# Cap codes arising from duality 

Antonio Cossidente
antonio.cossidente@unibas.it

Carmela Nolè
carmelanole@yahoo.it

Angelo Sonnino
angelo.sonnino@unibas.it
Dipartimento di Matematica e Informatica
Università della Basilicata
Campus Macchia Romana
Viale dell'Ateneo Lucano, 10
85100 Potenza - Italy


#### Abstract

We describe a simple method to construct many different linear codes arising from caps in a projective space whose automorphism group is known in advance. This procedure begins with a fairly small point set in an appropriate finite projective space.


## 1 Introduction

An $[n, k, d]_{q}$ linear code is a $k$-dimensional subspace $C$ of a vector space $V_{q}^{n}$, with $n>k$, over the finite field $\mathbb{F}_{q}$. The dual code $C^{\perp}$ of $C$ is its orthogonal subspace in $V_{q}^{n}$, that is,

$$
C^{\perp}=\left\{\mathbf{v} \in V_{q}^{n} \mid \mathbf{v} \cdot \mathbf{c}=0 \text { for any } \mathbf{c} \in C\right\},
$$

where ' $\cdot$ ' denotes the usual inner product of two vectors $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ of $V_{q}^{n}$ defined by

$$
\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n} .
$$

If the generating matrix of $C$ is in the standard form

$$
G=\left(I_{k} \mid A\right),
$$

where $I_{k}$ is the $k \times k$ identity matrix and $A$ is a suitable $n \times(n-k)$ matrix, then the duel code $C^{\perp}$ is generated by the parity check matrix of $C$ in the form

$$
H=\left(-^{T} A \mid I_{n-k}\right)
$$

From a theoretical point of view, the concept of duality in coding theory can be derived from the more general concept of the Gale transform of sets of points in projective spaces; see for instance [6].

Given two positive integers $r$ and $s$, let $\gamma=r+s+2$. The Gale transform is an involution that takes a set $\Gamma$ consisting of $\gamma$ points of an $r$-dimensional projective space $\mathrm{PG}(r, \mathbb{F})$ onto a set $\Gamma^{\prime}$ consisting of $\gamma$ points of an $s$-dimensional projective space $\mathrm{PG}(s, \mathbb{F})$. The most general-and purely geometric-definition of the Gale transform is as follows. Let $\mathbb{F}$ be a field and $r, s$ positive integers greater than 1 . Set $\gamma=r+s+2$ and let $\Gamma \subseteq \mathrm{PG}(r, \mathbb{F}), \Gamma^{\prime} \subseteq \mathrm{PG}(s, \mathbb{F})$ be two nondegenerate sets (i.e., not contained in any proper subspace), each consisting of $\gamma$ points, whose projective coordinate vectors are the rows of a $\gamma \times(r+1)$ matrix $M$ and a $\gamma \times(s+1)$ matrix $M^{\prime}$, respectively. Then, the set $\Gamma^{\prime}$ is said to be the Gale transform of $\Gamma$ if and only if there exists a nonsingular diagonal matrix $D$ such that

$$
\begin{equation*}
{ }^{T} M D M^{\prime}=\mathbf{0} \tag{1}
\end{equation*}
$$

where 0 denotes the $(r+1) \times(s+1)$ zero matrix. The diagonal matrix in (1) is necessary to avoid the dependence on the choice of homogeneous coordinates.

This situation takes place when we consider the generating matrix $G$ of an $[n, k, d]_{q}$ linear code and its parity check matrix $H$, that is, the generating matrix of its dual code: in this case we have ${ }^{T} H D G=\mathbf{0}$, where $\mathbf{0}$ denotes the $k \times(n-k)$ zero matrix and $D=I_{n}$.

For a detailed treatise on the theory of the Gale transform from a geometric point of view, and an historical account on its development over the last two centuries, the interested reader is referred to [6]. A concise survey on the Gale transform from a finite geometry point of view, and recent results, can be found in [4].

