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Within a continuum framework, flows featuring shock waves can be modelled by means of either shock capturing or shock fitting.
Shock-capturing codes are algorithmically simple, but are plagued by a number of numerical troubles, particularly evident when
shocks are strong and the grids unstructured. On the other hand, shock-fitting algorithms on structured grids allow to accurately
compute solutions on coarse meshes, but tend to be algorithmically complex. We show how recent advances in computational
mesh generation allow to relieve some of the difficulties encountered by shock capturing and contribute towards making shock
fitting on unstructured meshes a versatile technique.

1. Introduction

A shock wave is a surface in a flow-field across which various
thermodynamic and kinematic properties of the fluid appear,
from a macroscopic viewpoint, to change discontinuously. In
reality, shock fronts have a finite thickness, of the order of
a few mean free paths, across which the physical properties
change continuously. Since the shock thickness is much
smaller than any macroscopic length scale, such as the radius
of curvature of a curved shock, the assumption that the
discontinuity thickness is negligible compared with any mac-
roscopic dimension is a fundamental one in most engineer-
ing analyses of flows of practical interest.

From the mathematical modeling viewpoint, although it
might be expected that a continuum approach based upon
the Navier-Stokes equations fails to be valid at the micro-
scopic length scale that characterises the width of a shock
wave, Navier-Stokes solutions of the shock layer (in this
context, by the term “shock layer” we refer to the microscopic
region across which the fluid properties change from their

upstream to their downstream values) agree reasonably well
with experimental data, at least when the shocks are not too
strong (in this paper, except where otherwise noted, when we
mention the strength of a shock wave we refer to the magni-
tude of the jump in fluid properties that occurs through the
shock; this might be defined in several ways, for example, by
the ratio between the downstream and upstream pressures).
Moreover, since changes across a shock wave occur only in
the shock-normal direction, the problem is of one-di-
mensional nature so that closed-form or semianalytical
solutions of the 1D Navier-Stokes equations can be obtained
and provide the distribution of the various flow properties
within the shock layer, see, for example, the book by Hayes
[1] or the more recent one by Salas [2, Chapter 3.7].

In the vanishing viscosity limit, the shock width shrinks
to zero, the fluid properties change discontinuously through
the shock, which becomes a true discontinuity (in the math-
ematical sense), and the Rankine-Hugoniot jump relations
(algebraic equations that connect the upstream and down-
stream flow properties with the shock speed) are obtained
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from the 1D Navier-Stokes equations (see [3, page 136] and
also the related discussion in [2, Chapter 3.7.4] for details).

Shifting from the theoretical to the numerical models
actually used in the computation of flows with shocks, the
dualism between viscous shocks, having a finite though mi-
croscopic thickness, and inviscid shocks, being a true discon-
tinuity, shows up again in the two numerical approaches:
shock capturing and shock fitting, that have been tradi-
tionally used in Computational Fluid Dynamics (CFD) to
simulate shock waves.

Since shock thicknesses are of the order of a few mean
free paths and the length of a mean free path is of the
order of 10−7 m for air at standard conditions, it is easily
seen that fully resolved Navier-Stokes simulations of a shock
wave would require a large number of grid points within a
microscopic region surrounding the shock front, in addition
to those grid points that are needed to properly resolve
the macroscopic features of the flow field. Although the
tremendous advances in computer power “may bring com-
putational fluid dynamics to a molecular scale, where shocks
will cease to be discontinuities and have a real thickness,
full of viscous and thermodynamical effects . . .” [4], even
nowadays, the inner structure of the shock waves is neces-
sarily underresolved in a realistic Navier-Stokes simulation.
This is precisely the situation that occurs when shock-
capturing schemes, which represent the numerical model
most commonly used nowadays, are used to solve flows with
shocks. Shock-capturing discretizations, which date back to
the work by von Neumann and Richtmyer [5], lay their foun-
dations in the mathematical theory of weak solutions, which
allows to compute all type of flows, including those with
shocks, using the same discretization of the conservation law
form of the governing equations at all grid cells. This has
obvious consequences in terms of coding simplicity, since
the same set of operations is repeated within all control
volumes of the mesh, no matter how complicated the flow
might be. Coding simplicity is the primary reason for the
widespread use of shock-capturing schemes in the simu-
lation of compressible flows. Coding simplicity comes not
for free, however, and shock capturing solutions of flows
featuring strong shock waves are sometimes characterised
by large numerical errors and by the appearance of bizarre
anomalies. The sources of the numerical errors are various.
The most evident cause is the numerical thickness of the
captured shock, which depends on the local mesh size and,
for the reasons explained above, is always much larger than
the physical shock thickness. Two other possible causes are
the generation of spurious numerical oscillations [6–8] along
the shock front and the reduction of the order of accuracy
of the computed solution to a mere first order in the entire
region downstream of a captured shock [6, 9–11]. Spurious
oscillations arise when the faces of the control volumes of the
mesh are not aligned with the shock front; loss of accuracy is
probably due to the fact that the flow state of those gridpoints
that fall inside a captured shock bear little resemblance with
the physical shock structure and are rather to be seen as
numerical artefacts. Among the various anomalies exhibited
by shock-capturing discretizations, the most evident ones are
the stagnation point anomalies [12–16] and the carbuncle

