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Abstract

We describe a simple method to construct many different linear
codes arising from caps in a projective space whose automorphism
group is known in advance. This procedure begins with a fairly small
point set in an appropriate finite projective space.

1 Introduction
An [n,/c,d]o linea,r code is a /c-dimensional subspace C of a vectot space

V{, with n ) k, over the finite field lFo' The dual code CL of C is its
orthogonal subspace inV{, that is,

Cr : {r eV{ lv' c : 0for any c e C},

where t.' denotes the usual inner product of two vectors u : (utruz, . ' . ,un)
and v : (ut,uz,. .. ,un) of l/1 defined bY

u. V : u1v1 * uZuZ * ... * unUn.

If the generating matrix of C is in the standard form

G:(rklA),

I
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where .I* is the À x,t identity matrix and A is a suitable n x (n*k) rnatnx,
then the dual code Cr is generated by the parity check matrix of C in the
form

H - (-, el r^-*) .

Fronn a theoretical point ofview, the concept of duality in coding theory
can be derived from the more general concept of the Gale transform of sets

ofpoints in projective spaces; see for instance [6].
Given two positive integers r and s, let 7 : r * s J-2. The Gale

transform is an involution that takes a set I consisting of 7 points of.an
rdimensional projective space PG(r, F) onto a set I/ consisting of 7 points

of an s-dimensional projective space PG(s, lF). The most general-and
purely geometric-definition of the Gale transform is as follows. Let IF be

afield and r,s positive integers greater tha,n 1. Set 7:r*s*2 and let
f c PG(r,lF), f' g PG(s, F') be two nondegenerate sets (i'e., not contained
in any proper subspace), each consisting of 7 points, whose projective co-

ordinatevectors aretherows of a1x(r *1) matrix M and a7 x (s*1)
matrix M', respectively. Then, the set l' is said to be the Gale transform
of I if and only if there exists a nonsingular diagonal matrix D such that

TMDM':0, (1)

where 0 denotes the (r * 1) x (s + 1) zero matrix. The diagonal matrix
in (1) is necessaxy to avoid the dependence on the choice of homogeneous

coordinates.
This situation takes place when we consider the generating matrix G of

an ln,k,d]n linear code and its parity check matrix fI, that is, the gener-

ating matrix of its dual code: in this case we have T H DG : 0, where 0
denotes the È x (" - k) zero matrix and, D : In.

For a detailed treatise on the theory of the Gale transform from a geo-

metric point of view, and an historical account on its development over the
Iast two centuries, the interested reader is referred to [6]. A concise survey
on the Gale transform from a finite geometry point of view, and recent

results, can be found in [4].
Here we use some properties of the Gale transform applied to the points

whose projective coordinates in PG(r, q) a're the rows of the generating

matrix of an [n, lc,dfnl\near code C in order to produce, besides the dual

ln,r-le,dlo code Cr, many linear codes associated to caps in PG(n -
r -2,e), with different pa,rameters and admitting the same automorphism
group of C.
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2 Preliminary results on caps

An n-cap in a finite projective space PG(r, g) is a set consisting of n points
no three of which are collinear; see [9] for a complete treatise on this topic.
When the Gate transform is applied to a point set f e PG(r,JF), then the
r€sutting set l' I PG(s, IF) inherits some crucial properties from I; see

[5,3, 4].

Theorem L For any setl consisting of k points i'nPG(r,q), withr > 2

and n 2 4, ilw Gale transforrn f' o/ I is an n-cap in PG(n - , - 2, q).

Fìor our purpose, it is convenient to gain some control over the auto-
morphism groups of the geometrical objects we are dealing with. In this
respect the Gale transform has a fairly nice behaviour, as it is shown by
the following result [3].

Theorem 2 LetT be ann-cap inPG(r,q) andT' its GaIe transform. Then

T etdt' hoae isomorphic collineation groups.