Here we use some properties of the Gale transform applied to the points whose projective coordinates in $\mathrm{PG}(r, q)$ are the rows of the generating matrix of an $[n, k, d]_{q}$ linear code $C$ in order to produce, besides the dual $[n, n-k, d]_{q}$ code $C^{\perp}$, many linear codes associated to caps in $\mathrm{PG}(n-$ $r-2, q$ ), with different parameters and admitting the same automorphism group of $C$.

## 2 Preliminary results on caps

An n-cap in a finite projective space $\operatorname{PG}(r, q)$ is a set consisting of $n$ points no three of which are collinear; see [9] for a complete treatise on this topic. When the Gale transform is applied to a point set $\Gamma \subseteq P \mathrm{PG}(r, \mathbb{F})$, then the resulting set $\Gamma^{\prime} \subseteq \operatorname{PG}(s, \mathbb{F})$ inherits some crucial properties from $\Gamma$; see [5, 3, 4].

Theorem 1 For any set $\Gamma$ consisting of $k$ points in $\mathrm{PG}(r, q)$, with $r \geq 2$ and $n \geq 4$, the Gale transform $\Gamma^{\prime}$ of $\Gamma$ is an $n$-cap in $\mathrm{PG}(n-r-2, q)$.

For our purpose, it is convenient to gain some control over the automorphism groups of the geometrical objects we are dealing with. In this respect the Gale transform has a fairly nice behaviour, as it is shown by the following result [3].

Theorem 2 Let $\Gamma$ be an n-cap in $\mathrm{PG}(r, q)$ and $\Gamma^{\prime}$ its Gale transform. Then $\Gamma$ and $\Gamma^{\prime}$ have isomorphic collineation groups.

Basically, Theorem 2 allows us to transfer the action of the group $G$ of a certain subset $\Gamma \subseteq \mathrm{PG}(r, q)$ to another projective space $\mathrm{PG}(s, q)$, thus providing a representation of $G$ as a collineation group with a different support. It turns out that this new representation is reducible, i.e. the group $G$ fixes some non-trivial subspace. The orbits of $G$ on the points of $\operatorname{PG}(s, q)$ provide the key tool for the construction of many linear codes besides the code obtained from the Gale transform of the geometrical object we started off with.

## 3 Construction of cap codes

Caps in projective spaces are closely related to a broad class of linear codes. If $\mathscr{K}$ is an $n$-cap in a projective space $\mathrm{PG}(r, q)$, then the coordinate vectors of the points of $\mathscr{K}$ are the columns of the parity check matrix $H$ of an $[n, n-r, d]_{q}$ linear code $C$ with $d \geq 3$, that is, $H$ is the generating matrix of an $\left[n, r+1, d^{\prime}\right]_{q}$ code $C^{\perp}$ which is the dual code of $C$; see [8, Chapter 14] for instance.

In [2] there is a first description of a cap code arising from a collineation group acting on a certain geometrical object. Here we are going to use a similar technique in a broader context.

In what follows we use a simplified representation of the Gale transform. Given a set $\Gamma \subseteq \mathrm{PG}(r, q)$ consisting of $\gamma$ points, we choose homogeneous coordinates in such a way that the coordinates of the points of $\Gamma$ are the
rows of the block matrix

$$
\begin{equation*}
K=\left(\frac{I_{r+1}}{A}\right) \tag{2}
\end{equation*}
$$

where $A$ is an $(s+1) \times(r+1)$ matrix. Then, the homogeneous coordinates of the points of the Gale transform $\Gamma^{\prime} \subseteq \mathrm{PG}(s, q)$ of $\Gamma$, with $\gamma=r+s+2$, are the rows of the block matrix

$$
\begin{equation*}
K^{\prime}=\left(\frac{{ }^{T} A}{I_{s+1}}\right) \tag{3}
\end{equation*}
$$

