
temporal data sets, we adopted the use of spectral indices to emphasize occurring 
changes, and geospatial data analysis for revealing spatial patterns.  

Analyses have been carried out using global and local spatial autocorrelation 
applied to multi-date NASA Landsat images acquired in 1976, 1999 and 2009. The 
results we obtained show a significant urban expansion coupled with an increase of 
the irregularity degree of urban pattern in 1976, 1999 and 2009. This variation is also 
connected with urban expansion and population growth. 

Since 1972, the Landsat satellites have provided repetitive, synoptic, global 
coverage of high-resolution multispectral imagery. The characteristics of TM bands 
were selected to maximize each band's capabilities for detecting and monitoring 
different types of land surface cover characteristics.  

LANDSAT TM multispectral data have been acquired from a nominal altitude of 
705 kilometers (438 miles) in a near-circular, sun-synchronous orbit at an inclination 
of 98.2 degrees, imaging the same 185-km (115-mile) swath of Earth's surface, every 
16 days. All TM spectral bands (1 to 5 and 7) are listed in Table 1. All of remote 
sensed data have been georeferenced according to UTM projection.  
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Table 1. TM spectral bands 

Thematic Mapper (TM) 

Landsat 4-5 Wavelength (micrometers) Resolution (meters) 

Band 1 0.45-0.52 30 

Band 2 0.52-0.60 30 

Band 3 0.63-0.69 30 

Band 4 0.76-0.90 30 

Band 5 1.55-1.75 30 

Band 6 10.40-12.50 120 

Band 7 2.08-2.35 30 

 
The availability of a long time series of TM data systematically acquired, stored 

and now free available from NASA website for the whole globe makes the TM time 
series an invaluable data source for change detection. Moreover, geometric stability 
and high positional accuracy of TM data enable a reliable co-registration of multiple 
images, whereas radiometric consistency allows us to adjust scenes to spectrally 
match. Such characteristics make TM data valuable and reliable low cost technologies 
useful not only for assessing large-scale changes, such as land-use and land-cover, but 
also for assessing variations occurring at smaller scales, such as urban expansion with 
new houses and roads.  

Satellite images acquired in different years (1976, 1999 e 2009) have been used in 
this work. Table 2 shows a comparison between Landsat Terra Aster sensors. 

Table 2. Comparison among several Landsat and Terra Aster sensors 

 Landsat MSS Landsat TM Landsat ETM+ Terra ASTER 

Resolution 80 m 30 m 30 m 15 m (VNIR) 

Green 1 (0,5-0,6 µm) 2 (0,52-0,6 µm) 2 (0,52-0,6 µm) 1 (0,52-0,6 µm) 

Red 2 (0,6-0,7 µm) 3 (0,63-0,69 µm) 3 (0,63-0,69 µm) 2 (0,63-0,69 µm 

Near infrared 3 + 4 (0,7-1,1 µm) 4 (0,76-0,9 µm) 4 (0,76-0,9 µm) 4 (0,78-0,86 µm) 

2.1.1 Spectral Band Analysis  
Observing satellite spectral bands in RGB (Red, Green, Blue), the growth of a city is 
characterized by the transition from natural vegetation colours to lighter and brighter 
colours, generally due to high reflection of buildings and soils where vegetation has 
been removed.  

In order to obtain an image in RGB, it is necessary to combine 3, 2, 1 bands. Using 
GRASS open source GIS software (www.grass.itc.it), it is possible to adequately 
combine the bands, through the module called i.landsat.rgb. This module performs a 
self-balancing action and increases the colour channels of a Landsat RGB image, 
obtaining a mixture of more natural colours. Original data remain intact and only 
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colour table of each band is changed. The module operates computing a histogram for 
each colour channel and removing a controlled amount of outliers before colour scale 
recalibration with an appropriate module (r.colors). The i.landsat.rgb tool works with 
any set of RGB images and the script can be easily modified to work with other 
datasets and bands. In the present paper three TM images, acquired in 1976, 1999 and 
2009, have been used. Two of TM images are shown in Figure 1 (1976 and 2009, 
respectively) using RGB composition to emphasize areas of concern; light spots are 
related to urban areas. 