Ba.sically, Theorem 2 allows us to transfer the action of the group G of
3 sertain subset f c PG(r,g) to another projective space PG(s,g), thus
providing a representation of G as a collineation group with a different
support. It turns out that this new representation is reducible, i.e. the
group G fixes some non-trivial subspace. The orbits of G on the points
of PG(s, q) provide the key toól for the construction of many linear codes

besidesthe code obtained from the Gale transform ofthe geometrical object
we started off with.

3 Construction of cap codes

Caps in projective spaces are closely related to a broad class of linear codes-

lf. .l is an ??-cap in a projective space PG(r, g)' then the coordinate vectors

of the points of. .t are the columns of the parity check matrix Í/ of an

Vr,n- r,d]o linear code C with d ) 3, that is, 11 is the generating matrix

of an [n, r * l,d,tln code Cr which is the dual code of C; see [8, Chapter 14]
for instance.

In [2] there is a first description ofa cap code arising from a collineation
group acting on a certain geometrical object. Here we are going to use a

simila,r technique in a broader context.
In what follows we use a simplified representation of the Gale transform.

Given a set I C PG(r, q) consisting of 7 points, we choose homogeneous
éoordinates in such a way that the coordinates of the points of I are the
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rows of the block matrrx

K_

where ,4. is an (s * 1) x (r * L) matrix. Then, the homogeneous coordinates

of the points of the Gale transform f/ ! PG(s, g) of l, with 7 : r * s * 2,

are the rows of the block matrix

K,:

3.L Cap codes arising from a regular hyperoval in PG(2,8)

In the projective plane PG(2,8) over the finite field IF6,let€ be the conic

of equation
XY +YZ * XZ :0.

Since PG(2,8) has even order, all the tangent lines of7 ale conculrent at a
point .lf outside € called' the nucleus of €. Hence, the point set € lJ {N} is

a 10-arc in PG(2,8) which is called a regula,r hyperoval, and is preserved by

the collineation group PGL(2,8); see [L0, Section S.4]. It is easy to check

that in this case JV has projective coordinates (1 : 1 :1), thus the point set

of € u {N} can be represented by a matrix K of the form (2) as follows:

TK:

where c,.r is a primitive element of IF3 such that r.r3 * o * 1 : 0. The matrix
rK can be taken as the generating matrix of a [10,3,d], linear code. We

checked with MAGMA [1] that this code is equivalent (see [8, Chapter 5])

to a [10,3,8]8 MDS code with weight distribution

(0, L), (8,315), (10, 196).

The Gale transform of €u {N} is the set €t EPG(6,8) whose points

can be represented by a matrix K' of the forrn (3) as follows:

(+)

ffi

lt111111100\
fr u2 us w5 w4 u w6 o 1 ol.
\tu3u2@w6u6u4ooU

(2)

(3)

11 11000000\
L u2 @3 o 1 o o o o ol
1 r,.r3 w2 0 o 1 o o o ol
! w5 a 0 0 0 1 0 0 01.
L ua w6 o o o o 1 o ol
L u u5 o o o o o 1 0l
lu6w4oooooor/

TK'=
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ByTheorem l the point set€tis a 10-cap in PG(6,8), and by Theorem
2 €t ùmits a collineation group isomorphic to the group of € that we
started with, namely PGL(2,8). Hence, the matrix 7.K' provides the gen-

erating matrix of a [10, 7,4]" cap code with the same automorphism group
PGL(2,8). This code turns out to be equivalent to an MDS code C'with
weight distribution

(0,1), (4, 1470), (5,7056), (6,49980), (7, 191520),

(8, 507465), (9, 787920), (10, 551740).

Note that starting off with the conic € only, without including its nuc- r

leus, the Gale transform€'is a 9-cap in PG(5,8) producing a [9,6,4],
MDS code C" with weight distribution

(0, 1), (4, 882), (5, 3528), (6, 19992), (7,57456), (8, 101493), (9,78792).

