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Abstract Density functional theory (DFT) calculations at
B3LYP/6-31 G (d,p) and B3LYP/6-311+G(d,p) levels for the
substituted pyridine-catalyzed isomerization of monomethyl
maleate revealed that isomerization proceeds via four steps,
with the rate-limiting step being proton transfer from the sub-
stituted pyridinium ion to the C0C double bond in INT1. In
addition, it was found that the isomerization rate (maleate to
fumarate) is solvent dependent. Polar solvents, such as water,
tend to accelerate the isomerization rate, whereas apolar sol-
vents, such as chloroform, act to slow down the reaction. A
linear correlation was obtained between the isomerization acti-
vation energy and the dielectric constant of the solvent. Fur-
thermore, linearity was achieved when the activation energy
was plotted against the pKa value of the catalyst. Substituted-
pyridine derivatives with high pKa values were able to catalyze
isomerization more efficiently than those with low pKa

values. The calculated relative rates for prodrugs 1–6
were: 1 (406.7), 2 (7.6×106), 3 (1.0), 4 (20.7), 5 (13.5)
and 6 (2.2×103). This result indicates that isomerizations
of prodrugs 1 and 3–5 are expected to be slow and that

of prodrugs 2 and 6 are expected to be relatively fast. Hence,
prodrugs 2 and 3–5 have the potential to be utilized as pro-
drugs for the slow release of monomethylfumarate in the
treatment of psoriasis and multiple sclerosis.
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Introduction

Fumaric acid esters are chemical compounds derived from
the unsaturated dicarbonic acid, fumaric acid, which is a
naturally occurring substance, and is used by cells to pro-
duce energy from food. Human skin naturally produces
fumaric acid when exposed to sunlight. Fumaric acid is
absorbed poorly and cannot be expected to have any phar-
macologic effect following oral administration. However,
esters of fumaric acid, such as monoethylfumarate, mono-
methylfumarate, diethylfumarate and dimethylfumarate, are
potent chemicals and have been used in the treatment of
psoriasis in European countries for over three decades [1].
The use of fumaric acid esters in oral preparations, and
topically for the treatment of psoriasis, was first introduced
in 1959 by the German chemist Schweckendiek [2]. In
1994, Fumaderm, an enteric-coated tablet containing dime-
thylfumarate and calcium, magnesium and zinc salts of
monoethylfumarate was approved in Germany for the treat-
ment of psoriasis and since then has become the systemic
therapy most commonly used in that country [3]. Dimethyl-
fumarate is metabolized rapidly to monomethyl fumarate,
which, together with dimethylfumarate, is regarded as the
main active metabolite. Treatment with dimethylfumarate
and/or monomethylfumarate produces a beneficial shift to-
wards Th2-like cytokine secretion associated with a
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reduction in peripheral lymphocytes (primarily T cells) and
inhibits the proliferation of epidermal keratinocytes in
patients with psoriasis [4]. Little is known about the phar-
macokinetics of fumarate esters. Recent data from in vitro
experiments suggest that hydrolysis of dimethylfumarate to
the bioactive metabolite monomethylfumarate occurs rapid-
ly at pH 8, a value usually arising in small intestine environ-
ments, but not at pH 1, which is found typically in the
stomach [5]. This finding let us conceptualize that hydroly-
sis of dimethylfumarate occurs mainly in the small intestine,
and that monomethylfumarate and monoethylfumarate can
be absorbed into the blood circulation where they interact
with blood cells.

Monomethylfumarate and monoethylfumarate may also
influence inflammatory cells in psoriatic lesions. In humans,
serum concentrations of monomethylfumarate after oral in-
take reach peak levels within 5–6 h [6]. Brain inflammation
plays a central role in multiple sclerosis (MS). One of the
disadvantages of currently available disease-modifying drugs
for multiple sclerosis is their parenteral administration. More-
over, efficacy is only partial. Most patients treated with first-
line disease-modifying drugs do not remain relapse-free.
There is a need for new oral drugs that are more effective than
currently available compounds. Some innovative oral drugs
with new mechanisms of action recently showed promising
results in clinical trials. One of these emerging drugs is BG-12
—a fumaric acid ester. Its active agent, dimethyl fumarate,
was first included in fumaric acid ester treatments for
psoriasis as mentioned above [3, 4, 6].

Common adverse events associated with fumaric acid ester
therapy are gastrointestinal complaints and flushing [3]. Gas-
trointestinal adverse events, such as diarrhea, mild stomach
upsets, stomach cramps, fullness and flatulence, occur in more
than two-thirds of patients and are reported most frequently
between 4 and 12 weeks of treatment [3, 6]. Flushing occurs
mostly at the onset of treatment and becomes less frequent
with further exposure [3]. Dose reduction of fumaric acid
esters may also be used to manage symptoms; however,
discontinuation should be considered in persistent cases [6].
Gastrointestinal adverse events and flushing together lead to
discontinuation of fumaric acid esters therapy in approximate-
ly 7 % of patients [3]. Overall, the rate of discontinuation due
to adverse events and/or noncompliance with treatment is 30–
40 % [7]. Other challenges for fumeric acid esters include the
inconvenience of taking up to three daily doses and the
requirement for frequent laboratory monitoring.

