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NUMERICAL TREATMENT OF A CLASS OF SYSTEMS OF

FREDHOLM INTEGRAL EQUATIONS ON THE REAL LINE

M. C. DE BONIS AND G. MASTROIANNI

Abstract. In this paper the authors propose a Nyström method based on a
“truncated” Gaussian rule to solve systems of Fredholm integral equations on
the real line. They prove that it is stable and convergent and that the matrices
of the solved linear systems are well conditioned. Moreover, they give error
estimates in weighted uniform norm and show some numerical tests.

1. Introduction

We consider systems of Fredholm integral equations of the following type:

(1) fr(x) − τ

n∑
s=1

∫ +∞

−∞
hr,s(x, y)fs(y)w

αs,βs(y)dy = gr(x), r = 1, . . . , n,

where x ∈ R, wαs,βs(y) = |y|αse−|y|βs
, αs > −1, βs > 1, are generalized Freud

weights, τ ∈ R, gr, h
r,s, r, s = 1, . . . , n, are given functions and fr, r = 1, . . . , n, are

the unknowns.
With the notations,

f(x) :=

⎛
⎜⎜⎝

f1(x)
...

fn(x)

⎞
⎟⎟⎠ , g(x) :=

⎛
⎜⎜⎝

g1(x)
...

gn(x)

⎞
⎟⎟⎠ ,

(2) K :=

⎛
⎜⎜⎜⎜⎝

K1,1 K1,2 . . . K1,n

K2,1 K2,2 . . . K2,n

...
. . .

...

Kn,1 Kn,2 . . . Kn,n

⎞
⎟⎟⎟⎟⎠ , I :=

⎛
⎜⎜⎜⎜⎜⎝

I 0 . . . 0

0 I
. . .

...
...

. . .
. . . 0

0 . . . 0 I

⎞
⎟⎟⎟⎟⎟⎠ ,

where

(3) Kr,sf(x) = τ

∫ +∞

−∞
hr,s(x, y)f(y)wαs,βs(y)dy, r, s = 1, . . . , n,
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and I denotes the identity operator, the system (1) can be rewritten as follows:

(4) (I−K)f = g.

The first difficulty in this kind of problem is the choice of the space of functions
where the possible solutions live and/or the operator K is completely continuous.
Moreover, the integrals on the real line involving non-standard weights do not
help to find efficient numerical procedures. In fact, both the Gaussian rules and
the product rules have a “poor” behaviour in the approximation of the operator
K (see, for example, [3]). On the other hand, if we want to construct a global
approximation of the possible solution of (4), the study of the stability and the
convergence requires the knowledge of results on the polynomial approximation
with generalized Freud weights. Such results only recently appeared in [9, 10]. For
these reasons the numerical treatment of (4) has received little attention until now.
To our knowledge there is only [8].

In this paper we will study (4) in a product space of continuous functions with
weighted uniform metric and we will assume that the kernels and the right-hand
sides of (1) can have singularities of algebraic-type at the origin and of exponential-
type in ±∞.

Concerning the approximation of the solutions of (4) (when they exist), we pro-
pose a Nyström method based on a simple “truncated” Gaussian quadrature rule.
The procedure can be easily implemented, and we will prove that it is stable and
convergent. Moreover, the linear systems related to the Nyström interpolation are
well conditioned.

The paper is organized as follows. In Section 2 we introduce the function spaces
in which the systems are studied and some preliminary notation and results. Sec-
tion 3 is dedicated to the description of the numerical method. The stability and
convergence is proved in Section 4. In Section 5 we show some numerical tests.

2. Preliminaries

In the following C denotes a positive constant which may have different values in
different formulas. We will write C �= C(a, b, . . .) to indicate that C is independent of
the parameters a, b, . . . . If A,B > 0 are quantities depending on some parameters,
we write A ∼ B if there exists a positive constant C independent of the parameters
of A and B such that

B

C ≤ A ≤ CB.

In order to introduce the function spaces where we are going to study (4), we
give some preliminary definitions.

First of all we denote by Pm the set of all polynomials of degree at most m
and by C0(A) the collection of the continuous functions on A ⊂ R. We recall that
to every exponential weight σ(x) = e−Q(x), where Q is even and satisfies certain
conditions (see [4, p. 7]), can be associated the so-called Maskar-Rakmanov-Saff
number (M-R-S number) Bt = Bt(σ) that is defined as the positive solution of the
equation

t =
1

π

∫ 1

0

xBtQ
′(xBt)√

1 − x2
dx, t > 0;

Bt is an increasing function of t and, for every polynomial Pm ∈ Pm, one has

max
x∈R

|Pm(x)e−Q(x)| = max
x∈[−Bm,Bm]

|Pm(x)e−Q(x)|.
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In this paper we will consider weight functions of the type u(x)=(1+|x|)λ|x|γe− |x|β
2 ,

x ∈ R, λ, γ ≥ 0, β > 1, and, since to our aims we do not need the exact value of Bt,
we will use the equivalence Bt(u) ∼ t1/β .

Now, we define the space

Cu =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{
f ∈ C0(R \ {0}) : lim

x→±∞
x→0

(fu)(x) = 0

}
, γ > 0,

{
f ∈ C0(R) : lim

x→±∞
(fu)(x) = 0

}
, γ = 0.