The action of the group PGL(2,8) as a permutation group on PG(6,8)
is reducible, thus the following list of orbits can be easily obtained.

o L fixed point N/ coming from the nucleus N of the coric €.

o 2 orbits of length 9, that is,

- an orbit of length 9, corresponding the conic€, which is a 9-cap
producing a cap code equivalent to a [9,7,3]s MDS code;

- another 9-cap producing a cap code equivalent to a [9,3, 7]B MDS
code.

o 10 orbits of length 63, none of which is a cap.

r l orbit of length 72 which is a cap producing a[72,7,49]r code.

o 8 orbits of length 84,7 of which are caps producing cap codes equi-

valent to an [84,7,56]r code.

o 8 orbits of length 168, 7 of which a.re caps producing cap codes equi-

valent to [168,7,d], codes with d equal to either L14, 120 ot 729.

o 120 orbits of length 252,64 of which are caps producing cap codes

equivalent to 1252,7, d], codes with d equal to either 168, 180, 182'

186, 192, 196, 198, 200,202,204 or 206.

o 529 orbits of length 504, L4I of which axe caps producing cap codes

equivalent to [504,7, d], codes with d equal to either 366, 392, 396'

399,402,404,406,408, 410, 417,412,414,476, 419 or 420.

Flom Theorem 2, all the codes listed above admit the same group PGL(2' 8)

as their automorphism group.
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3.2 Cap codes arising from a conic in PG(2' 9)

In the projective plane zr : PG(2,9), let € be the conic of equation

YZ - X2 - wZ2 :0,

with ar a primitive element of lFg such that u2 *2w *2 :0' The point set

of. € can be represented by a matrix K of the form (2) as follows:

TK:

We checked with MAGMA [1] that this code is equivalent to a [10,3,8]n
MDS code with weight distribution

(0, 1), (8,360), (9,80), (10,288).

The Gale transform of € is the set €' gPG(6,9) whose points can be

represented by a matrix K/ of the form (3) as follows:

TK,:

lt 1 1 1 1 1 1 1oo\
ft a u7 u2 u6 u5 w3 o 1 ol.
\tu3u2u7w5u6uooLl

11 11000000\
t w u3 o 1 o o o o ol
! w7 u2 o o 1 o o o ol
! w2 w7 o o o 1 o o ol.
L w6 u6 o o o o 1 o ol
L w5 uG o o o o o 1 of
Lw3u0000001/

By Theorem t" the point set €t is a 10-cap in PG(6, 9), and by Theorem

2 €t admits a collineation group isomorphic to the group of € that we

sta,rted with, namely PGL(2,9). Hence, the matrix "K' provides the gen-

erating matrix of a [10, 7,4]n cap code with the same automorphism gloup
pGL(t,g). This code turns-out to be equivalent to an MDS code C/ with
weight distribution

(0, 1), (4, 1680), (5, 10080), (6,77280),(7, 343680),

(8, 1036440), (9, 1840880), (10, 1'472928).

The action of the group PGL(2,9) as a permutation group on PG(6, 9)

is reducible, thus the following list of orbits can be easily obtained.

o 2 orbits of length 1.0, which are both caps. one of them is the above

mentioned 10-cap €t,while the other one produces a [10,4,6]n code

with weight distribution (0,1), (6, 240),(8,2160), (9,2000); (10,2160)'
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o 1 orbit of length 30, which is not a cap.

o 1 orbit of length 36, which is a cap producing a[J6,7,2l]n-cap code.

o 1 orbit of length 45, which is a cap producing a[45,7,28]n-cap code.

o 1 orbit of length 80, which is not a cap.

o 2 orbits of length 90, none of which is a cap.

r 8 orbits of length 120, none of which is a cap.

o 22 orbits of length 180, 4 of which are caps producing cap codes
equivalent to [180,7,d1, codes with d equal to either 139 or 141.

o 9 orbits of length 240, none of which is a cap.

r 164 orbits of length 360, 86 of which axe caps producing cap codes
equivalent to [360,7, d]n codes with d equal to either 256, 264, 280,
284, 286, 288, 290, 292, 294, 296, 297 or 2gg.

r 738 orbits of length 720, I72 of which axe caps producing cap codes
equivalent to [720,7,d]n codes with d equal to either 552, 570,576,
582,594, 5gg, 592, 594, 596,600,602, 603, 604, 606, 609, 609,610,
612 or 6L4.