### 3.1 Cap codes arising from a regular hyperoval in $\mathrm{PG}(2,8)$

In the projective plane $\operatorname{PG}(2,8)$ over the finite field $\mathbb{F}_{8}$, let $\mathscr{C}$ be the conic of equation

$$
X Y+Y Z+X Z=0
$$

Since $\operatorname{PG}(2,8)$ has even order, all the tangent lines of $\mathscr{C}$ are concurrent at a point $N$ outside $\mathscr{C}$ called the nucleus of $\mathscr{C}$. Hence, the point set $\mathscr{C} \cup\{N\}$ is a $10-\operatorname{arc}$ in $\operatorname{PG}(2,8)$ which is called a regular hyperoval, and is preserved by the collineation group $\operatorname{PGL}(2,8)$; see [10, Section 8.4$]$. It is easy to check that in this case $N$ has projective coordinates $(1: 1: 1)$, thus the point set of $\mathscr{C} \cup\{N\}$ can be represented by a matrix $K$ of the form (2) as follows:

$$
{ }^{T} K=\left(\begin{array}{cccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & \omega^{2} & \omega^{3} & \omega^{5} & \omega^{4} & \omega & \omega^{6} & 0 & 1 & 0 \\
1 & \omega^{3} & \omega^{2} & \omega & \omega^{6} & \omega^{5} & \omega^{4} & 0 & 0 & 1
\end{array}\right)
$$

where $\omega$ is a primitive element of $\mathbb{F}_{8}$ such that $\omega^{3}+\omega+1=0$. The matrix ${ }^{T} K$ can be taken as the generating matrix of a $[10,3, d]_{8}$ linear code. We checked with MAGMA [1] that this code is equivalent (see [8, Chapter 5]) to a $[10,3,8]_{8}$ MDS code with weight distribution

$$
(0,1),(8,315),(10,196)
$$

The Gale transform of $\mathscr{C} \cup\{N\}$ is the set $\mathscr{C}^{\prime} \subseteq \mathrm{PG}(6,8)$ whose points can be represented by a matrix $K^{\prime}$ of the form (3) as follows:

$$
{ }^{T} K^{\prime}=\left(\begin{array}{cccccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & \omega^{2} & \omega^{3} & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & \omega^{3} & \omega^{2} & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & \omega^{5} & \omega & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & \omega^{4} & \omega^{6} & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & \omega & \omega^{5} & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & \omega^{6} & \omega^{4} & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

By Theorem 1 the point set $\mathscr{C}^{\prime}$ is a 10 -cap in $\operatorname{PG}(6,8)$, and by Theorem $2 \mathscr{C}^{\prime}$ admits a collineation group isomorphic to the group of $\mathscr{C}$ that we started with, namely $\operatorname{PGL}(2,8)$. Hence, the matrix ${ }^{T} K^{\prime}$ provides the generating matrix of a $[10,7,4]_{8}$ cap code with the same automorphism group $\operatorname{PGL}(2,8)$. This code turns out to be equivalent to an MDS code $C^{\prime}$ with weight distribution

$$
\begin{aligned}
& (0,1),(4,1470),(5,7056),(6,49980),(7,191520) \\
& (8,507465),(9,787920),(10,551740)
\end{aligned}
$$

Note that starting off with the conic $\mathscr{C}$ only, without including its nucleus, the Gale transform $\mathscr{C}^{\prime}$ is a 9 -cap in $\operatorname{PG}(5,8)$ producing a $[9,6,4]_{8}$ MDS code $C^{\prime \prime}$ with weight distribution

$$
(0,1),(4,882),(5,3528),(6,19992),(7,57456),(8,101493),(9,78792)
$$

The action of the group $\operatorname{PGL}(2,8)$ as a permutation group on $\operatorname{PG}(6,8)$ is reducible, thus the following list of orbits can be easily obtained.