The space Cu equipped with the weighted norm

‖f‖Cu
:= ‖fu‖∞ = max

x∈R

|(fu)(x)|

is complete. For the sake of brevity, we will write ‖f‖A = maxx∈A |f(x)|.
Moreover, we define the Sobolev-type spaces

Wμ(u) =
{
f ∈ Cu : f (μ−1) ∈ C0(R \ {0}) and ‖f (μ)u‖∞ < +∞

}
, μ ≥ 1,

and we equip them with the norm

‖f‖Wμ(u) := ‖fu‖∞ + ‖f (μ)u‖∞.

With

Em(f)u = inf
P∈Pm

‖(f − P )u‖∞

the error of best approximation in Cu, in [9, 10] the authors proved that, for 1 ≤
k < m,

(5) Em(f)u ≤ Cωk

(
f,

Bm

m

)∗

u

, C �= C(m, f),

where

ωk(f, t)∗u = Ωk(f, t)∗u +

3∑
i=1

inf
P∈Pk−1

‖(f − P )u‖Ii ,

with

Ωk(f, t)∗u = sup
0<h≤t

‖uΔk
hf‖Ikh

,

t < t0 (t0 sufficiently small), I1 =] − ∞,−Akh−1/(β−1)[, I2 =] − 4kh, 4kh[, I3 =
]Akh−1/(β−1),+∞[, Ikh =

[
−Akh−1/(β−1),−4kh

]⋃ [
4kh,Akh−1/(β−1)

]
, A > 0, a

positive fixed constant,

Δhf(x) = f

(
x +

h

2

)
− f

(
x− h

2

)
, Δk

h = Δh(Δk−1
h )

and Bm = Bm(u) ∼ m
1
β .

Moreover, for all f ∈ Wμ(u), with u having the parameter γ ≥ 0 not an integer,
we have [9, 10]

(6) Em(f)u ≤ C
(
Bm

m

)μ

‖f‖Wμ(u), m > μ,

where C �= C(m, f).
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Now we introduce the product space Cu where we will consider (4). Letting

u = (u1, . . . , un) with us(x) = (1 + |x|)λs |x|γse−
|x|βs

2 , we set

Cu = {(f1, . . . , fn) : fs ∈ Cus
, s = 1, . . . , n}

and we equip it with the norm

‖f‖Cu
= max

s=1,...,n
{‖fs‖Cus

}.

We will also use the Sobolev space

Wμ(u) = {(f1, . . . , fn) : fs ∈ Wμ(us), s = 1, . . . , n}

with the norm

‖f‖Wμ(u) = max
s=1,...,n

{‖fs‖Wμ(us)}.

Recalling the definition (2), we have

(7) ‖Kf‖Cu
= max

r=1,...,n
max
x∈R

∣∣∣∣∣
n∑

s=1

ur(x)(Kr,sfs)(x)

∣∣∣∣∣ ≤ n max
r,s=1,...,n

‖urK
r,sfs‖∞.

Since

|ur(x)(Kr,sfs)(x)| ≤ |τ |‖fsus‖∞
∫ +∞

−∞
ur(x)|hr,s(x, y)|us(y)

wαs,βs(y)

u2
s(y)

dy

= |τ |‖fs‖Cus

∫ +∞

−∞
ur(x)|hr,s(x, y)|us(y)

|y|αs−2γs

(1 + |y|)2λs
dy,

setting

M := max
r,s=1,...,n

max
x,y∈R

ur(x)|hr,s(x, y)|us(y)

and

ρ := max
s=1,...,n

∫ +∞

−∞

|y|αs−2γs

(1 + |y|)2λs
dy,

we deduce

(8) ‖Kf‖Cu
≤ |τ |(nρM)‖f‖Cu

,

i.e., K is a bounded map from Cu into itself if the quantities M and ρ are bounded.
In order to solve the systems (4) by means of a Nyström method we need a

quadrature rule. Before introducing it we give some notation.
Let {pα,βm }m be the sequence of the orthonormal polynomials w.r.t. the weight

wα,β(x) = |x|αe−|x|β , i.e.

pα,βm (x) = γmxm + · · · , γm > 0,

and ∫ +∞

−∞
pα,βn (x)pα,βm (x)|x|αe−|x|βdx = δn,m.

We denote by xα,β
k := xm,k(w

α,β), k = 1, 2, . . . ,
⌊
m
2

⌋
, the positive zeros of pα,βm and

by xα,β
−k := xm,−k(w

α,β), k = 1, 2, . . . ,
⌊
m
2

⌋
, the corresponding negative ones (�a�

stands for the largest integer smaller than or equal to a ∈ R
+). If m is odd, we set

x0 = 0. All the zeros belong to the interval (−Bm(
√
wα,β), Bm(

√
wα,β)).
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Then, also following an idea in [5, 6], the following “truncated” Gaussian rule
has been introduced in [7]:

(9)

∫ +∞

−∞
F (x)wα,β(x) dx =

∑
|k|≤j

λα,β
k F (xα,β

k ) + e∗m(F ), F ∈ C0(R),

where λα,β
k := λα,β

m,k are the Christoffel numbers related to the weight wα,β ,

(10) j := j(m) = min
k=1,...,�m

2 	

{
k : xk ≥ θ Bm(

√
wα,β)

}
, 0 < θ < 1,

and e∗m(F ) is the remainder term. Notice that e∗m(1) �= 0, but the following propo-
sition holds true [7].