Continuing our studies on the design and synthesis of pro-
drugs for certain drugs that have poor bioavailability or/and
side effects, we sought to investigate the pyridine-catalyzed
isomerization of monomethyl maleate (cis isomer lacking bio-
logical activity) into its trans isomer, monomethylfumarate
(trans isomer having biological activity) in order to utilize the
former as a prodrug for the latter [8–13]. Unraveling the

mechanism of this cis-trans isomerization might shed light on
the kinetics of this conversion and might lead to a potential
prodrug system capable of delivering the parental drug in a
controlled release manner with higher bioavailability and less
side effects than the current direct administration of mono-
methyl, monoethyl fumarates or dimethyl fumarate.

The isomerization of maleates to fumarates is catalyzed
by a variety of reagents. The cis-trans isomerization is
possible via photolysis in the presence of a catalytic amount
of bromine. Light converts bromine into a bromine radical,
which allows a single bond rotation after its addition to the
C–C double bond of the maleate moeity. Isomerization of
maleates into fumarates can be achieved by the addition of
mineral acid. Reversible addition of proton leads to free
rotation about the central C–C bond and formation of the
more stable isomer, fumarate. [14–18]. Amine-catalyzed
cis-trans isomerization has been known for more than seven
decades [14, 15]. Cis–trans isomerization catalyzed by
nucleophiles has been reported in the case of dialkyl maleate
and fumarate. It has been documented that ammonia, pri-
mary amines and secondary amines catalyze readily the
isomerization of dialkyl maleate into the corresponding
fumarate ester. However, this isomerization is not catalyzed
by tertiary amines due to the lack of a proton [14, 15].
Dimethyl maleate is converted into dimethyl fumarate using
aminal as a catalyst [19]. Further, it was also documented
that NBS-( N-bromosuccinimide) bromination conditions
were sufficient for Z to E alkene isomerization. Upon treat-
ment with NBS-AIBN (N-bromosuccinimide dibenzoyl
peroxide-azobisisobutyronitrile), dimethyl maleate gave di-
methyl fumarate in very high yield. Isomerization of the C–
C double bond took place via in situ addition–elimination of
the bromine radical [17]. Cis-trans isomerization of dimeth-
yl maleate to dimethyl fumarate by the addition of a protic
imidazolium species was also reported. The mechanism
suggested relies on addition of the protic imidazolium moi-
ety to the C–C double bond, which allows rotation and
subsequent imidazolium elimination [20].

Another approach to improving the physicochemical prop-
erties of pharmaceuticals is co-crystallization of solid forms of
the active ingredients. Other solid forms, including poly-
morphs, solvates, and salts, can be chosen to optimize the
physical properties of active ingredients. For example, the
dissolution rate of the α-polymorph of chloramphenicol pal-
mitate is quite different from that of its β-polymorph. Hence,
the bioavailability of the two different polymorphs is different.
Other examples are theophylline and erythromycin, the hy-
drate forms of which have different dissolution rates and
bioavailability when compared to their anhydrous forms
[21–25]. Rao and coworkers examined the structures of the
adducts obtained from the cocrystallization of maleic acid
with 4,4′-bipyridine, in different solvents. Co-crystallization
of maleic acid and 4,4′-bipyridine was obtained when
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the solvent used was apolar (e.g., chloroform) but co-
crystallization in aprotic polar solvents such as dimethylsulf-
oxide (DMSO) gave an adduct where maleic acid had isom-
erized to fumaric acid [26]. Recently, Tocher and coworkers
used X-ray diffraction to investigate the two-component
crystals formed from pyridine or 4-dimethylaminopyridine
with maleic, fumaric, phthalic, isophthalic, or terephthalic
acids. Their study revealed that the two-component solid
forms involving pyridine included both salts and co-
crystals, while 4-dimethylaminopyridine crystallized exclu-
sively as a salt, in agreement with the observed differences in
pKa values. In addition, they reported an in-situ base cata-
lyzed isomerization of maleic acid in co-crystallization
experiments involving pyridine [27].

