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Abstract: Eight substances that are main components of the essential oils from three 

Mediterranean aromatic plants (Verbena officinalis, Thymus vulgaris and Origanum 

vulgare), previously found active against some phytopathogenic Fungi and Stramenopila, 

have been tested in vitro against five etiological agents of post-harvest fruit decay,  

Botrytis cinerea, Penicillium italicum, P. expansum, Phytophthora citrophthora and 

Rhizopus stolonifer. The tested compounds were β-fellandrene, β-pinene, camphene, 

carvacrol, citral, o-cymene, γ-terpinene and thymol. Citral exhibited a fungicidal action 

against P. citrophthora; carvacrol and thymol showed a fungistatic activity against  

P. citrophthora and R. stolonifer. Citral and carvacrol at 250 ppm, and thymol at 150 and 

250 ppm stopped the growth of B. cinerea. Moreover, thymol showed fungistatic and 

fungicidal action against P. italicum. Finally, the mycelium growth of P. expansum was 

inhibited in the presence of 250 ppm of thymol and carvacrol. These results represent an 

important step toward the goal to use some essential oils or their components as natural 

preservatives for fruits and foodstuffs, due to their safety for consumer healthy and positive 

effect on shelf life extension of agricultural fresh products. 
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Abbreviations: PEOs, plant essential oils; PDA, potato dextrose agar; CMA, corn meal agar. 

1. Introduction 

The most important plant pathogens, i.e., fungi (s.l.), bacteria, phytoplasmas and viruses, can cause 

considerable economic damages to plant products. Among them, fungi (s.l.) constitute the more 

numerous group of plant pathogens and can often cause severe diseases in vegetable and fruit  

species [1]. Over several decades, various attempts have been accomplished to prevent, control, or 

eradicate plant diseases, and development of synthetic fungicides was particularly investigated [2]. 

These pesticides are known to be highly effective in controlling various postharvest diseases of 

vegetables and fruits. Although effective, their continued or repeated applications may disrupt 

equilibrium of ecosystems, leading to dramatic disease outbreaks, widespread development of 

pathogens resistant to one or more chemicals, toxicity to non-target organisms and environmental 

problems [2]. Sometimes, they accumulate in the food chain as residues above safe limits [3]. 

Furthermore, pesticide residues in food possess more carcinogenic risks than insecticides and 

herbicides [2]. A noticed decrease in pesticide efficacy, along with increased concern about the 

environmental effects of currently used fungicides as well as dramatic reduction of the marketable 

ones due to recent European laws, have highlighted the need to develop alternative control strategies or 

innovative crop protection and postharvest methods of fruit rot control with reduced use of 

conventional fungicides or without synthetic chemicals at all [4].  

Research on plant-derived fungicides is now being intensified, as it became evident that these 

substances have enormous potential to improve the future agrochemical technology. In fact, there are 

good reasons to suppose that secondary plant metabolism has naturally evolved to actively protect 

vegetable and fruit species from microbial pathogen attacks [4]. Since secondary plant metabolites are 

often active against a small number of specific target microorganism species and are biodegradable to 

nontoxic products, they are potentially useful in integrated pest management programs: moreover, they 

could allow to develop a new class of possibly safer disease control substances. Therefore, efforts have 

been focused on secondary plant metabolites for their potential use as commercial fungicides or as  

lead compounds [5]. 

Among secondary plant metabolites, plant essential oils (PEOs) may provide potential alternatives 

to active substances currently used to control phytopathogenic fungi (s.l.), since they are not only a 

fragrance and flavour source for food and beverages but are also being discovered as bioactive 

substances tanks [6]. 

Several investigations have been carried out abroad in this field toward antimicrobial and fungicidal 

PEOs properties [3,7–11]. In particular, PEOs use to control postharvest fruit and vegetable diseases 

have been studied and are nowadays well documented [12–15]. In Italy, in addition to research carried 

out by Conte et al. [16] and Zambonelli et al. [17], more recently studies on the potential fungicidal 

activity of 12 PEOs from Mediterranean aromatic plants against five postharvest fungal (s.l.) 

pathogens of orange fruits, were accomplished by our research group [18]. Results of this research 

showed that PEOs from Verbena officinalis L., Thymus vulgaris L. and Origanum vulgare L. could be 

used as a possible source of ecofriendly botanical fungicides for controlling important postharvest 

fungal pathogens without phytotoxicity risk. Furthermore, it seemed believable that PEO volatile 
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components could be employed to uniformly permeate storeroom air and protect, maybe better than 

fungicides commonly used for this goal, fruits that are in storage. Therefore, it seemed opportune to 

assay the in vitro fungicidal activity of the above mentioned PEO main components against five fungi 

(s.l.) well known as postharvest fruit decaying agents. 