Proposition 1. Let m be even and consider the weight function σ(x) = (1 +

|x|)λ|x|γe−a|x|β , with x ∈ R, λ ≥ 0, γ ≥ 0 not an integer, β > 1 and 0 < a ≤ 1. If∫ +∞

−∞
wα,β(x)σ−1(x) dx < +∞,

then, for every F ∈ Cσ, we have

|e∗m(F )| ≤ C[EM (F )σ + e−Am‖F‖Cσ
],

where M =

⌊(
θ

1+θ

)β
m
2

⌋
, with θ ∈ (0, 1) fixed, and the constants C and A are

independent of m and F .

We point out that the assumption that m is even is due to the assumptions that
F ∈ Cσ and that σ can have a zero at the origin.

As one can see, the quadrature sum in (9) uses a finite section of F . Therefore,
possible overflows when F increases in an exponential way are avoided and the
dimensions of the linear systems connected with the Nyström method are drastically
reduced.

For the sake of completeness, we also note that (see [3])

|e∗m(F )| ≤ C
[
Bm(

√
wα,β)

m

∫ +∞

−∞
|F ′(x)|wα,β(x)dx

+ e−Am

∫ +∞

−∞
|F (x)|wα,β(x)dx

]
,

where the constants C and A are independent of m and F , and the same estimate
is not true for the error of the ordinary Gaussian rule.

3. Numerical method

The Nyström method we propose is the following. We introduce the sequence of
operators {Km}m defined by

Km :=

⎛
⎜⎜⎜⎜⎝

K1,1
m K1,2

m . . . K1,n
m

K2,1
m K2,2

m . . . K2,n
m

...
. . .

...

Kn,1
m Kn,2

m . . . Kn,n
m

⎞
⎟⎟⎟⎟⎠ , m ∈ N,
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where

(11) (Kr,s
m f)(x) = τ

∑
|k|≤j
k �=0

hr,s(x, xαs,βs

k )f(xαs,βs

k )λαs,βs

k , r, s = 1, . . . , n, m ∈ N,

are the approximations, by the quadrature rules (9), of Kr,sf, r, s = 1, . . . , n, defined
in (3). Then, we proceed to solve the approximating systems

(12) (I−Km)fm = g, m ∈ N,

in the unknowns

fm =

⎛
⎜⎜⎜⎜⎝

fm,1

fm,2

...

fm,n

⎞
⎟⎟⎟⎟⎠ ,

in place of the equation (I−K)f = g.
From (11), we get

|ur(x)(Kr,s
m fs)(x)| ≤ |τ |‖fsus‖∞ max

r,s=1,...,n
max
x,y∈R

ur(x)|hr,s(x, y)|us(y)

× max
s=1,...,n

∑
|k|≤j
k �=0

λαs,βs

k

u2
s(x

αs,βs

k )
.

But, recalling that (see, for instance, [7]) λαs,βs

k ∼ Δxαs,βs

k wαs,βs(xαs,βs

k ), where

Δxαs,βs

k = xαs,βs

k+1 − xαs,βs

k and the constants in “∼” are independent of m and k,
the sum on the right-hand side is dominated by

(13)
∑
|k|≤j
k �=0

Δxαs,βs

k

|xαs,βs

k |αs−2γs

(1 + |xαs,βs

k |)2λs

≤ C
∫ +∞

−∞

|y|αs−2γs

(1 + |y|)2λs
dy, C �= C(m, s),

since it is a Riemann sum of a piecewise monotonic function. Then, with the same
notation used in (8), recalling (7), we deduce

(14) ‖Kmf‖Cu
≤ C(nρM)‖f‖Cu

, C �= C(m, f , r, s).

Now, for any fixed m, (12) can be written as follows:

fm,r(x) − τ

n∑
s=1

∑
|k|≤j
k �=0

hr,s(x, xαs,βs

k )fm,s(x
αs,βs

k )λαs,βs

k = gr(x), r = 1, . . . , n,

and the unknowns are fm,s(x
αs,βs

k ). Since we will proceed to compare the possible
solution fm with the exact solution in the metric of Cu, we need to compute the

quantities cs,k = fm,s(x
αs,βs

k )us(x
αs,βs

k ), s = 1, . . . , n. To this end, we multiply the

r−th equation, r = 1, . . . , n, by ur(x) = (1 + |x|)λr |x|γre−
|x|βr

2 to obtain

(fm,rur)(x) − τ
n∑

s=1

∑
|k|≤j
k �=0

hr,s(x, xαs,βs

k )
ur(x)

us(x
αs,βs

k )
(fm,sus)(x

αs,βs

k )λαs,βs

k

= (grur)(x), r = 1, . . . , n.
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Collocating the r−th equation, r = 1, . . . , n, at the zeros xαr ,βr

i , |i| ≤ j, i �= 0, we
get the linear system

(15) cr,i − τ

n∑
s=1

∑
|k|≤j
k �=0

hr,s(xαr,βr

i , xαs,βs

k )λαs,βs

k

ur(x
αr,βr

i )

us(x
αs,βs

k )
cs,k = (grur)(x

αr,βr

i ),

r = 1, . . . , n, |i| ≤ j, i �= 0,

in the unknowns cs,k.
If the system (15) admits the unique solution [c∗1,−j , . . . , c