We learned from our recent study on intramolecularity that
it is crucial to investigate the reaction mechanism in order to
assign factors affecting the reaction rate. This allows better
design of an efficient chemical device to be used as a prodrug
as well as the potential to chemically release the active ingre-
dient in a controlled (programmable) fashion. For example,
we have studied the mechanism of proton transfer in Kirby’s
enzyme model [28–43] and, based on the results obtained, we
designed prodrugs of aza-nucleosides for the treatment of
myelodysplastic syndromes where the prodrug linker (Kirby’s
acetal) is attached to the hydroxyl group of the nucleoside [9].
Furthermore, prodrugs of paracetamol capable of masking its
bitterness were also designed such that the linker was cova-
lently linked to the paracetamol phenolic group, which is
believed to be the moiety responsible for the bitter taste of
the drug [11]. The prodrugs were designed such that they will
cleave in physiological environments such as stomach at
pH 1.5, intestine at pH 6.5 or/and blood circulation at
pH 7.4, with rates that are dependent solely on the structural
features of the pharmacologically inactive linker. Different
linkers were also investigated for the design of a large number
of prodrugs such as anti-Parkinson (dopamine), anti-viral
(acyclovir) and anti-malarial (atovaquone) that might be effi-
cient in releasing the parental drugs in various rates that are
dependent on the nature or the structural features of the linkers
and provide new novel prodrugs that have the potential to
have better dissolution and membrane penetration and hence
enhanced bioavailability [8–12].

To expand our approach for utilizing intramolecularity in
the design of potential fumarates prodrugs, we have studied
the mechanism and driving force(s) determining the rate of the
substituted pyridine-catalyzed isomerization ofmonoalkylma-
leates. This work was done with the hope that such prodrugs
might have the potential to deliver the corresponding fuma-
rates in a controlled release manner, and hence reduce the side
effects related to high doses of the corresponding active in-
gredient, monomethyl or monoethylfumarates.

Based on density functional theory (DFT) calculation
results on the pyridine-catalyzed isomerization of 1–6

reported herein, six fumarate prodrugs are proposed
(Scheme 1). It should be emphasized that the hydrophilic-
lipophylic balance value of the prodrug moiety will be depen-
dent on the pH of the target physiologic environment. In the
stomach, it is expected that prodrugs ProD 1 – 6will be in the
carboxylic acid form (a relatively high lipophilicity), whereas
in the blood circulation system the carboxylate anion form (a
relatively low lipophilicity) will be predominant.

In this paper, we report a DFT computational study on the
substituted-pyridine-catalyzed isomerization of 1–6
(Scheme 1). Based on the calculated rates for the conversion
of ProD 1–6 to the parental drug, monomethylmaleate po-
tential effective prodrugs will be synthesized and tested.

The aims of this work were: (1) to study the mechanistic
behavior of substituted pyridine-catalyzed isomerization of
monomethylmaleate using six pyridine derivatives as a cat-
alyst and unravel the nature of the force(s) affecting the rate
as a function of the substitution on the pyridine ring; and (2)
to design various fumarate prodrugs that have the capability
to undergo isomerization in physiological environments to
provide fumarate in a programmable fashion.

Calculation methods

The Becke three-parameter, hybrid functional [44] com-
bined with the Lee, Yang, and Parr correlation functional
[45], denoted B3LYP [46], were employed in DFT calcula-
tions. All calculations were carried out using the quantum
chemical package Gaussian-2009 [47]. Calculations were
carried out based on the restricted Hartree-Fock (HF) meth-
od [47]. The starting geometries of all calculated molecules
were obtained using the Argus Lab program [48] and were
optimized initially at the HF/6-31 G level of theory followed
by optimization at the B3LYP/6-31 G(d,p) and B3LYP/6-
311+ G(d,p). Second derivatives were estimated for all
three N-6 geometrical parameters during optimization. An
energy minimum (a stable compound or a reactive interme-
diate) has no negative vibrational force constant. A transi-
tion state is a saddle point with only one negative vibrational
force constant [49]. Transition states were located first by
the normal reaction coordinate method [50] where enthalpy
changes were monitored by stepwise changing of the inter-
atomic distance between two specific atoms. The geometry
at the highest point on the energy profile was re-optimized
using the energy gradient method at the B3LYP/6-31 G(d,p)
and B3LYP/6-311+ G(d,p) levels of theory [47]. The “reac-
tion coordinate method” [50] was used to calculate the
activation energy of monomethylmaleate in the presence of
a pyridine derivative (Scheme 1). In this method, one bond
length was constrained for the appropriate degree of freedom
while all other variables were freely optimized. The activation
energy values for the first step in the process (proton transfer
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from the carboxylic group of monomethylmaleate onto the
pyridine derivative nitrogen (Scheme 2) were calculated from
the difference in energies of the global minimum structures
(GM) and the derived transition states (TS1 in Scheme 2).
Similarly, the activation energies for step 2, a proton transfer
from the pyridinium derivative cations to the C–C double
bond to form INT2 were calculated from the difference in
energies of the global minimum structures (GM) and the
corresponding TS (TS2 in Scheme 2). The activation energy
values for step 3, an abstraction of a proton from INT3 by a
pyridine derivative molecule were calculated from the differ-
ence in energies of the GM and the corresponding TS (TS3 in
Scheme 2). The activation energy values for step 4 (proton
transfer from a pyridinium derivative cation to the carboxylate
anion (step 4 in Scheme 2) were calculated from the difference
in energies of the GM structures and the corresponding TS
(TS4 in Scheme 2). Verification of the desired reactants and
products was accomplished using the “intrinsic coordinate
method” [50]. The TS structures were verified by their single
negative frequency. Full optimization of the TSs was accom-
plished after removing any constraints imposed while