2. Results and Discussion 

The in vitro activity of the tested compounds against the five post-harvest fruit decaying agents, 

registered ten days after experiment beginning, is summarized in Figures 1–5. In particular, 

Phytophthora citrophthora did not show any mycelium growth in presence of citral and carvacrol, at 

concentration of 150 and 250 ppm, and in presence of thymol, at 250 ppm (Figure 1). The same 

organism showed a reduced growth in presence of thymol, at 150 ppm, and citral, carvacrol and 

thymol, at 50 ppm, and grew more or less weakly in presence of β-fellandrene and γ-terpinene at  

150 and 250 ppm. Surprisingly, o-cymene, at 50 and 150 ppm, promoted a more rapid growth of the 

above Oomycete, in comparison to controls.  

Figure 1. Antifungal activity of the eight plant essential oil components against 

Phytophthora citrophthora. 

 

The growth of Rhizopus stolonifer appeared completely inhibited by thymol, at 250 ppm (Figure 2), 

and reduced in presence of 150 ppm thymol, 150 and 250 ppm carvacrol and 250 ppm citral.  

The same microorganism seemed less affected by the other PEO components. The mycelium growth of 

Botrytis cinerea (Figure 3) was totally inhibited by citral and carvacrol, at concentration of 250 ppm, 

and by thymol, at 150 and 250 ppm. Carvacrol dramatically inhibited the mycelium growth of the 

same fungus even at 50 ppm, whereas thymol and citral, at the lower used concentration, were 

significantly less effective. In general, B. cinerea was well controlled by all the other PEO components 

independently of the concentration used. 
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Figure 2. Antifungal activity of the eight plant essential oil components against Rhizopus stolonifer. 

 

Figure 3. Antifungal activity of the eight plant essential oil components against Botrytis cinerea. 

 

The growth of Penicillium italicum (Figure 4) was completely blocked by thymol at 250 ppm 

concentration, more or less satisfactorily controlled by the three carvacrol concentrations and appeared 

reduced in presence of 250 ppm citral. P. italicum was not affected in its growth by β-pinene at  

50 ppm; at the opposite, it showed only a weak colony extension (0.8 cm in average) in Petri dishes 

containing 150 ppm thymol. Its mycelium appeared white in colour and completely lacking of 

conidiophore and conidia, when observed at light microscope. The same fungus showed scanty 

conidiophores production and almost none conidium differentiation in Petri dishes containing citral, at 

150 ppm concentration. The growth of Penicillium expansum (Figure 5), appeared greatly reduced by 

thymol at 250 ppm, significantly loosened by all three carvacrol concentrations and by citral and 

thymol, at 250 and 150 ppm, respectively. The same fungus did not produce conidiophores and conidia 
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in presence of thymol (150 and 250 ppm), or carvacrol (250 ppm); like the other Penicillium species, P. 

expansum appeared not to be affected by 50 ppm β-pinene. 

Figure 4. Antifungal activity of the eight plant essential oil components against Penicillium italicum. 

 

Figure 5. Antifungal activity of the eight plant essential oil components against Penicillium expansum. 

 

Tested phytopathogenic microorganisms grew with the expected rapidity in control plates and 

significantly less rapidly, except for R. stolonifer, in those containing Tween-20. Colony diameter in 

control plates reached its maximum length in 4–10 days. 

Among microorganisms which did not show any mycelium growth in presence of some PEO 

components, only P. citrophthora (exposed to 150 and 250 ppm carvacrol), R. stolonifer (which 

seemed killed by 250 ppm thymol) and B. cinerea, (which seemed killed by citral and carvacrol, at  

250 ppm, and thymol at 150 and 250 ppm) showed a weak colony growth four days after the respective 

corn meal agar (CMA) and potato dextrose agar (PDA) plugs were transferred from Petri dishes on 
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CMA or PDA. This demonstrated that they were still alive although subjected for some days to 

exposure to the above PEO components.  

Conversely, P. citrophthora, exposed to 150 and 250 ppm of citral, and to 250 ppm of thymol, and 

P. italicum, in presence of thymol at 250 ppm, did not show any micelium growth after being 

transferred on CMA or PDA, respectively. This demonstrated that these two microorganisms have 

been effectively killed by the higher concentrations of tested compounds. Colony growth of the last 

two microorganisms from PDA plugs and CMA plugs exposed to the lower PEO component 

concentrations was rather slow and then did not differ from that observed in control colonies. All 

tested microorganisms from basic colonies grew normally in control plates containing only PDA  

or CMA.  