∗
1,−1, c

∗
1,1, . . . , c

∗
1,j , . . . ,

c∗n,−j , . . . , c
∗
n,−1, c

∗
n,1, . . . , c

∗
n,j ]

T , then we construct the Nyström interpolant

f∗m =

⎛
⎜⎜⎜⎜⎝

f∗
m,1

f∗
m,2

...

f∗
m,n

⎞
⎟⎟⎟⎟⎠ ,

where

f∗
m,r(x) = τ

n∑
s=1

∑
|k|≤j
k �=0

hr,s(x, xαs,βs

k )
λαs,βs

k

us(x
αs,βs

k )
cs,k + gr(x), r = 1, . . . , n,

and we will estimate the error ‖f∗ − f∗m‖Cu
.

Note that, for the sake of simplicity of notation, we set f∗m := f∗2j and f∗
m,r :=

f∗
2j,r, r = 1, . . . , n, being j = j(m) defined in (10). Moreover, the matrix of coeffi-

cients An2j of the linear system (15) is of order n(2j) instead of nm if we used a
rule that is not truncated.

The proposed numerical method is easy to implement. In fact, the construc-

tion of the linear systems (15) only requires the computation of the zeros xαs,βs

i

and of the weights λαs,βs

i . We performed it by using the software package
OrthogonalPolynomials (see [2]).

In the next section we will prove the stability and the convergence of the proposed
procedure.

4. Stability and convergence analysis

We first make some assumptions on the kernels and the weights appearing in
equation (1) and in the definition of the space Cu. Concerning the weights us(x) =

(1 + |x|)λs |x|γse−
|x|βs

2 and wαs,βs = |x|αse−|x|βs
, s = 1, . . . , n, we will assume that

(16) λs >
1

2
, 0 ≤ γs <

αs + 1

2
, γs∈/ N, βs > 1.

Moreover, if we set Hr,s
y (x) = us(y)h

r,s(x, y) and Hr,s
x (y) = ur(x)hr,s(x, y), r, s =

1, . . . , n, we will suppose that

(17)

⎧⎪⎨
⎪⎩

lim
x→±∞
x→0

sup
y∈R

Hr,s
y (x)ur(x) = 0,

lim
h→0

sup
y∈R

|Hr,s
y (x + h) −Hr,s

y (x)| = 0, x ∈ [−b,−a] ∪ [a, b],
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(18)

⎧⎪⎨
⎪⎩

lim
y→±∞
y→0

sup
x∈R

Hr,s
x (y)us(y) = 0,

lim
h̃→0

sup
x∈R

|Hr,s
x (y + h) −Hr,s

x (y)| = 0, y ∈ [−b,−a] ∪ [a, b],

for r, s = 1, . . . , n and for arbitrary 0 < a < b < +∞.
In other words, we will assume that Hr,s

y ∈ Cur
and Hr,s

x ∈ Cus
uniformly with

respect to y and x, respectively. Thus, the kernels hr,s(x, y) can have singularities
of algebraic-type at the origin and of exponential-type in ±∞.

Notice also that, recalling (8) and (14), the hypotheses (16) and (17) imply

‖K‖Cu→Cu
< +∞

and

(19) sup
m

‖Km‖Cu→Cu
< +∞.

Moreover, we have the following lemma.

Lemma 1. Under the assumptions (16)− (18), the sequence {Km}m strongly con-
verges to K and is collectively compact.

As a consequence of the previous lemma we deduce the following theorem.

Theorem 1. Assume that Ker(I−K) = {0} in Cu. Under the assumptions (16)−
(18) and

g ∈ Cu,

for a sufficiently large m (say m ≥ m0), the systems (15) are unisolvent. More-
over, the condition numbers in uniform norm of their matrices An2j , j = j(m), are
independent of the dimension n2j and the Nyström interpolants f∗m converge to the
exact solution f∗ of (4), i.e.,

lim
m

‖f∗ − f∗m‖Cu
= 0.

In particular, if the kernels and the right-hand sides are μ times differentiable
with respect to both the variables and, for all r, s = 1, . . . , n,

sup
y∈R

‖Hr,s
y ‖Wμ(ur) < +∞,

(20) sup
x∈R

‖Hr,s
x ‖Wμ(us) < +∞,

and

(21) g ∈ Wμ(u),

then the estimate

(22) ‖f∗ − f∗m‖Cu
≤ C

(
B̄m

m

)μ

‖f∗‖Wμ(u)

holds true, where C �= C(m, f) and B̄m = max
s=1,...,n

Bm(us) ∼ max
s=1,...,n

m
1
βs .