executing the energy profile. The activation energies obtained
from the DFTat B3LYP/6-31G (d,p) and B3LYP/6-311+G(d,
p) levels of theory for monomethylmaleate in the presence of
pyridine derivatives were calculated with and without the
inclusion of solvent (water, chloroform, dimethylsulfoxide,
methanol and acetone). Calculations incorporating a solvent
were performed using the integral equation formalism model
of the polarizable continuum model (PCM) [51–54]. In this
model, the cavity is created via a series of overlapping
spheres. The radii type employed was the United Atom To-
pological Model on radii optimized for the PBE0/6-31 G (d)
level of theory.

Results and discussion

General considerations

Because the free energy of a carboxylic acid is affected strong-
ly by its conformation, especially when engaging in inter- or
intra-molecular hydrogen bonding, we were concerned with
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the identification of the most stable conformation (global min-
imum rather than local minimum) for each of the monome-
thylmaleate pyridine derivative adducts calculated in this
study. This was done by 36 rotations of the carboxyl group
of the monomethylmaleate moiety about the C6–C7 bond in
increments of 10° (i.e., variation of the dihedral angle O8/C7/
C6/C5, see Chart 1) and 36 rotations of the methylcarboxyate
group about the C4–C5 bond in increments of 10° (i.e., vari-
ation of the dihedral angle O3/C4/C5/C6, see Chart 1) and
calculation of the energies of the resulting conformers.

Two types of conformations were considered in DFT
calculations of the isomerization of monomethylmaleate with
a pyridine derivative: one in which the two carbonyl groups
are perpendicular each to other (Chart 1a) and another in
which they are about 180° each to other (Chart 1b). It was
found that the global minimum structures exhibit conforma-
tion by which the two carbonyl groups exist at about the same
plane (180°) of each other (Chart 1b). In addition, the calcu-
lation results demonstrated that the monomethylmaleate moi-
ety exists in a conformation by which the hydroxyl proton of
its carboxyl group (H10) is engaged in a hydrogen bonding
with a molecule of the pyridine derivative via its amine
nitrogen (N11), and the carboxylic group carbonyl oxygen
(O9) hydrogen bonds with the α proton of the pyridine deriv-
ative (H13) (Chart 1b).

Thermodynamic calculations for the isomerization
equilibrium between monomethylmaleate (prodrug)
and monomethylfumarate (drug) in the presence
of a pyridine derivative

As mentioned in the Introduction, Tocher’s team studied the
crystals formed from pyridine and 4-dimethylaminopyridine
with maleic, fumaric, phthalic, isophthalic, or tereph-
thalic acids by X-ray diffraction [27]. The latter study
revealed that the two-component solid forms involving
pyridine included both salts and co-crystals, while 4-
dimethylaminopyridine crystallized exclusively as a salt, in
accordance with the pKa value of the base catalyst. Further-
more, the study demonstrated that a base-catalyzed isomeri-
zation of maleic acid into fumaric acid was obtained in co-
crystallization experiments when the base used was pyridine.
On the other hand, Rao’s team [26] documented that a co-
crystalization of maleic acid with 4,4′-bipyridine in apolar
solvents gave a 2:1 adduct (two molecules of maleic acid
attached to one molecule of a base) where maleic acid was
preserved in the cis conformation, whereas, when a polar
solvent was used, a 1:1 adduct (one molecule of maleic acid
attached to one molecule of the base), by which maleic acid
underwent isomerization into formic acid, was observed. The
combined results of the two groups demonstrated that the
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equilibrium forming the isomerized product depends strongly
on the polarity of the solvent, and the difference in the free
energy between the reactants (cis form) and products (trans
form). Similarly to the importance of hydrogen bonding in the
stabilization of ground state structures, Han’s group has
showed recently [55–57] that hydrogen bonding in the elec-
tronic excited state in several photochemical and photophys-
ical processes, plays an important role in the mode and the
dynamics of these processes. Thus, in order to assure complete
conversion of monomethylmaleate (prodrug) into monome-
thylfumarate (drug) it will be necessary to use both an appro-
priate polar solvent and a base catalyst such that the activation

energy of the isomerization reaction is reduced enough to
yield the trans isomer (drug). Such a base should have an
appropriate pKa value to enable the formation of isomerized
product rather than to terminate in a salt formation step
(Scheme 1).