- 1 fixed point $N^{\prime}$ coming from the nucleus $N$ of the conic $\mathscr{C}$.
- 2 orbits of length 9 , that is,
- an orbit of length 9 , corresponding the conic $\mathscr{C}$, which is a 9 -cap producing a cap code equivalent to a $[9,7,3]_{8}$ MDS code;
- another 9-cap producing a cap code equivalent to a $[9,3,7]_{8} \mathrm{MDS}$ code.
- 10 orbits of length 63 , none of which is a cap.
- 1 orbit of length 72 which is a cap producing a $[72,7,49]_{8}$ code.
- 8 orbits of length 84,7 of which are caps producing cap codes equivalent to an $[84,7,56]_{8}$ code.
- 8 orbits of length 168,7 of which are caps producing cap codes equivalent to $[168,7, d]_{8}$ codes with $d$ equal to either 114,120 or 129.
- 120 orbits of length 252,64 of which are caps producing cap codes equivalent to $[252,7, d]_{8}$ codes with $d$ equal to either $168,180,182$, $186,192,196,198,200,202,204$ or 206.
- 529 orbits of length 504,141 of which are caps producing cap codes equivalent to $[504,7, d]_{8}$ codes with $d$ equal to either $366,392,396$, $399,402,404,406,408,410,411,412,414,416,419$ or 420.

From Theorem 2, all the codes listed above admit the same group PGL(2,8) as their automorphism group.

### 3.2 Cap codes arising from a conic in $\operatorname{PG}(2,9)$

In the projective plane $\pi=\operatorname{PG}(2,9)$, let $\mathscr{C}$ be the conic of equation

$$
Y Z-X^{2}-\omega Z^{2}=0,
$$

with $\omega$ a primitive element of $\mathbb{F}_{9}$ such that $\omega^{2}+2 \omega+2=0$. The point set of $\mathscr{C}$ can be represented by a matrix $K$ of the form (2) as follows:

$$
T_{K}=\left(\begin{array}{cccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & \omega & \omega^{7} & \omega^{2} & \omega^{6} & \omega^{5} & \omega^{3} & 0 & 1 & 0 \\
1 & \omega^{3} & \omega^{2} & \omega^{7} & \omega^{5} & \omega^{6} & \omega & 0 & 0 & 1
\end{array}\right) .
$$

We checked with MAGMA [1] that this code is equivalent to a $[10,3,8]_{9}$ MDS code with weight distribution

$$
(0,1),(8,360),(9,80),(10,288) .
$$

The Gale transform of $\mathscr{C}$ is the set $\mathscr{C}^{\prime} \subseteq \mathrm{PG}(6,9)$ whose points can be represented by a matrix $K^{\prime}$ of the form (3) as follows:

$$
T_{K^{\prime}}=\left(\begin{array}{cccccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & \omega & \omega^{3} & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & \omega^{7} & \omega^{2} & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & \omega^{2} & \omega^{7} & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & \omega^{6} & \omega^{5} & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & \omega^{5} & \omega^{6} & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & \omega^{3} & \omega & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

By Theorem 1 the point set $\mathscr{C}^{\prime}$ is a 10 -cap in $\operatorname{PG}(6,9)$, and by Theorem $2 \mathscr{C}^{\prime}$ admits a collineation group isomorphic to the group of $\mathscr{C}$ that we started with, namely $\operatorname{PGL}(2,9)$. Hence, the matrix ${ }^{T} K^{\prime}$ provides the generating matrix of a $[10,7,4]_{9}$ cap code with the same automorphism group $\operatorname{PGL}(2,9)$. This code turns out to be equivalent to an MDS code $C^{\prime}$ with weight distribution

$$
\begin{array}{r}
(0,1),(4,1680),(5,10080),(6,77280),(7,343680), \\
(8,1036440),(9,1840880),(10,1472928) .
\end{array}
$$

The action of the group $\operatorname{PGL}(2,9)$ as a permutation group on $\operatorname{PG}(6,9)$ is reducible, thus the following list of orbits can be easily obtained.