Hence, the convergence order of f∗m to f∗ depends on the smoothness of the
kernels and the right-hand sides.
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5. Proofs

Proof of Lemma 1. We first prove the strong convergence of {Km}m to K. We
have

(23) ‖(K−Km)f‖Cu
≤ n max

r,s=1,...,n
‖(Kr,s −Kr,s)fs‖Cur

and

|ur(x)(Kr,s −Kr,s
m )fs(x)| = ur(x)|τ |

∣∣∣∣∣∣∣
∫ +∞

−∞
hr,s(x, y)fs(y)w

αs,βs(y)dy

−
∑
|k|≤j
k �=0

hr,s(x, xαs,βs

k )fs(x
αs,βs

k )λαs,βs

k

∣∣∣∣∣∣∣ .
The quantity in the absolute value is the error of “truncated” Gaussian rule (9)
related to the weight wαs,βs and the function F r,s

x (y) = fs(y)ur(x)hr,s(x, y) =
fs(y)H

r,s
x (y). Now, applying Proposition 1 with σ := u2

s and F (y) := F r,s
x (y), if we

prove that the integrals ∫ +∞

−∞

wαs,βs(y)

u2
s(y)

dy, s = 1, . . . , n,

are bounded and the functions F r,s
x , r, s = 1, . . . , n, belong to Cu2

s
uniformly with

respect to x, then we get

(24) |ur(x)(Kr,s −Kr,s
m )fs(x)| ≤ C

[
EM (F r,s

x )u2
s
+ e−Am‖F r,s

x ‖Cu2
s

]
,

with M = �cm�, c ∈ (0, 1) fixed, C �= C(m,F r,s
x ) and A �= A(m,F r,s

x ). Obviously,
lim
m

e−Am sup
x∈R

‖F r,s
x ‖Cu2

s
=0 and, by the Jackson inequality (5), lim

m
sup
x∈R

EM (F r,s
x )u2

s

= 0.
Since, by (16),∫ +∞

−∞

wαs,βs(y)

u2
s(y)

dy =

∫ +∞

−∞

|y|αs−2γs

(1 + |y|)2λs
dy < +∞,

it remains to prove that F r,s
x , r, s = 1, . . . , n, belong to Cu2

s
uniformly with respect

to x, i.e., recalling the definition of Cu2
s
,

(25)

⎧⎪⎨
⎪⎩

lim
y→±∞
y→0

sup
x∈R

F r,s
x (y)u2

s(y) = 0,

lim
h→0

sup
x∈R

|F r,s
x (y + h) − F r,s

x (y)| = 0, y ∈ [−b,−a] ∪ [a, b],

for arbitrary 0 < a < b < +∞.
We have

|F r,s
x (y)u2

s(y)| = |fs(y)us(y)H
r,s
x (y)us(y)| ≤ ‖fs‖Cus

sup
x∈R

|Hr,s
x (y)|us(y)

and, under assumption (18) and for all fs ∈ Cus
, we get the first limit condition in

(25). Moreover, if y ∈ [a, b] with 0 < a′ < a < b < b′ < +∞, we can choose h such
that y + h ∈ [a′, b′]. Then we obtain

|F r,s
x (y + h) − F r,s

x (y)| ≤ |fs(y + h)||Hr,s
x (y + h) −Hr,s

x (y)|
+ |Hr,s

x (y)||fs(y + h) − fs(y)|



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

780 M. C. DE BONIS AND G. MASTROIANNI

and

sup
x∈R

|F r,s
x (y + h) − F r,s

x (y)| ≤ ‖fs‖[a′,b′] sup
x∈R

|Hr,s
x (y + h) −Hr,s

x (y)|

+ sup
x∈R

‖Hr,s
x ‖[a,b]|fs(y + h) − fs(y)|.

Consequently, again using assumption (18), for all fs ∈ Cus
, we deduce the second

limit condition in (25) for y ∈ [a, b]. Analogously if y ∈ [−b,−a].
Now we prove the collectively compactness of the sequence {Km}m, i.e., the

relatively compactness in Cu of the set

{Kmf ∈ Cu : m ≥ 1 and ‖f‖Cu
≤ 1}.

Using the Ascoli-Arzelà Theorem, it is sufficient to prove

sup
m

‖Km‖Cu
≤ C < +∞

and
lim
h→0

sup
m

sup
‖f‖Cu=1

‖(Kmf)(· + h) − (Kmf)(·)‖Cu
= 0.

Under the assumptions of the lemma the former condition is fulfilled (see (19)). In
order to prove the latter one, we recall that

‖(Kmf)(· + h) − (Kmf)‖Cu
≤ n max

r,s=1,...,n
‖(Kr,s

m fs)(· + h) − (Kr,s
m fs)(·)‖Cur

.

Using the definition (11) of Kr,s
m , λαs,βs

k ∼ Δxαs,βs

k wαs,βs(xαs,βs

k ) and (13), from
(16) we deduce

ur(x)|(Kr,s
m fs)(x + h) − (Kr,s

m fs)(x)|

≤ C
∑
|k|≤j
k �=0

Δxαs,βs

k

|xαs,βs

k |αs−2γs

(1 + |xαs,βs

k |)2λs

|(fsus)(x
αs,βs

k )|

× ur(x)us(x
αs,β
k )|hr,s(x + h, xαs,βs

k ) − hr,s(x, xαs,βs

k )|

≤ C‖f‖Cu

(∫ +∞

−∞

|y|αs−2γs

(1 + |y|)2λs
dy

)
sup
y∈R

‖Hr,s
y (· + h) −Hr,s

y (·)‖Cur

≤ C‖f‖Cu
sup
y∈R

‖Hr,s
y (· + h) −Hr,s

y (·)‖Cur
,

where C �= C(m, f). Then, under assumption (17), i.e., Hr,s
y ∈ Cur

uniformly with
respect to y, the latter limit condition is also verified. The proof is complete. �
Proof of Theorem 1. From Lemma 1 and (19), we deduce that the operator K is
compact and

lim
m

‖(K−Km)Km‖Cu
= 0.