phenomenon [17–19]. A large body of the literature has
emerged over the last decades addressing possible cures to the
aforementioned problems. Trying to give even a brief account
of these attempts is well beyond the scope of the present
paper, but it seems clear to the authors that none of these
efforts has yet given birth to the “ultimate” shock-capturing
scheme. Given up hope of finding such an ideal scheme,
another chance to improve the quality of shock-capturing
calculations consists in coupling the flow solver with a pos-
teriori mesh generation/adaptation/refinement procedures.
Indeed, the generation of a new mesh, tailored on the shock
pattern and finer in the shock-normal direction, or the
refinement/adaptation of an existing mesh not only allows
to bring the captured shock thickness closer to (but still
far from) its physical value, but also allows to improve the
solution quality by aligning the faces of the control volumes
with the shock front. Of course, improving the mesh quality
alleviates the symptoms, but does not cure the disease.
Nonetheless, it is true that good meshes help considerably
in reducing the numerical errors induced by captured
shock waves, thus significantly enhancing the quality of the
computed solution in the entire region downstream of a
shock. A discussion on the possible strategies to construct
meshes that are better suited to capture shock waves is one of
the goals of the present paper.

As already mentioned, however, a different approach for
modeling shock waves within the continuum framework
is possible: it is called shock fitting and, from a historical
perspective, it is even older than shock capturing, since its
first appearance is credited [2, Chapter 1], [20] to Emmons
[21, 22]. Shock fitting consists in locating and tracking the
motion of the discontinuities which are treated as boundaries
between regions where a smooth solution to the governing
PDEs exists. The Rankine-Hugoniot jump relations are used
to calculate the space-time evolution of the discontinuity
and the governing equations are discretized only within the
smooth regions of the flow field. Shock-fitting methods have
enjoyed a remarkable popularity at the dawn of CFD thanks
to their ability to accurately compute flows featuring strong
shocks on coarse grids using the modest computational
resources available at that time. For a given mesh resolution,
shock-fitting discretizations are characterized by smaller
numerical errors than shock-capturing solutions because
they are immune from all those sources of error, previously
described, that arise along a captured shock front. Moreover,
shock-fitting schemes do not suffer from the other numerical
anomalies described previously.

Nonetheless, the exponential growth of computing
power, along with the algorithmic difficulties that hindered
the development of general-purpose codes based on the
shock-fitting approach in the framework of structured
meshes, decreed the gradual dismissal of the technique over
the last decades. Simply stated, the slogan “one code for all
flows” that has so much contributed to the popularity of
shock-capturing discretizations does not carry over to shock
fitting. Indeed, the two variations of the basic technique that
have been so far proposed in the structured grid setting,
that is, “boundary” shock fitting and “floating” shock fitting,
are either algorithmically simple, but limited to topologically
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simple configurations or more widely applicable, but algo-
rithmically complex. Recently, a new shock-fitting technique
for unstructured two- and three-dimensional meshes has
been proposed and developed [23–27] by two of the authors
of this article. This new technique reduces significantly the
algorithmic difficulties encountered in the previous imple-
mentations of the shock-fitting technique within the
structured-grid context. In this newly developed technique,
the fitted shock fronts are moving boundaries that are free
to float inside a computational domain discretized using
triangles, in two space dimensions, or tetrahedra in three.
This is achieved by locally regenerating the computational
mesh in the neighbourhood of the fitted shocks while
ensuring that the shock lines (or the shock surfaces in three
dimensions) are always part of the mesh during their motion.
The development of this new shock-fitting technique has
been greatly furthered by the availability of public domain
software libraries, developed over the last years, implement-
ing a variety of tools for the generation of unstructured
meshes.