PEO efficacy against postharvest fruit decaying fungi (s.l.) is thought to depend on specific toxicity 

of their single main active constituents or by their synergic effect [15]. Our results show that some of 

the PEO constituents, even if used at very low concentrations, exhibited in vitro a fungistatic and/or, in 

some instances, a fungicidal action against the tested organisms and, therefore, could be employed to 

control food-stuff decaying agents. In fact, among the eight compounds tested, only β-pinene is 

reported as toxic for humans [19,20]. Particularly. carvacrol, citral and thymol appear as a promising 

candidates for future in vivo tests. The last two compounds resulted fungicides against P. citrophthora, 

whereas thymol at 250 ppm killed P. italicum and markedly inhibited mycelium growth of  

P. expansum, the well-known and dangerous patulin producer. 

The available literature reported PEOs as active drugs against phytopathogenic fungi, but very few 

researches demonstrated the possible fungitoxicity of their constituents. In particular, γ-terpinene, 

assayed in vitro in gaseous state, showed a strong inhibitory activity against B. cinerea [21]. 

Camphene was reported for its antifungal activity against five phytopathogenic fungi [22]. Carvacrol 

and thymol at 100 ppm, completely inhibited mycelial growth of several phytopathogenic fungi [23]. 

The strong antifungal activity of carvacrol and thymol (100% of inhibition against B. cinerea) was also 

reported [24,25]. Mueller-Riebau and coworkers [26] showed that fungitoxicity against the soil-borne 

plant disease-causing fungi Fusarium moniliforme J. Sheld., Rhizoctonia solani J.G. Kühn, Sclerotinia 

sclerotiorum (Lib.) de Bary and Phytophthora capsici Leon. was due to different concentrations of the 

phenolic fraction (thymol and/or carvacrol) present in the PEOs different aromatic plants. These two 

compounds were also reported for their in vitro antifungal activity against Ophiostoma novo-ulmi 

Brasier, causal agent of Dutch elm disease [27].  

Moreover, recently, Soković and coworkers [28] reported a relationship between the high activity of 

some Thymus oils and the presence of phenol components, such as thymol and carvacrol. The high 

antifungal activity of these essential oils could be explained by the high percentage of phenol 

components. It seems possible that phenol components may interfere with cell wall enzymes like chitin 

synthase/chitinase as well as with the α- and β-glucanases of the fungus.  

Carvacrol, well known for its important fungitoxic activity against B. cinerea [29,30] showed non 

selective activity against three Colletotrichum strains [31] and against the major fungal pathogens of 

the button mushroom Agaricus bisporus (J.E. Lange) Imbach var. bisporus [32]. Mycogone perniciosa 

(Magnus) Delacr., another pathogen of this mushroom, was affected by thymol [33]. The same 

compound inhibited the mycelial growth of Colletotrichum acutatum J. H. Simmonds, which is 



Int. J. Mol. Sci. 2012, 13             

 

 

2296

considered as responsible for the major postharvest tomato tree disease in Colombia [34]. Thymol was 

reported active also against P. expansum and B. cinerea [9,35]. 

In our assays, citral resulted as one of more active compounds. In literature, it has been reported for 

its good antimicrobial activity against P. italicum [36], Aspergillus niger Tiegh. and R. stolonifer [37], 

B. cinerea [1,25] and  Colletotrichum acutatum [34]. Inhibitory activity of citral or of its vapour 

against several phytopathogenic fungi has been repeatedly reported [38–40]. Luo and co-workers [41] 

suggested a possible mechanism of citral action against Aspergillus flavus Link: after it penetrates cell 

wall, irreversibly damages plasma membrane and DNA with consequent spore loss germination. Also 

in A. niger, the primary citral site action seems to be cell membrane [37]. Moreover, citral was shown 

able of forming charge transfer complexes with tryptophan, a good electron donor. Apparently, the 

antifungal actions of the aldehydes, as citral, are due to their abilities to form charge transfer 

complexes with electron donors in addition to their reactivity with SH groups [42].  

o-Cymene was reported to inhibit growth of the root pathogenic fungi Phytophthora cinnamomi 

Rands and Fomes annosus (Fr.) Cooke [43]. 

3. Experimental Section  

3.1. Chemicals 

β-Fellandrene, β-pinene, camphene, carvacrol, citral, o-cymene, γ-terpinene and thymol were 

purchased from Sigma Aldrich, Co. (Milan, Italy). All the above compounds were kept at −20 °C.  