 

Fig. 1. Comparison of RGB Landsat images at 1976 e 2009 south of Bari municipality 

The phenomenon of urban growth can be analyzed at different scales depending on 
the context of settlements to be examined. These slow dynamics can be analyzed with 
images of the same area at different times, with a not particularly high spatial 
resolution. In any case, urban areas can be identified by investigating spectral 
responses both in visible and infrared bands. The figure below highlights that 
buildings have higher values in the infrared than in the visible band. 

 

Fig. 2. Signal intensity in visible and infrared 

A possible way to highlight changes, considering only three images at a time, is the 
composition in false colour. Another possibility is to combine bands in a different 
way. As for multispectral images, scenes with different acquisition dates, rather than 
bands with different spectral range, are combined. A colour image should be obtained 
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where unchanged areas appear in gray scale, while zones where changes have 
occurred show brighter colours. In the following image (Fig. 3) the three 2 bands at 
1976, 1999, 2009 have been combined.  

 

Fig. 3. False Colour composition 

The most evident colours show variations occurred from 1976 to nowadays. 
Unfortunately, in the image there are clouds indicating pixel erroneous changes; but 
in other cases (indicated by light colour), the increase of urbanized area over the years 
is evident. 

2.2 Spatial Autocorrelation Techniques 

In addition to RGB images composition and band classification at different periods, in 
this study Landsat images acquired in 1999 and 2009 have been examined using 
spatial autocorrelation techniques. 

The concept of spatial autocorrelation is rooted on Waldo Tobler [24] first law of 
geography: “everything is related to everything else, but near things are more related 
than distant things”. Spatial autocorrelation can be considered positive if similar 
values of a variable tend to produce clusters; in the same way spatial autocorrelation 
can be classified as negative when similar values of a variable tend to be scattered 
throughout the space (Boots and Getis, 1988).  

Spatial autocorrelation takes into account the spatial attributes of geographical 
objects under investigation, evaluates and describes their relationship and spatial 
patterns, also including the possibility to infer such patterns at different times for the 
study area. The spatial patterns are defined by the arrangement of individual entities 
in space and by spatial relationships among them. Spatial autocorrelations measure 
the extent to which the occurrence of one object/feature is influenced by similar 
objects/features in adjacent areas. As such, statistics of spatial autocorrelation provide 
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(i) indicators of spatial patterns and (ii) key information for understanding spatial 
processes underlying the distribution of an object/feature and/or a given phenomenon 
under observation. Geographical observations can be arranged in spatial and temporal 
order, by latitude and longitude, and over given time periods. In this context time 
series data, such as aerial and satellite images, can provide useful data sets to examine 
changes in homogeneity over time, as well as to measure the strength of the 
relationship between values of the same variables over a given time window. Spatial 
autocorrelation statistics are considered very useful tools in analysing satellite images, 
since they consider not only pixel value (reflectance, temperature, spectral index) 
under investigation, but also the relationship between that same pixel and its 
surrounding pixels in a given window size. 

In absence of spatial autocorrelation the complete spatial randomness hypothesis is 
valid: the probability to have an event in one point with defined (x, y) coordinates is 
independent of the probability to have another event belonging to the same variable. 
The presence of spatial autocorrelation modifies that probability. Fixed a 
neighbourhood for each event, it is possible to understand how much it is modified by 
the presence of other elements inside that neighbourhood. The presence of 
autocorrelation in a spatial distribution is caused by two effects, that could be clearly 
defined, but not separately studied in the practice: 

(i) first order effects: they depend on region of study properties and measure how 
the expected value (mean of the quantitative value associated to each spatial event) 
varies in the space by equation 1:  
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where ds is the neighbourhood around s, E() is the expected mean and Y(ds) is events 
number in the neighbourhood; 

(ii) second order effects: they express local interactions between events in a fixed 
neighbourhood, that tends to the distance between events i and j. These effects are 
measured with covariance variations expressed by the limit in formula 2: 
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The characterization of spatial autocorrelation requires detailed knowledge on:  
(a) the quantitative nature of dataset, also called intensity of the spatial process, 

that is how strong a variable happens in the space [5] [19], with the aim to understand 
if events are similar or dissimilar; 

(b) the geometric nature of dataset: this needs the conceptualization of spatial 
relationships, usually done with the use of matrixes: (i) a distance matrix is defined to 
consider at which distance events influence each other (distance band); (ii) a 
contiguity matrix is useful to know if events influence each other; (iii) a matrix of 
spatial weights expresses how strong this influence is.  
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Concerning distance matrix, a method should be established to calculate distances 
in module and direction. For this concern the module, namely Euclidean distance (3), 
is the most adopted.  