Therefore, the Fredholm alternative holds true in Cu and, by virtue of the assump-
tion Ker(I−K) = {0} in Cu, we deduce that the system (4) has a unique solution
f∗ ∈ Cu.

Moreover, applying [1, Theorem 4.1.1, p. 106] or [11, Theorem 2.1], for m ≥ m0,
the inverse operators (I−Km)−1 exist and

‖(I−Km)−1‖Cu→Cu
≤ 1 + ‖(I−K)−1‖Cu→Cu

‖Km‖Cu→Cu

1 − ‖(I−K)−1‖Cu→Cu
· ‖(K−Km)Km‖Cu→Cu

≤ C.(26)
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Consequently, for m ≥ m0, the linear system (15) is unisolvent and

(27) ‖f∗ − f∗m‖Cu
∼ ‖(K−Km)f∗‖Cu

.

Hence, by virtue of Lemma 1, the Nyström interpolants f∗m converge to the exact
solution f∗.

Now, proceeding as in [1, pp. 112-113], by (19) and (26), we deduce

cond(An2j) ≤ cond(I−Km) ≤ C < +∞, C �= C(m),

where cond(An2j) = ‖An2j‖∞‖A−1
n2j‖∞ and cond(I − Km) = ‖I − Km‖Cu→Cu

×
‖(I−Km)−1‖Cu→Cu

.
It remains to prove (22). From (27), (23) and (24), we have

‖f∗ − f∗m‖Cu
≤ n max

r,s=1,...,n
max
x∈R

|ur(x)(Kr,s −Kr,s
m )f∗

s (x)|

≤ C max
r,s=1,...,n

sup
x∈R

[
EM (F r,s

x )u2
s
+ e−Am‖F r,s

x ‖Cu2
s

]
,(28)

where F r,s
x = f∗

s (y)ur(x)hr,s(x, y) = f∗
s (y)Hr,s

x (y), M = �cm�, with c ∈ (0, 1) fixed,
C �= C(m,F r,s

x ) and A �= A(m,F r,s
x ). Concerning the second addendum, we have

(29) e−Am max
r,s=1,...,n

sup
x∈R

‖F r,s
x ‖Cu2

s
≤ e−Am max

r,s=1,...,n
‖f∗

s ‖Cs
‖Hr,s

x ‖Cus
.

Moreover, for the first addendum we deduce

max
r,s=1,...,n

sup
x∈R

EM (F r,s
x )u2

s
= max

r,s=1,...,n
sup
x∈R

EM (f∗
sH

r,s
x )u2

s

≤ max
r,s=1,...,n

‖f∗
s ‖Cus

sup
x∈R

E�M/2	(H
r,s
x )us

+ 2 max
r,s=1,...,n

E�M/2	(f
∗
s )us

sup
x∈R

‖Hr,s
x ‖Cus

.

Since, by (20) and (21), gr and Hr,s
x , for all r, s = 1, . . . , n, belong to the Sobolev

space of index μ ≥ 1, with respect to y, in the same space where the solutions
f∗
s , s = 1, . . . , n, live. Therefore, applying (6), we obtain

max
r,s=1,...,n

sup
x∈R

EM (F r,s
x )u2

s
≤ C

mμ
max

r,s=1,...,n
(Bm(us))

μ

{
‖f∗

s ‖Cus
sup
x∈R

‖Hr,s
x ‖Wμ(us)

+ ‖f∗
s ‖Wμ(us) sup

x∈R

‖Hr,s
x ‖Cus

}
.(30)

Substituting (30) and (29) into (28), we conclude

‖f∗ − f∗m‖Cu
≤ C

mμ
max

r,s=1,...,n

{
(Bm(us))

μ‖f∗
s ‖Wμ(us) sup

x∈R

‖Hr,s
x ‖Wμ(us)

}
. �

6. Numerical examples

Now we apply our numerical method to some systems of integral equations.
In the examples that follow we will use the following definition of the truncation

index. Since λαs,βs

k ∼ Δxαs,βs

k wαs,βs(xαs,βs

k ), s = 1, . . . , n, for every fixed m even,
we set

(31) js = min
k=1,...,m/2

{k : λαs,βs

m,k < tol}

and

j = min
s=1,...,n

{js},
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tol being the precision to be achieved in the computations. The above definition
is equivalent to (10) in the sense that there exists a θ ∈ (0, 1) such that xjs−1 <

θBm(
√
wαs,βs) ≤ xjs , for every s = 1, . . . , n, where js is given by (31).

In particular, we have chosen tol = 2.22e−16 because all the computations have
been performed in double-precision arithmetic. Therefore the truncation has no
effect for small values of m.

Notice that, if the number n of the equations is not too large and the kernels
and the right-hand sides are sufficiently smooth, the dimensions n2j of the systems
(15) are kept down. Then, they can be well solved using the Matlab function “\”
or the Mathematica function LinearSolve with a computational cost that is of the
order of (n2j)3.