Figure 1(a, b) illustrates the DFT at B3LYP/6-31 G (d,p)
and B3LYP/6-311+G(d,p) levels optimized structures for
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the GM structures 1GM-6GM (prodrug) and the isomer-
ization products from monomethylmaleate 1P-6P (trans
drug). Inspection of Fig. 1(a, h) demonstrates that the
reactant and product adducts are stabilized by hydrogen
bonding between the pyridine derivative nitrogen and the
carboxyl group of the cis or trans isomers. The hydrogen
bond lengths in the cis (prodrug) and trans (drug) are
quite similar (1.64–1.78 Å). Table 1 lists the free energy
values (ΔG°0G°trans − G°cis) for adducts 1–6 (Scheme 1)
as calculated in the gas phase, DMSO, acetone, methanol
and water. Examination of Table 1 reveals that the free
energy value for the equilibrium reaction (G°trans −G°cis) is
not affected significantly by the nature of the solvent except in
the case of process 5.

The solvent effect is relatively profound when the
calculated free energies in water and the gas phase are
compared. For example, the calculated B3LYP/6-31 G(d,
p) ΔG˚ value for process 1 (Scheme 1) in the gas phase
was −6.08 kcal mol−1 whereas the value as calculated in
water was −4.98 kcal mol−1. Similar trend of the solvent
effect on ΔG° was observed in the calculation results
obtained by B3LYP/6-311+G(d,p). On average, the sol-
vent energy contribution was about 1–1.5 kcal mol−1 as
calculated in both levels. The only exceptional case is
process 5, in which the difference in free energy between
the values calculated in a solvent such as water and the
gas phase was about 3.3 kcal mol−1. This might be
attributed to stronger solvation interactions in the cis
isomer as compared to that in the trans. Examination of
Table 1 reveals that the values of ΔG° in processes 1–6
are quite similar. Therefore, the pKa or the basicity of the
pyridine derivative does not have significant effect on the
equilibrium of the prodrug and the drug. The combined
results indicate that the drug is thermodynamically more
stable than the corresponding prodrug and the effect of
the solvent is not dominant.

Kinetic calculations (mechanistic investigation)
for the isomerization reaction of monomethylmaleate
(prodrug) into monomethylfumarate (drug)
in the presence of a pyridine derivative

Scheme 2 illustrates the proposed mechanism for the isom-
erization of the prodrug monomethylmaleate to its trans
isomer, the parental drug. All entities involved in the pro-
posed mechanism were calculated using DFT at B3LYP/6-
31 G (d,p) and B3LYP/6-311+ G(d,p) levels of theory. The
calculations were done in the gas phase (dielectric con-
stant01.0), chloroform (dielectric constant04.9), DMSO
(dielectric constant046.7), methanol (dielectric constant0
32.63 ), acetone (dielectric constant020.7), and water (di-
electric constant078.39). Using the calculated DFT values
for the energies of the GM structures , 1GM-6GM, (pro-
drug, Scheme 2) and the four different transition states (TS1,
TS2, TS3 and TS4 for 1–6, Scheme 2) listed in Table S1, the
enthalpy activation energies (ΔH‡), entropy activation ener-
gies (TΔS‡), and free activation energies (ΔG‡) for all steps
(Scheme 2) were calculated and are tabulated in Table 2.
The energy profiles for the isomerization of process 1 as
calculated in water, DMSO, MeOH, acetone and the gas
phase are shown in Fig. 2. Careful inspection of the data
summarized in Table 2 reveals that the rate-limiting step for
the isomerization of monomethylmaleate in the presence of
a substituted pyridine is the one by which a pyridinium
derivative molecule behaves as an acid and adds a proton
to the C0C double bond of INT1 (step 2, barrier 2 in
Scheme 2). On the other hand, the DFT calculations for
step 3 (barrier 3 in Scheme 2) in which a substituted
pyridine molecule behaves as a base and abstracts a
proton, indicate that the energy barrier for this step is
lower than that for step 2. However, the difference be-
tween the two barriers, barriers 2 and 3, is dependent
largely on the reaction solvent.