- 2 orbits of length 10 , which are both caps. One of them is the above mentioned 10 -cap $\mathscr{C}^{\prime}$, while the other one produces a $[10,4,6]_{9}$ code with weight distribution $(0,1),(6,240),(8,2160),(9,2000) ;(10,2160)$.
- 1 orbit of length 30 , which is not a cap.
- 1 orbit of length 36 , which is a cap producing a $[36,7,21]_{9}$-cap code.
- 1 orbit of length 45 , which is a cap producing a $[45,7,28]_{9}$-cap code.
- 1 orbit of length 80 , which is not a cap.
- 2 orbits of length 90 , none of which is a cap.
- 8 orbits of length 120 , none of which is a cap.
- 22 orbits of length 180,4 of which are caps producing cap codes equivalent to $[180,7, d]_{9}$ codes with $d$ equal to either 139 or 141.
- 9 orbits of length 240 , none of which is a cap.
- 164 orbits of length 360,86 of which are caps producing cap codes equivalent to $[360,7, d]_{9}$ codes with $d$ equal to either $256,264,280$, 284, 286, 288, 290, 292, 294, 296, 297 or 298.
- 738 orbits of length 720,172 of which are caps producing cap codes equivalent to $[720,7, d]_{9}$ codes with $d$ equal to either $552,570,576$, $582,584,588,592,594,596,600,602,603,604,606,608,609,610$, 612 or 614.


## 4 Conclusion

We described a method to construct many different linear codes arising from caps in a projective space whose automorphism group is known in advance. The steps of this construction can be summarized as follows:

1. Take a point set $\mathscr{O}$ consisting of $\gamma$ points in a projective space $\operatorname{PG}(r, q)$, with its automorphism group $G$ regarded as a (possibly irreducible) permutation group.
2. Apply the Gale transform to $\mathscr{O}$ in order to obtain another point set $\mathscr{O}^{\prime} \subseteq \mathrm{PG}(s, q)$, containing the same number $\gamma$ of points, with $\gamma=$ $r+s+2$.
3. Compute the orbits under the action of the group $G$ regarded as a (possibly reducible) permutation group with support $\operatorname{PG}(s, q)$.
4. Determine which orbits from 3 are $k$-caps.
5. For each $k$-cap obtained at Step 4 take the $k \times(s+1)$ matrix $K$ whose rows are the projective coordinate vectors of the points.
6. For each coordinate matrix $K$ take the transpose ${ }^{T} K$ as the generating matrix for the required $[k, s+1, d]_{q}$ code.

Once the points of each cap are determined, it is fairly easy to computeusing MAGMA [1] for instance-the parameters and the generating matrices for all the codes mentioned in Sections 3.1 and 3.2. In Tables 1 and 2 each set of parameters is associated with a starting point of an orbit under the action of the inherited collineation group which yields a cap providing a code with those parameters. In each table $\omega$ denotes a primitive element of the base field. We observe that the lengths of some of these codes are well beyond the maximum length available in the most popular on-line public repositories for linear codes over $\mathbb{F}_{8}$ and $\mathbb{F}_{9} ;$ see $[7]$ for instance.