  2)(2)(),( jyiyjxixjsis
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2.2.1 Global Indicators of Spatial Association 
Several indexes have been developed in order to measure spatial autocorrelation 
discovering the presence and intensity of clusters in the distribution. The two main 
indicators are Moran I [17] and Geary C Ratio [7] indexes.  

Moran I index is defined by the following equation: 
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where: 
• N is the number of events; 
• Xi and Xj are intensity values at points i and j (with i≠j), respectively; 

• X  is the average of variables; 

•   −−
i j jiij XXXXw ))(( is the covariance multiplied by an element of weight 

matrix. If Xi and Xj are both upper or lower than the mean, this term will 
be positive, if the two terms are in opposite positions compared to the 
mean the product will be negative;  

• wij is an element of weight matrix which depends on contiguity of events. 
This matrix is strictly connected to adjacency matrix. 

Moran index shows a trend similar to the correlation coefficient, consequently it can 
have values included between -1 and 1. 

Geary C Ratio is quite similar to Moran I index and it is defined by the following 
equation:  
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Parameters are very similar to equation 4: the main difference is represented by the 
cross-product term in the numerator, which in Moran is calculated using deviations 
from the mean, while in Geary is directly computed. The square root provides to 
remove all negative values of the formula, consequently Geary C Ratio ranges 
between 0 and 2. Values between 0 and 1 define positive autocorrelation, while values 
greater than 1 and smaller than 2 indicate negative autocorrelation. Value 0 represents 
a perfect positive autocorrelation, the same of neighbouring values with cross-product 
equal to 0. Value 2 defines a perfect negative spatial autocorrelation. 

2.2.2 Local Indicators of Spatial Association 
Luc Anselin [1] defines as a local indicator of spatial association, any statistic that 
satisfies the following two requirements:  
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• the index for a single observation produces a spatial result of the extent 
of clustering of similar values around that observation;  

• the sum of all observations indexes is proportional to the global indicator 
of spatial association. 

Local versions of spatial autocorrelation are used to measure the magnitude of spatial 
autocorrelation within the immediate neighbourhood. Values indicating the magnitude 
of spatial association can be derived for each areal unit and they can be located. The 
local version of statistics employs distance information to identify local clusters and 
relies on the distance information captured in Distance matrix. 

The Local Indicator of Spatial Association (LISA) [1] represents the local version 
of Moran index I and it is defined by the relation: 
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where X  is the intensity mean of all events, Xi is the intensity of event “i”, Xj is the 
intensity of event “j” (with j≠i), SX

2 is the variance of all events and wij is the weight 
matrix. Considering z-score: 
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LISA index can be expressed in the following synthetic form: 
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The function by Getis & Ord [8] is represented by the following equation: 
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which is very similar to Moran index, except for wij(d) which, in this case, represents 
a weight which varies according to distance. These statistics allow us to locate 
clustered pixels, by measuring how much features inside a fixed neighbourhood are 
homogeneous. Nevertheless, the interpretation of Getis and Ord’s Gi meaning is not 
immediate, but it needs a preliminary classification that should be done comparing Gi 
with intensity values.  

The local version of Geary Ratio C is defined as: 

 
=

−=
N

j
jiiji zzwc

1

2)(  (9) 

Local indicators of spatial association can be considered as local functions of 
statistical analysis and can be represented through georeferenced maps, constituting 
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very important tools for exploratory analysis of spatial structures especially with large 
databases. 

3 The Case Study 

This study deals with satellite based investigations on urban area expansion in some 
test areas of southern Italy, using change detection techniques and spatial statistics to 
capture and characterize the spatial characterization of feature variations.  

The investigation herein presented was focused on the assessment of the expansion 
of several very small towns very close to Bari (in southern Italy), the second largest 
city of Southern Italy, located in Apulia (or Puglia) Region. It faces the Adriatic Sea 
and has one of the major seaports in Italy. Bari is the fifth largest province (more than 
5,000 square kilometres) in Italy and also the most populated with around 1,600,000 
inhabitants in 2007. The city has around 400,000 inhabitants. The area of concern is 
characterized by an active and dynamic local economy, mainly based on small and 
medium enterprises operative in commerce, industry and services. 