Table 1 Density functional theory (DFT) calculated thermodynamic properties for the equilibrium reaction of monomethylmaleate with
substituted-pyridine. Cis and trans refer to prodrug and drug, respectively. DMSO Dimethylsulfoxide

Solvent ΔG° (trans–cis)a ΔG° (trans–cis) ΔG° (trans–cis) ΔG° (trans–cis) ΔG° (trans–cis) ΔG° (trans–cis) Dielectric constant
1 2 3 4 5 6

GP/B3Lb −6.08 −6.93 −5.93 −6.16 −5.93 −6.35 1

GP/B3L311 −6.09 −5.48 ——— ——— −5.66 ———

Water/B3L −4.98 −5.39 −4.80 −5.01 −2.65 −5.12 78.39

Water/B3L311 −4.71 −3.71 ——— ——— −4.39 ———

DMSO/B3L −5.01 −5.34 −4.82 −5.04 −2.50 −5.15 46.70

Acetone/B3L −5.09 −5.47 −4.91 −5.13 −2.05 −5.24 20.70

Methanol/B3L −5.04 −5.39 −4.85 −5.07 −2.34 −5.18 32.63

a GP and ΔG° refer to gas phase and free activation energy difference in kcal mol-1 , respectively
b B3L and B3L311 refer to calculated by DFT at B3LYP/6-31 G(d,p) and B3LYP/6-311+G(d,p) levels, respectively.
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Conformational analysis of the entities involved
in substituted pyridine-catalyzed isomerization
of monomethylmaleate

Starting geometries (GM, Prodrugs, Cis)

Figure 1a illustrates the DFT optimized geometries for the
GM structures of the reactants in the isomerization process-
es of monomethylmaleate into monomethylfumarate in the
presence of a pyridine derivative (1Cis-6Cis) and Table S1
lists their calculated energies. Inspection of Fig. 1a indicates
that the monomethylmaleate moiety exists in a conformation
by which its carboxyl group is engaged intermolecularly in
two hydrogen bonds with the pyridine derivative nitrogen
and hydrogen.

Transition state TS1

The DFT-calculated optimized structures with selected bond
distances and angles for the first transition state (TS1) in the
isomerization of monomethylmaleate in the presence of a
pyridine derivative (1TS1-6TS1) are summarized in Table
S1 and are shown in Fig. S1a.

Intermediate INT1

The calculated DFT structures for INT1 in the isomerization
ofmonomethylmaleate in the presence of a pyridine derivative
(1INT1-6INT1) are shown in Fig. S1b and their properties are
listed in Table S1. Inspection of the geometries in Fig. S1b
demonstrates that INT1 exists as an ion pair composed of the
maleate anion and the pyridinuim derivative cation.

Transition state TS2

The calculated DFT structures for the second transition state
(TS2) in the isomerization of monomethylmaleate in the
presence of a pyridine derivative (1TS2-6TS2) are listed
in Table S1 and are shown in Fig. 1b. Examination of the
optimized geometries of the transition states demonstrate
that all of them have similar structures. Moreover, Fig. 1b
shows that, in addition to the hydrogen bond existing be-
tween the pyridinuim proton and the carbon of the C0C
double bond, there is a hydrogen bond between the pyridi-
nium H13 and the carboxylate oxygen. The hydrogen bond
length H13–O9 was found to lie within in the range 1.89–
2.00 Å.

Intermediate INT2

The calculated DFT geometries for INT2 in the isomerization
of monomethylmaleate in the presence of pyridine derivative

Table 2 DFT (B3LYP) calculated kinetic and thermodynamic properties for processes 1–6. B3LYP refers to values calculated by B3LYP/6-31 G(d, p)
method. ΔH‡ and ΔG‡ are the calculated activation enthalpy and free activation energies (kcal mol-1), respectively

System pka GP GP GP GP H2O H2O GP GP GP/ΔH° GP/ΔG°
[58] ΔHǂ ΔGǂ ΔHǂ ΔGǂ ΔHǂ ΔGǂ ΔHǂ ΔGǂ trans-cis (GM) trans- cis (GM)

Barrier 1a Barrier 1 Barrier 2b Barrier 2 Barrier 2 Barrier 2 Barrier 3c Barrier 3

1 5.17 7.17 8.49 49.61 50.8 34.89 36.08 45.23 46.74 −6.39 −6.08

2 9.7 5.89 6.98 45.15 46.24 29.17 30.26 42.69 45.3 −6.97 −6.93

3 0.72 8.66 10.23 53.64 55.29 37.97 39.63 50.38 52.26 −6.23 −5.93

4 2.84 7.85 9.28 51.69 53.01 36.52 37.84 52.22 55.76 −6.33 −6.16

5 −0.44 8.71 10.2 54.01 54.85 37.25 38.09 50.36 51.79 −6.27 −5.93

6 5.97 6.79 8.17 47.48 51.02 31.53 35.07 44.54 46.92 6.44 −6.35

a Barrier 1 refers to the process by which a proton is transferred from the maleate moiety into the substituted pyridine
b Barrier 2 refers to the step by which INT2 is formed
c Barrier 3 refers to that in which INT3 is obtained (see Scheme 2)

Fig. 2 B3LYP/6-31 G (d,p) calculated energy profiles for the isomer-
ization of monomethylmaleate with pyridine (process 1) in the pres-
ence of water, dimethylsulfoxide (DMSO), methanol (MeOH), acetone
and the gas phase

J Mol Model



as a catalyst (1INT2-6INT2) are illustrated in Fig. S1c and
their parameters are listed in Table S1. Examination of Fig.
S1c demonstrated that the maleate moiety in the intermediate
structure underwent cyclization to form anα- lactone ring as a
result of intramolecular nucleophilic attack of the carboxylate
oxygen anion onto the carbonyl carbon.