| parameters | starting <br> point | parameters | starting <br> point |
| :---: | :---: | :---: | :---: |
| $[9,7,3]_{8}$ | $(0: 0: 1: 0: 0: 0: 0:)$ | $[252,7,206]_{8}$ | $\left(1: \omega: \omega^{2}: \omega^{6}: 0: \omega^{6}: \omega^{3}\right)$ |
| $[9,3,7]_{8}$ | $\left(1: \omega^{6}: \omega: 0: \omega^{5}: \omega: \omega^{6}\right)$ | $[504,7,366]_{8}$ | $\left(0: 1: 0: 0: 0: \omega^{2}: \omega^{5}\right)$ |
| $[72,7,49]_{8}$ | $\left(1: \omega: \omega^{2}: \omega^{3}: \omega^{3}: \omega: \omega^{4}\right)$ | $[504,7,392]_{8}$ | $\left(1: \omega^{6}: 1: \omega^{2}: 1: 0: 1\right)$ |
| $[84,7,56]_{8}$ | $\left(1: 1: 1: \omega^{6}: \omega^{5}: 1: 0\right)$ | $[504,7,396]_{8}$ | $\left(1: 1: \omega^{6}: \omega^{3}: 1: \omega^{3}: 0\right)$ |
| $[168,7,114]_{8}$ | $\left(1: \omega^{3}: \omega: \omega^{2}: \omega^{2}: 1: \omega^{6}\right)$ | $[504,7,399]_{8}$ | $\left(0: 1: \omega^{2}: \omega^{5}: 0: \omega^{3}: \omega^{2}\right)$ |
| $[168,7,120]_{8}$ | $\left(0: 1: \omega^{4}: \omega^{3}: 1: \omega^{2}: \omega^{5}\right)$ | $[504,7,402]_{8}$ | $\left(1: 1: \omega^{5}: 0: 1: 1: \omega^{5}\right)$ |
| $[168,7,129]_{8}$ | $\left(1: \omega^{5}: \omega^{2}: \omega^{2}: 1: 1: \omega^{4}\right)$ | $[504,7,404]_{8}$ | $\left(1: \omega^{6}: 0: \omega^{5}: \omega^{4}: \omega^{5}: 1\right)$ |
| $[252,7,168]_{8}$ | $\left(1: \omega: 0: \omega^{2}: \omega^{6}: 1: \omega\right)$ | $[504,7,406]_{8}$ | $\left(1: 0: 0: \omega: 1: 0: \omega^{4}\right)$ |
| $[252,7,180]_{8}$ | $\left(1: \omega^{4}: 0: 1: \omega^{4}: \omega^{6}: \omega^{4}\right)$ | $[504,7,408]_{8}$ | $\left(1: \omega^{5}: \omega^{4}: \omega: \omega^{3}: 1: 0\right)$ |
| $[252,7,182]_{8}$ | $\left(1: \omega^{2}: \omega^{6}: \omega^{6}: 1: \omega^{3}: \omega^{5}\right)$ | $[504,7,410]_{8}$ | $\left(1: \omega: \omega: 1: 1: \omega^{3}: \omega\right)$ |
| $[252,7,186]_{8}$ | $\left(1: \omega^{6}: \omega^{5}: 1: \omega^{4}: \omega^{6}: \omega^{3}\right)$ | $[504,7,411]_{8}$ | $\left(1: 1: \omega^{5}: \omega^{6}: \omega^{5}: \omega^{2}: \omega^{2}\right)$ |
| $[252,7,192]_{8}$ | $\left(1: 0: \omega^{2}: 0: 1: 0: \omega^{2}\right)$ | $[504,7,412]_{8}$ | $\left(1: \omega^{2}: \omega^{5}: \omega^{6}: \omega: 1: 0\right)$ |
| $[252,7,196]_{8}$ | $\left(1: 0: \omega^{5}: \omega^{4}: \omega^{2}: \omega^{4}: 1\right)$ | $[504,7,414]_{8}$ | $\left(1: \omega^{6}: 0: \omega^{6} \omega^{6}: \omega^{6}: \omega\right)$ |
| $[252,7,198]_{8}$ | $\left(1: 0: \omega^{3}: \omega^{4}: \omega^{2}: 1: \omega^{3}\right)$ | $[504,7,416]_{8}$ | $\left(1 ; \omega^{5}: 0: \omega^{3}: \omega^{3}: 1: \omega^{4}\right)$ |
| $[252,7,200]_{8}$ | $\left(1: \omega^{4}: 0: 1: \omega^{4}: \omega^{2}: \omega^{3}\right)$ | $[504,7,419]_{8}$ | $\left(1: \omega^{2}: \omega^{3}: \omega^{3}: \omega: 1: \omega\right)$ |
| $[252,7,202]_{8}$ | $\left(1: \omega^{4}: \omega^{4}: 1: \omega: \omega^{2}: \omega^{5}\right)$ | $[504,7,420]_{8}$ | $\left(1: 1: 0: \omega^{2}: \omega^{4}: \omega^{6}: \omega\right)$ |
| $[252,7,204]_{8}$ | $\left(1: \omega^{2}: 1: \omega^{3}: \omega: \omega^{2}: \omega^{5}\right)$ |  |  |