Bari has become one of the top commercial and industrial leaders in Italy, so it is 
known as 'California of South', to indicate the significant growth and leadership much 
higher than other southern areas. Industrial activities are quite numerous and dynamic 
(chemicals, machinery, printed materials, petroleum and textiles production), but also 
agriculture is quite notable in Bari surroundings, with intensive production of 
cherries, tomatoes, artichokes, grapes and table wine.  

Bari has also a long history since the Middle-Ages, when it was one of the main 
ports from which pilgrims sailed to the Holy Land. 

3.1 Change Detection  

The main aim of our investigation was to evaluate the possibility to enhance spatial 
patterns of urban development of years 1999 and 2009 in the area of concern. The 
expansion of urban areas has been assessed by using change detection techniques 
along with both global and local geospatial statistical analysis. 

Change detection is the assessment of variations between multidate, or time series 
data sets, or, in the case of remotely sensed data, between two or more scenes 
covering the same geographic area and acquired in different periods.  

To cope with the fact that small changes have to be captured and extracted from 
TM multitemporal data sets, it is important that an adequate processing chain must be 
implemented. Indeed, multidate imagery data analysis requires a more accurate pre-
processing than single date analysis. This includes calibration to radiance or at-
satellite reflectance, inter-calibration among multidate images, atmospheric correction 
or normalization, image registration, geometric correction, and masking (e.g., for 
clouds, water, irrelevant features). These procedures improve the capability in 
discriminating real changes from artefacts introduced by differences in sensor 
calibration, atmosphere, and/or sun angle. Some radiometric rectification techniques 
are based on the use of areas of the scene under investigation whose reflectance is 
nearly constant over time. 

The images under investigations were pre-processed, co-registered and inter-
calibrated to reduce sources of false changes, such as those caused by clouds, cloud 
shadows, and atmospheric differences.  
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Relating to change detection, we should consider that up to now, a number of 
change detection techniques have been devised and applied for capturing variations of 
surface characteristics, atmospheric components, water quality and coastal zones. 
Some methods focused on the monitoring of urbanization, agricultural development, 
forest land management, and environmental management.  

These procedures generally are coupled with data transformation to vegetation 
indices, whose principal advantage over single-band radiometrics is their ability to 
strongly reduce data volume for processing and analysis, and also to reduce residual 
of atmospheric contamination. In our analyses, we adopted Normalized Difference of 
Index Vegetation (NDVI), which is the most widely used index for a number of 
different applications, ranging from vegetation monitoring to urban sprawl. The 
NDVI is computed using the following formula: 
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This index was computed for both 1999 and 2009, to emphasize occurring changes 
and improve change detection analysis carried out as classification comparison from 
NDVI processed using geospatial data analysis.  

 

Fig. 4. RGB of TM images acquired in 1999 and 2009, note that light spots are urban areas. 
The black rectangle indicates the location of the study area. 

Figure 4 show NDVI maps computed from TM images acquired in 1999 and 2009, 
respectively. A visual comparison between the figures clearly points out that the use 
of spectral combinations of red and NIR bands highlights light spots related to urban 
areas. In particular, the comparison between multidate (1999 and 2009) NDVI maps 
emphasises the expansion of urban areas, which are easily recognizable by a visual 
inspection. 

The following image shows the numerical difference between 1999 and 2009 
maps. The increase in the extension of urban area was connected to economic and 
demographic factors.  
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Fig. 5. NDVI map from the TM images acquired in 1999 and 2009, note that light spots are 
urban areas. NDVI difference map from the TM images acquired in 1999 and 2009, note that 
white pixels are urban areas. The red circle indicates a strong change in NDVI index where 
vegetation has been replaced by the urbanized area. 

3.2 Spatial Autocorrelation 

To study spatial autocorrelation in satellite data, it is important to define which are the 
spatial events, their quantitative nature (intensity) and the conceptualization of 
geometric relationships. A spatial event is clearly the pixel. Spatial autocorrelation 
statistics are usually calculated considering geographical coordinates of its centroid. 
Concerning the intensity, it should be chosen strictly considering the empirical nature 
of the case study. 

In image processing, Global measures of spatial autocorrelation provide a single 
value that indicates the level of spatial autocorrelation within the variable distribution, 
namely the homogeneity of a given value within the image under investigation.  