Transition state TS3

The DFT optimized structures for the third transition state
(TS3) in the isomerization of monomethylmaleate in the
presence of pyridine derivative as a catalyst (1TS3-6TS3)
are shown in Table S1 and are illustrated in Fig. S1d. It
should be emphasized that the structure of the maleate
moiety in 1TS3-6TS3 is quite different from that in 1TS2-
6TS2. The maleate moiety in 1TS2-6TS2 exists in confor-
mation by which the two carboxyl groups are engaged
intramolecularly with a hydrogen bonding. This engage-
ment resulted in a cis conformation (Fig. 1b), whereas the
conformation of the maleate moiety in 1TS3-6TS3 was the
trans orientation (Fig. S1d).

Intermediate INT3

The calculated DFT optimized structures for INT3 in the
isomerization of monomethylmaleate in the presence of a
pyridine derivative (1INT3 - 6INT3) are shown in Fig. S1e
and their energies are listed in Table S1.

Product (Trans Drug)

The DFT optimized geometries for the trans isomers in
the isomerization of monomethylmaleate in the presence of
pyridine derivative (1Trans Drug-6Trans Drug) are
depicted in Fig. 1c and their energies are listed in Table
S1. Inspection of the calculated geometries in Fig. 1c
revealed that 1Trans Drug-6Trans Drug exhibit conforma-
tions by which the carboxyl group is engaged intermolecu-
larly in a hydrogen bond with the pyridine moiety via its
hydroxyl proton.

The effect of solvent on the isomerization rate

Inspection of Tables 2 and 3 reveals that the enthalpic and
activation energies for steps 2 (barrier 2) in the substituted
pyridine-catalyzed isomerization of 1–6 are affected greatly
by the solvent (dielectric constant). The calculated activation
and enthalpic energies in the gas phase (dielectric constant0
1.0) were found to be higher than that calculated in chloroform
(dielectric constant04.9) and the latter were higher than the
values calculated in water (dielectric constant078.39).

Inspection of the activation energy values in Tables 2 indi-
cates that the substituted pyridine-catalyzed cis-trans isomeri-
zation of monomethylmaleate is more efficient when the
reaction is carried out in a relatively polar solvents, because
of enhanced stability of the transition state compared to its
corresponding reactants. For example, the gas phase calculated
activation energy (ΔG‡) for the isomerization reaction of 1was
50.80 kcal mol−1 while that calculated in water was
36.08 kcal mol−1 (Table 3). In fact, when the enthalpic energies
for processes 1–6 for step 2 (barrier 2, Scheme 2), calculated in
different solvents, were examined for correlation with the
dielectric constants of the solvents, strong correlations were
obtained with a correlation coefficient of R> 0.98 (Fig. 3a,b).

It should be noted that when the energy data calculated
by B3LYP/6-31 G(d,p) was examined for correlation with
that calculated by B3LYP/6-311+ G(d,p), a strong correla-
tion with a correlation coefficient of R00.99 was obtained.

The effect on isomerization rate of substituted-pyridine pKa

Examination of the enthalpic energies in Table 2 revealed
that substituted pyridine-catalyzed isomerization of 1–6 is
more efficient when the catalyst used is a strong base (high
pKa). This is because the transition state (TS2 in Scheme 2)
is stabilized much more by a strong base due to increased
electron donation by a strong base compared to that by a
weak base. For example, the calculated activation energy in
water for the catalyzed-isomerization by the strong base 2
(pKa 9.7) is 30.26 kcal mol−1 while that catalyzed by a weak
base 5 (pKa −0.44) is 38.09 kcal mol−1. In fact, when the

Table 3 DFT calculated enthalpic energies (kcal mol−1) for substituted pyridine-catalyzed isomerization of monomethylmaleat (1–6) in different
solvents

Solvent Dielectric constant ΔH‡ (kcal/mol) ΔH‡ (kcal/mol) ΔH‡ (kcal/mol) ΔH‡ (kcal/mol) ΔH‡ (kcal/mol) ΔH‡ (kcal/mol)
1 2 3 4 5 6