In Examples 2–4, the exact solutions of the systems are unknown but exist and
are unique in the proper spaces Cu since we have verified that

‖K‖Cu
< 1.

Moreover, we will think as exact their approximate solutions obtained for m = 512.

Example 1. The exact solution of the system

fr(x) − 1

8

2∑
s=1

∫ +∞

−∞
hr,s(x, y)fs(y)w

αs,βs(y)dy = gr(x), r = 1, 2,

with

wα1,β1(y) = e−y2

, wα2,β2(y) = e−|y|3 ,

(hr,s(x, y))r,s=1,2 =

⎛
⎜⎝ yex y2 sin(x)

x2 cos(y) yx3

⎞
⎟⎠

and ⎛
⎜⎝ g1(x)

g2(x)

⎞
⎟⎠ =

⎛
⎜⎜⎝

ex
(
x− 3

32e
1
4
√
π
)

(
1 − 1

12Γ
(
5
3

))
x3 − 1

16

√
π
(
cos

(
1
2

)
− sin

(
1
2

))
x2

⎞
⎟⎟⎠ ,

is

f∗(x) =

⎛
⎜⎝ xex

x3

⎞
⎟⎠

and it lives in the space Cu1
× Cu2

, where u1(x) = (1 + |x|)e−x2

2 and u2(x) =

(1 + |x|)e− |x|3
2 .

Setting

e2j,1 = max
k=1,...,10000

{
(1 + |yk|)e−

y2
k
2 |f∗

2j,1(yk) − yke
yk |

}
,

e2j,2 = max
k=1,...,10000

{
(1 + |yk|)e−

|yk|3
2 |f∗

2j,2(yk) − y3k|
}
,

where yk are 10000 equally spaced points in the interval [−15, 15], in Table 1 we
show that, by solving a linear system of order 24, we get an approximation of
the solution with an error of the order of the machine precision. This very fast
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convergence is due to the fact that both the kernels and the known terms are
very smooth. The condition numbers of the matrices of the systems (15) are, for
increasing values of j, less than 2.5.

Table 1. Absolute errors e2j,i, i = 1, 2

2j e2j,1 e2j,2

8 (m =8) 2.397e− 9 5.758e− 9

12 (m =12) 3.679e− 16 3.370e− 15

Example 2. Now we consider the system

fr(x) − 1

7
√

2π

2∑
s=1

∫ +∞

−∞
hr,s(x, y)fs(y)w

αs,βs(y)dy = gr(x), r = 1, 2,

with

wα1,β1(y) = |y| 14 e−|y|
5
2 , wα2,β2(y) = e−|y|3 ,

(hr,s(x, y))r,s=1,2 =

⎛
⎜⎝ cos(x2 + y2) sin(x + y)

e−
x+y
8 xy3e−

xy
5

⎞
⎟⎠

and ⎛
⎜⎝ g1(x)

g2(x)

⎞
⎟⎠ =

⎛
⎜⎝ x3 cos(x)

xex

⎞
⎟⎠ ,

whose exact solution is unknown. Here α1 = 1
4 and α2 = 0, and therefore, taking

into account (16), the system is unisolvent in the space Cu1
× Cu2

, where u1(x) =

(1+ |x|)|x| 12 e− |x|
5
2

2 and u2(x) = (1+ |x|)|x| 14 e− |x|3
2 . Also in this case the kernels and

the known terms are smooth and, as one can see in Tables 2 and 3, the convergence
is fast. In Figure 1 we show the graph of the approximate solutions uif

∗
52,i, i =

1, 2. The condition numbers of the matrices of the solved linear systems are, for
increasing values of j, less than 1.3.

Table 2. Weighted solutions (uif
∗
2j,i)(x), i = 1, 2, at the point x = 0.5

2j (u1f
∗
2j,1)(0.5) (u2f

∗
2j,2)(0.5)

14 (m =16) 0.1373949 0.99558

26 (m =32) 0.13739498774 0.995584068

52 (m =64) 0.137394987743170 0.995584068525489

Unlike the previous two examples, in the next ones not all the kernels and the
right-hand sides are very smooth. As one can see, in these cases the “truncation”
has more effect.
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Table 3. Weighted solutions (uif
∗
2j,i)(x), i = 1, 2, at the point x = 2.5

2j (u1f
∗
2j,1)(2.5) (u2f

∗
2j,2)(2.5)

14 (m =16) −0.49560642 0.05434295

26 (m =32) −0.4956064289 0.054342952404

52 (m =64) −0.495606428980036 0.054342952404796425

−4 −3 −2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

 

 

u
1
 f*52,1

u2 f
*
52,2

Figure 1. Graph of u1f
∗
52,1 and u2f

∗
52,2

Example 3. The solution of the system

fr(x) − 1

10π

3∑
s=1

∫ +∞

−∞
hr,s(x, y)fs(y)w

αs,βs(y)dy = gr(x), r = 1, 2, 3,

with

wα1,β1(y) = |y| 12 e−|y|3 , wα2,β2(y) = e−|y|
5
2 , wα3,β3(y) = |y| 14 e−y2

,

(hr,s(x, y))r,s=1,2,3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ex

(1+x2+y2)2 sin(x + y) |x−y|
11
2

(1+x2+y2)4

xy2 cos(x + y) x2y sin(x + y) xy

| sin(x− y)|7 sin(2 + x2 + y3) y2 cos(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and ⎛
⎜⎜⎜⎜⎜⎜⎝

g1(x)

g2(x)

g3(x)