Local measures of spatial autocorrelation provide a value for each location within 
the variable distribution and, therefore, are able to identify discrete spatial patterns 
that may not otherwise be apparent [23]. Statistics output is an image for each 
calculated index, which contains a measure of autocorrelation around that pixel.  

Both global and local statistics can be calculated using spectral channels, spectral 
combinations and/or multi-temporal combinations as intensity. 

In order to identify areas of urban expansion, we looked for a change in spatial 
structure between two image dates. 

Spatial dependency may be captured using spatial autocorrelation statistics such as 
join-counts, Moran’s I and Geary’s c. Therefore, we consider that the temporal 
change of geospatial statistic between image dates provides information on change in 
spatial structure of some unspecified nature between two image dates.  



524 G. Nolè et al. 

For a given pixel, the change from one date to another will be on ac-count of 
changes in the spatial structure within the range of spatial windows of that pixel. 
Spatial differences, which are equal between the two dates for a given co-registered 
pixel window, will not induce a change.  

However, results from these analyses may be unrepresentative if the nature and 
extent of spatial autocorrelation varies significantly over the area of interest. To cope 
with this issue, we considered: (i) local indicators of spatial association and (ii) the 
hypothesis that a region with urban settlements will exhibit spatial homogeneity in 
spectral response, due to the lowly variable spatial and spectral structure of concrete 
and building materials. 

4 Results 

In the current study, both global and local geospatial statistics were applied to 1999 
and 2009 TM images, using spectral combinations of single bands to enhance 
variations occurring during the time window under investigation. The comparison was 
made using single date NDVI maps computed for both 1999 and 2009 along with the 
map obtained as difference between NDVI 1999 and 2009. Later on, the multidate 
data set was analyzed using a pixel-by-pixel comparison followed by change region 
analysis and verification of results from the two successive temporal scenes (1999 and 
2009). Figure 6 (from left to right) shows local autocorrelation indexes presented as 
RGB Getis Gi, Local Geary c and LISA applied with lag 2. All panels clearly reveal 
the increase in urbanized area; RGB Getis, Geary’s c and Moran of the map well 
show variations linked to concrete and building materials.  

 

Fig. 6. (from left to right) show the local autocorrelation indexes presented as Getis Gi, Local 
Geary c and LISA applied with lag 2 

Taking into account the obtained results, we can observe that the distribution of the 
built-up area was more homogeneous and less fragmented in 1999, without the 
presence of different urban centres. During the period up to 2009 changes led to an 
increase of density leading to an increase in urban areas expansion. 

Another procedure in analyzing the evolution of urbanized areas is given by the 
combination of bands. In this way, more appropriate indices of remote sensing for the 
study of a given phenomenon can be built. One of the indices used for the study of 
urban phenomena is BAI Built-up Areas Index = (blue - ir)/ir + blue). The BAI is a 
very useful index for identifying impermeable surfaces like asphalt and concrete. 
Values generated using BAI index range from -1 to 1 and this also emerges from 
basic statistics (module r.stats GRASS) performed on raster data. 
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Fig. 7. Built-up Areas Index using Landsat images (1976-1999-2009) 

5 Final Remarks 

In the present paper, each step of the process has been carried out using free tools and 
data. Operating system (Linux Ubuntu) and GIS software (GRASS GIS and Quantum 
GIS) are open source type, while Landsat data are downloadable and ready to use. 
This aspect is very important since it puts no limit and allows everybody to carry 
spatial analyses on remote sensing data.  

As regards autocorrelation analysis, it was considered as a method for examining 
transformations taking place in urbanized areas located in southern Italy. The main 
objectives of the study were: (i) to assess if the variation of urban structure over time 
can be quantitatively determined using TM images, (ii) to investigate and describe the 
modification of urban shape and morphology over time. 

Analysing and comparing different years, the process of urban intensification has 
been observed, and the increase of urbanized area was revealed. This change shows 
the transformation that took place in the area under investigation and the 
transformation from quite regular to more fragmented peripheral settlements. The 
relevance of the technique herein used is that it provides a reliable way of analysing 
the urban structure and its transformation through time. 

However, this study is preliminary and quite suggestive and its main objective was 
to present a way of applying autocorrelation analysis to the monitoring of urban area 
evolution. The need of analysing more time periods and a comparative analysis 
among many urban areas would be fruitful, and the application of the geostatistical 
analysis applied to satellite time series constitutes a major challenge for further 
investigation. 
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