Gas phase 1 49.61 45.15 53.64 51.69 54.01 47.48

Water 78.4 34.89 29.17 37.97 36.52 37.25 31.53

Chloroform 4.9 39.29 33.77 42.78 41.17 42.4 36.52

Dimethylsulfoxide 46.7 35.11 29.4 38.21 36.75 37.51 31.79

Acetone 20.7 35.78 30.1 38.96 37.48 38.31 32.56

Methanol 32.4 35.34 26.64 38.47 37.01 37.78 32.05

J Mol Model



calculated enthalpic energies in the gas phase, water, chlo-
roform, DMSO, acetone and methanol for step 2 (barrier 2,
Scheme 2) were examined for correlation with the pKa

values of the substituted pyridine catalyst, strong correla-
tions were obtained with correlation coefficients R > 0.95
(Fig. 4a, b). In order to test whether the substituted pyridine
catalyst has the same effect on both barriers (barriers 2 and
3), the DFT calculated gas phase enthalpic energies for step
3 (barrier 3, ΔH‡) were correlated with the enthalpic ener-
gies for step 2 (barrier 2, ΔH‡). The correlation results
illustrated in Fig. 4c indicate good correlation with a corre-
lation coefficient R00.90. This indicates that the driving
force for the approach of the substituted pyridine catalyst
(step 2 in Scheme 2) and the proton abstraction by the
substituted pyridine (basicity of the catalyst, step 3 in
Scheme 2) is the same.

Conclusions and future directions

In summary, we conclude that monomethylmaleate (prodrug)
undergoes substituted pyridine-catalyzed isomerization to
its trans isomer, the parental drug monomethylfumarate.

However, the energy needed for the cis-trans isomerization
in water and polar solvents is much lower than that in apolar
solvents. The substituted pyridine-catalyzed isomerization
proceeds via four steps: (1) a proton transfer from the mono-
methylmaleate carboxyl groups into the nitrogen of the sub-
stituted pyridine to form ion pair INT1; followed by step (2) in
which a substituted pyridinum cation moiety approaches the
C0C double bond of the maleate moiety to yield INT2; (3)
Rotation about the central C–C bond of INT2 followed by
proton abstraction by a substituted pyridine molecule to yield
unstable INT3; and (4) proton transfer from the substituted
pyridinum moiety thus formed into the carboxylate moiety of
the fumarate to yield the trans isomer, monomethylfumarate.
In addition, the isomerization medium was found to have
an large effect on the isomerization rate. Polar solvents,
such as water, tend to stabilize transition states TS2 and
TS3, and consequently to reduce the activation energy of
the process. Moreover, the linear relationship found be-
tween the calculated data on one hand and the dielectric
constant of the solvent and the pKa of the catalyst (a
substituted pyridine) on the other hand, give a basis from
which to evaluate the kinetics of the designed monome-
thylmaleate prodrugs to be administered into the human
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body and to predict the release rate of the parental drug,
monomethylfumarate.

Using Arrehnius equation and the water calculation acti-
vation energies for the substituted pyridine-catalyzed isom-
erization listed in Table 2, the relative rates for prodrugs 1–6
were calculated using Eqs. 1, 2, 3, 4, and 5,

Prodrug relative rate for prodrug 1� 6 ¼ kprodrug1�6=kprodrug3

ð1Þ

ΔGzprodrug3 ¼ �RT ln kprodrug3 ð2Þ

ΔGzprodrug1�6 ¼ �RT ln kprodrug1�6 ð3Þ

ΔGzprodrug1�6 �ΔGzprodrug3 ¼ �RT ln kprodrug1�6=kprodrug3

ð4Þ
Prodrug relative rate ¼ e� ΔGz prodrug3�ΔGz prodrug1�6ð Þ=RT

ð5Þ
Where T is 298 °K and R is the gas constant.
and their values are as follows: 1 (406.7), 2 (7.6×106), 3

(1.0), 4 (20.7), 5 (13.5) and 6 (2.2×103). This result
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indicates that the isomerizations of prodrugs 1 and 3–5 are
expected to be slow, and that of prodrugs 2 and 6 are
expected to be relatively fast. Hence, prodrugs 2 and 3–5
have the potential to be utilized as prodrugs for slow release
of monomethylfumarate in the treatment of psoriasis and
multiple sclerosis.

Thus, a strategy for providing desirable prodrugs of
fumarates that are capable of being effective in releasing
monomethylfumarate in a slow release manner would be as
follows: (1) synthesis of monoalkylmaleates by reacting
maleic anhydride with the appropriate alcohol in the pres-
ence of catalytic amounts of acid [36]; (2) kinetic studies (in
vitro) of the synthesized monoalkylmaleates (ProD 1–6) in
the presence of a variety of substituted pyridine derivatives
will be performed in physiological environment (37 °C, pH
02.0 and 6.0 in aqueous medium); and (3) for the maleate
prodrugs that show slow release in the in vitro studies, in
vivo pharmacokinetic studies will be conducted in order to
determine the bioavailability and the duration of action of
the tested prodrugs. In the light of the in vivo pharmacoki-
netics, new prodrugs will be design and synthesized.
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