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

|x|
15
2

(1+x2)2

x cos(x)

xex

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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is unknown. In this case the system is unisolvent in Cu1
×Cu2

×Cu3
, where u1(x) =

(1 + |x|)|x| 12 e− |x|3
2 , u2(x) = (1 + |x|)|x| 14 e− |x|

5
2

2 and u3(x) = (1 + |x|)|x| 12 e− x2

2 .
Since any of the kernels and right-hand sides are not very smooth (for example,

h1,3(x, y) = |x−y|
11
2

(1+x2+y2)4 ∈ W5(u1) w.r.t. both the variables), according to (22), we

need to take 2j = 104 to get approximations of the solutions with at least 10 exact
decimal digits. In Tables 4 and 5 we show the values of the weighted approximations
of the components of the solution in two different points, while in Figure 2 we show
the graph of uif

∗
104,i, i = 1, 2, 3. In this case the condition numbers of the matrices

of the systems (15) are, for increasing values of j, less than 1.3.

Table 4. Weighted solutions (uif
∗
2j,i)(x), i = 1, 2, 3, at the point

x = 0.3

2j (u1f
∗
2j,1)(0.3) (u2f

∗
2j,2)(0.3) (u3f

∗
2j,3)(0.3)

26 (m=50) 0.00937 0.28601 0.3218

52 (m=100) 0.00937207 0.28601295 0.3218693

104 (m=200) 0.0093720773 0.286012951748789 0.32186936407973

Table 5. Weighted solutions (uif
∗
2j,i)(x), i = 1, 2, 3, at the point

x = 2.5

2j (u1f
∗
2j,1)(2.5) (u2f

∗
2j,2)(2.5) (u3f

∗
2j,3)(2.5)

26 (m=50) 0.04109223 −0.05749 7.3912

52 (m=100) 0.041092238457 −0.05749129 7.39124664

104 (m=200) 0.0410922384573266 −0.0574912958587280 7.391246647118550
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Figure 2. Graph of uif
∗
104,i, i = 1, 2, 3
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Example 4. As the last example we take the system

fr(x) − 1

7π

3∑
s=1

∫ +∞

−∞
hr,s(x, y)fs(y)w

αs,βs(y)dy = gr(x), r = 1, 2, 3,

with

wα1,β1(y) = |y| 12 e−y2

, wα2,β2(y) = e−|y|
5
2 , wα3,β3(y) = e−|y|3 ,

(hr,s(x, y))r,s=1,2,3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

y sin(x) xy2 cos(x− y) sin(1 + x + y2)

xy| sin(x− y)| 32 x2y
4 + 1 5x2+2y3

10

x cos(y) cos(1 + x2 + y2) y3x cos(xy)

⎞
⎟⎟⎟⎟⎟⎟⎠

and

⎛
⎜⎝ g1(x)

g2(x)

g3(x)

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

(1 + x2)3

x2 sin(x)

x3

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Its exact solution is unknown. By virtue of (16), the system admits a unique

solution in the space Cu1
× Cu2

× Cu3
, where u1(x) = (1 + |x|)|x| 12 e− x2

2 , u2(x) =

(1 + |x|)|x| 14 e− |x|
5
2

2 and u3(x) = (1 + |x|)|x| 14 e− |x|3
2 . Since the kernel h2,1(x, y) =

xy| sin(x−y)| 32 belongs to W1(u1) w.r.t. both the variables, as one can see in Tables
6 and 7, it is necessary to increase m to obtain approximations of the solutions with
exact decimal digits. In figures 3 and 4 we show the graphs of the approximate
solutions uif

∗
296,i, i = 1, 2, 3. In this case the condition numbers of the matrices of

the solved linear systems are, for increasing values of j, less than 1.5.

Table 6. Weighted solutions (uif
∗
2j,i)(x), i = 1, 2, 3, at the point

x = −2.5

2j (u1f
∗
2j,1)(−2.5) (u2f

∗
2j,2)(−2.5) (u3f

∗
2j,3)(−2.5)

26 (m =50) 92.66 −0.1220 −0.02779

52 (m =100) 92.6689751 −0.1220 −0.027798797

104 (m =200) 92.6689751 −0.12201 −0.0277987977

158 (m =300) 92.66897515 −0.12201 −0.0277987977

210 (m =400) 92.66897515 −0.12201 −0.02779879772
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Table 7. Weighted solutions (uif
∗
2j,i)(x), i = 1, 2, 3, at the point

x = −0.7

2j (u1f
∗
2j,1)(−0.7) (u2f

∗
2j,2)(−0.7) (u3f

∗
2j,3)(−0.7)

26 (m =50) 3.696 −0.31 −0.4929

52 (m =100) 3.696358 −0.311 −0.492911

104 (m =200) 3.6963584 −0.311 −0.4929115

158 (m =300) 3.6963584 −0.3113 −0.4929115

210 (m =400) 3.69635844 −0.3113 −0.49291154
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Figure 3. Graph of u1f
∗
296,1
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