Table 1: Parameters for codes from caps in $\operatorname{PG}(6,8)$

| parameters | starting <br> point | parameters | starting <br> point |
| :---: | :---: | :---: | :---: |
| $[10,7,4]_{9}$ | $(1: 1: 1: 1: 1: 1: 1)$ | $[720,7,570]_{9}$ | $X: X X X X X X$ |
| $[10,4,6]_{9}$ | $\left(0: 1: \omega: \omega^{3}: \omega: \omega^{3}: 1\right)$ | $[720,7,576]_{9}$ | $\left(1: 0: \omega^{3}: \omega^{6}: \omega^{6}: \omega^{7}: \omega^{3}\right)$ |
| $[36,7,21]_{9}$ | $\left(1: 0: \omega: \omega^{7}: 0: \omega^{7}: 1\right)$ | $[720,7,582]_{9}$ | $\left(1: \omega: \omega: \omega^{3}: \omega^{7}: \omega: \omega\right)$ |
| $[45,7,28]_{9}$ | $(0: 0: 1: 1: 2: 2: 0)$ | $[720,7,584]_{9}$ | $\left(1: \omega^{3}: 1: 0: \omega^{2}: \omega^{6}: 0\right)$ |
| $[180,7,139]_{9}$ | $\left(1: \omega: 1: \omega^{3}: 2: \omega^{6}: \omega^{2}\right)$ | $[720,7,588]_{9}$ | $\left(1: \omega^{3}: \omega^{2}: \omega^{3}: \omega: 1: 1\right)$ |
| $[180,7,141]_{9}$ | $\left(1: \omega^{7}: \omega^{2}: \omega^{7}: 0: \omega^{3}: \omega\right)$ | $[720,7,592]_{9}$ | $\left(1: \omega^{7}: \omega^{2}: 2: 2: \omega^{6}: 0\right)$ |
| $[360,7,256]_{9}$ | $\left(1: 1: \omega^{3}: \omega^{5}: \omega^{2}: \omega^{3}: \omega\right)$ | $[720,7,594]_{9}$ | $\left(1: 1: \omega^{6}: \omega^{2}: \omega^{6}: 0\right)$ |
| $[360,7,264]_{9}$ | $\left(0: 0: 0: 1: 0: 2: \omega^{3}\right)$ | $[720,7,596]_{9}$ | $\left(1: \omega^{5}: 2: \omega^{7}: \omega^{3}: 2: \omega\right)$ |
| $[360,7,280]_{9}$ | $\left(1: \omega^{2}: \omega: \omega^{6}: 2: \omega^{5}: \omega\right)$ | $[720,7,600]_{9}$ | $\left(1: 2: 2: 0: \omega^{6}: \omega^{5}: 2\right)$ |
| $[360,7,284]_{9}$ | $\left(1: \omega^{6}: \omega^{7}: 1: 2: \omega^{2}: \omega^{2}\right)$ | $[720,7,602]_{9}$ | $\left(1: 0: 2: \omega^{5}: \omega^{6}: \omega^{3}: \omega^{3}\right)$ |
| $[360,7,286]_{9}$ | $\left(1: 0: \omega^{5}: \omega: \omega^{5}: \omega^{7}: \omega^{7}\right)$ | $[720,7,603]_{9}$ | $\left(1: \omega^{3}: \omega^{5}: \omega^{6}: \omega^{6}: \omega^{6}: \omega\right)$ |
| $[360,7,288]_{9}$ | $\left(1: 2: 2: \omega^{6}: 0: 2: \omega^{6}\right)$ | $[720,7,604]_{9}$ | $\left(1: 1: \omega^{3}: \omega^{2}: \omega^{5}: \omega^{6}: \omega^{6}\right)$ |
| $[360,7,290]_{9}$ | $\left(1: \omega: 2: 0: \omega^{6}: \omega^{7}: \omega^{2}\right)$ | $[720,7,606]_{9}$ | $\left(1: 2: 1: 0: \omega^{6}: \omega^{3}: 2\right)$ |
| $[360,7,292]_{9}$ | $\left(0: 1: 0: 1: \omega^{7}: 0: \omega^{5}\right)$ | $[720,7,608]_{9}$ | $\left(1: \omega^{6}: \omega^{6}: 0: \omega^{3}: 1: 2\right)$ |
| $[360,7,294]_{9}$ | $\left(1: 1: 0: 2: \omega^{6}: 2: 0\right)$ | $[720,7,609]_{9}$ | $(1: 2: 0: 2: 1: 2: 0)$ |
| $[360,7,296]_{9}$ | $\left(1: 2: \omega^{3}: \omega^{2}: \omega^{6}: \omega^{7}: \omega^{3}\right)$ | $[720,7,610]_{9}$ | $\left(1: \omega^{5}: \omega: \omega^{5}: 1: \omega^{2}: \omega^{5}\right)$ |
| $[360,7,297]_{9}$ | $\left(1: 2: \omega^{2}: \omega^{2}: \omega: 1: \omega^{3}\right)$ | $[720,7,612]_{9}$ | $\left(1: \omega^{3}: \omega^{6}: \omega^{3}: \omega: \omega^{2}: 1\right)$ |
| $[360,7,298]_{9}$ | $\left(1: \omega^{7}: \omega^{2}: 0: \omega^{7}: 0: \omega^{7}\right)$ | $[720,7,614]_{9}$ | $\left(1: 2: 0: 1: \omega: 1: \omega^{3}\right)$ |
| $[720,7,552]_{9}$ | $\left(0: 1: 2: 1: \omega^{7}: \omega^{2}: 2\right)$ |  |  |