4 Conclusion
We described a method to construct many different linear codes arising
from caps in a projective space whose automorphism group is known in
advance. The steps of this construction can be summa.rized as follows:

1. Take a point set d consisting of 7 points in a projective space PG(r, g),
with its automorphism group G regarded as a (possibly irreducible)
permutation group.

2. Apply the Gale transform to O in order to obtain another point set
Ot C PG(s,q), containing the same number 7 of points, wiih Z :
r+s+2.

3. Compute the orbits under the action of the group G regarded as a
(possibly reducible) permutation group with support PG(s, q).

Determine which orbits from 3 are k-caps.

For each k-cap obtained at Step 4 take the ,b x (s+ 1) matrix K whose
ro\rus are the projective coordinate vectors of the points.

4.

b.
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6. For each coordinate matrix K takethe transposeîK as the generat-
ing matrix for the required [/c, s * 1, d]n code.

Once the points of each cap are determihed, it is fairly easy to compute-
using MAGMA [1] for instance-the parameters and the generating matrices
for all the codes mentioned in Sections 3.1 and 3.2. In Tables 1 and 2 each
set of parameters is associated with a starting point of an orbit under the
action of the inherited collineation group which yields a cap providing a

code with those parameters. In each table ar denotes a primitive element of
the base field. We observe that the lengths of some of these codes are well
beyond the maximum length available in the most popular on-line public t

repositories for linea.r codes over IFs and lFei see [7] for instance.

Table 1: Pa.rameters for codes from caps in PG(6,8)
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Pilameters
starting

point Pa,raneters
startrng

Doint

lu,7, :1: t20.7, b7L xxxxxxx
IO,4, ( (O:1:o:u":w:uo:l t2o,7,57h l:O:o":w":u"ia':u')
,6,7,2 I Q:u:w':O:u t20,7,582 ialuigJ-"U iU:u

L5.7,2t l0:0:1;l:2:2:O\ t20,7,581 s l:u':lioi{,'iu- iu
180,7,13f l:o:1:u"i2:tt-iu' t2ot7,5At l:or:uz:ot:o:1:1)
80,7,14 iu' :u':a'iuiu)- "u

t20,7,592 :u'',wo 22i2i@" iu)

360, 7.25( l:L:u':u- iu'iu-:u t20,7,594 l:1:o':w2:u":0)
lO: O:0: 1:0:2: u') t20,7,59C 1:un:2:w' :uo:2:t4)

360, 7,28( :u':u:u" i2'.u- iu) l2o,7,6OL I:2:2:O:t " iQ- i2)
t60,7,281 l:u":u' :l:2:u':u' t20,7,602 ; O : 2 : u" : u" : u" : u" )

1:0:o"'.uiu-iu iu t20.7 , 60:. ltu':u" ao":uJ- iu-:u)
160. 7.28t 2:2:u":Q 2iu" 12Q,7,6rJ4 l: l.:o':u''.tt" iu" iu-

[360,7,29( lru:2:l):a-iu':@- t2rl.7 . 6of 1:2:l:O:u":w":2)
360,7,292 (0:1:O:l:u':O:w') t20.7,60r. l:oo:uro:0:o":1.;2)
3fjl.],7,291 i O : 2 i u : z i u) : 2: u i 2 i L i z i u)

36Q,7,296 2:o':u'au" iu' iu' t20,7 , 6l( 1:o":tliu":l:u:u")
1360.7 .291 s :2:u":Q'iutlia") t20,7,6rt l:u':u" tu":aitt- |

360,7.298 1i@':e':{J:u :u:o' 20.7.611 :2:0:1:u:l:u")
720,7,552 (O:l:2tlia' :u- tz)

Table 2: Parameters for codes from caps in PG(6'9)
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