3.2. Fungal and Stramenopilus Isolates  

The species of plant pathogenic Fungi and Stramenopila and relative isolates used in this study and 

hereafter listed, were derived from a pure culture-maintained collection of the mycotheca of 

Department of Biology, Plant Protection and Agro-Forestry Biotechnology, Basilicata University 

(Potenza, Italy), kept on potato destrose agar (PDA) or corn meal agar (CMA) at 4 °C: Phytophthora 

citrophthora (R.E. & E.H. Smith) Leonian, isolate number 22 from lemon, Botryotinia fuckeliana (de 

Bary) Whetzel, used as its anamorph Botrytis cinerea Pers., isolate number 234 from grapevine; 

Penicillium italicum Wehrner, isolate number 333 from orange, Penicillium expansum Link,  

isolate number 335 from apple and Rhizopus stolonifer (Ehrenb.) Vuill., isolate number 238 from 

orange, were employed as basic 7-10-day-old colonies which were grown on PDA for P. italicum,  

P. expansum, B. fuckeliana, and R. stolonifer and on CMA, in the case of P. citrophthora. 

3.3. In Vitro Tests 

The possible fungistatic or fungicidal activity of the single PEO components against (a) P. citrophthora, 

B. cinerea and R. stolonifer and (b) P. italicum and P. expansum was determined in two ways.  

(a) By putting single 3-mm-thick and 0.5-cm-diameter CMA or PDA plugs, axenically taken away 

from peripheral portion of basic colonies onto central part surface of 9 cm diameter Petri dishes 

containing PDA or CMA previously added, at 40 °C, of 0.2% Tween-20 and 50, 150 or 250 ppm of the 

single PEO components; (b) By dropping, under axenic conditions, 10 µL aliquots of single suspensions 

containing 1 × 104 conidia/mL of the single Penicillium species onto surface centre of Petri dishes 
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containing PDA and prepared with the same percentage of Tween-20 and the single three PEO 

component concentration. Three replicates for each tested PEO active compound dose were provided 

in presence of opportune controls, i.e., PDA and CMA plugs from basic colonies of P. citrophthora,  

B. cinerea and R. stolonifer and of the two Penicillium species transferred or dropped, respectively, as 

above into Petri dishes containing either sole PDA or CMA or PDA or CMA added of 0.2% tween 20. 

The inhibitory effects of PEO components against each tested microorganism belonging to 

Stramenopila or Fungi kingdoms was determined after a 3–10 days incubation period at room 

temperature, e.g., when control colonies margins reached plate edges. The shortest and longest colony 

diameters were measured for each fungal or stramenopilus culture and the average value obtained, 

considered as a growth index, was subjected to statistical analysis.  

3.4. Evaluation of Fungicidal Effect of Some PEO Components 

PDA plugs of B. cinerea and R. stolonifer and CMA plugs of P. citrophthora from Petri dishes, 

prepared with PEO compound concentrations which seemed to have completely inhibited growth of 

tested microorganism isolates, were axenically transferred into Petri dishes containing only PDA, in 

the case of the first two fungi or CMA for P. citrophthora. Similarly, plugs axenically excised from 

central portion of dishes in which growth of P. expansum and P. italicum seemed to have been stopped 

by some PEO component concentrations, were in the same way put on PDA. Inoculated plates were 

then transferred in a climatic chamber at 20 ± 1 °C, along with the opportune controls, i.e., Petri dishes 

containing PDA or CMA inoculated with agar plugs taken from basic colonies of the above 

phytopathogenic microorganisms. All plates were daily observed for 30 days to ascertain eventual 

mycelium growth. 

3.5. Statistical Analysis 

Data were statistically processed and subjected to analysis of variance (ANOVA). Means 

significantly different were separated by the least significant difference (LDS) with p < 0.01.  

4. Conclusions  

The achieved results, along with fact that essential oil poisoning is documented for a few of these 

volatile compounds often inappropriately used [19], constitute an interesting knowledge acquirement 

on the perspective of using PEOs as natural preservatives for food-stuff and stimulate to undertake  

in vivo studies to verify the possible phytotoxic effects of the above PEO active compounds and to  

set up an application method able to maximize their effect against target post-harvest rot causal  

agents [15]. On the other hand, it is important to consider that the intense smell of the PEOs’ 

components can limit their use in foods; in fact their perception by the consumer will stimulate 

technological studies in order to solve this problem. 
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