Table 2: Parameters for codes from caps in $\operatorname{PG}(6,9)$

## References

[1] W. Bosma, J.J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235265.
[2] A. Cossidente and A. Sonnino, A geometric construction of $[110,5,90]_{9}$-linear code admitting the Mathieu group $M_{11}$, IEEE Trans. Inform. Theory 54 (2008), no. 11, 5251-5252.
[3] , Finite geometry and the Gale transform, Discrete Math. 310 (2010), no. 22, 3206-3210.
[4] __, Some recent results in finite geometry and coding theory arising from the Gale transform, Rend. Mat. Appl. (7) 30 (2010), no. 1, 67-76.
[5] $\qquad$ Linear codes arising from the Gale transform of distinguished subsets of some projective spaces, Discrete Math. 312 (2012), no. 3, 647-651.
[6] D. Eisenbud and S. Popescu, The projective geometry of the Gale transform, J. Algebra 230 (2000), no. 1, 127-173.
[7] M. Grassl, Tables of Linear Codes and Quantum Codes, IAKS, Fakultät für Informatik, Universität Karlsruhe, DE. http://www.codetables.de.
[8] R. Hill, A first course in coding theory, Clarendon Press, Oxford, 1986.
[9] J. W. P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1985, Oxford Science Publications.
[10] , Projective Geometries over Finite Fields, second ed., Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1998.