This brief outline of the two types of numerical
techniques used in the computation of flows featuring
strong shocks highlights the role played by mesh gener-
ation/adaptation/refinement techniques in providing high-
quality solutions. On the one hand, the use of these tech-
niques improves the quality of shock-capturing solutions; on
the other hand, the development of modern unstructured
mesh generation tools is opening up new perspectives in
the development of shock fitting techniques. To support
this assertion, three different applications of mesh gener-
ation/adaptation/refinement techniques in the context of
shock-capturing computations will be discussed and anal-
ysed in Section 2. Section 3 is devoted to shock-fitting: a
brief review of the traditional “boundary” and “floating”
techniques is given first, followed by the newly developed
technique for unstructured meshes. Applications of the
unstructured shock-fitting methodology both in two and
three space dimensions is illustrated in Sections 3.1 and 3.2.

2. Shock Capturing

In this section we shall describe three different mesh
adaptation and/or refinement techniques that can help
improving the resolution of strong shock waves computed
by means of shock-capturing discretizations. The results to
be presented in the following paragraphs have been obtained
using different codes, both in house and commercial; the
discretization techniques used in the various codes will not
be described here, but the reader will be referred to the
relevant references for details.

2.1. Structured Mesh Adaptation. The first technique to
be described consists in an in-house developed, mesh
adaptation code, applied within a structured multiblock
context. The selected test-case consists in the hypersonic flow
past the ESA IXV capsule [28, 29], a lifting reentry body,
see Figure 1(a), equipped with two variable deflection flaps
(δL, δR) that allow an aerodynamically controlled reentry.

Table 1: IXV reentry vehicle: free-stream flow conditions and flap
deflection angles.

M∞ AoA (deg) p∞ (Pa) T∞ (K) δL (deg) δR (deg)

25 45 1.87 205.73 15 15

The free-stream flow conditions considered in the present
case are those typical of a high speed and high altitude point
along the reentry trajectory of the space capsule and they are
summarised in Table 1. For the given flight conditions, the
flow past the capsule is completely laminar and chemically
reacting.

The numerical solutions have been computed by means
of the commercial code CFD++, developed by Metacomp
[30]. The Navier-Stokes equations are supplemented with the
5-species nonequilibrium model by Park [31] and a diffusion
model based upon the Gupta-Yos model [32]. The boundary
conditions at the solid walls employ the fully catalytic model
and radiative equilibrium.

As mentioned previously, the most important source of
numerical errors in the shock-capturing calculation of an
hypersonic flow is the shock wave itself, which affects the
solution quality of the entire flow-field downstream of the
discontinuity. An effective mesh adaptation procedure must
therefore be tailored for the shock.

Figure 1(b) shows the computational domain around
half of the capsule. The computational domain has been split
in ten blocks, whose topology has been chosen so as to allow
an easy management of the cell clustering in the critical
regions: the windward side, the bow shock, and the flaps.

Starting from this block-topology, a baseline mesh is
generated using a commercial mesh generator. This mesh
is characterised by cell clustering near the wall in order to
capture the boundary layers, but no attempt has been made
to refine the mesh within the shock regions. Figure 2(a)
shows some details of the ten-block mesh; the pressure field
computed on the this mesh is displayed in Figure 2(b). The
baseline mesh has been modified by changing the spatial
distribution of the mesh nodes belonging to the coordinate
lines that are perpendicular to the body surface, on the basis
of the pressure gradient distribution.

More specifically, the sequence of N mesh nodes (xbaseline
i )

belonging to each coordinate line is replaced by a new

sequence of N nodes (x
adapted
i ), whose mesh spacing Δsi =

‖xi+1 − xi‖ is computed as follows:

Δs
adapted
i = 1

w
adapted
i

∀i = 1, N − 1, (1)

where w
adapted
i is the weighting function that drives the cell

clustering. Using (1), the mesh spacing will be finer in
regions where the corresponding weighting function is large

and vice versa. The weighting function w
adapted
i associated

with the adapted mesh, defined as

1

w
adapted
i

= c

wbaseline
i

+
(1− c)

w
p
i

(2)
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Figure 1: The ESA IXV vehicle.
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Figure 2: The ESA IXV vehicle: meshes and solutions.

is a weighted average of the corresponding weighting func-
tion, wbaseline

i , which is computed from the known mesh
spacing of the baseline mesh:

wbaseline
i = 1

Δsbaseline
i

∀i = 1, N − 1, (3)

and a weighting function w
p
i based upon the pressure gra-

dient distribution computed on the baseline mesh and
normalised in such a way that:

N−1∑

i=1

1

w
p
i

= L, (4)
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Figure 3: The ESA IXV vehicle: pressure distribution over the
windward side of the vehicle.

where L = ∑N−1
i=1 Δsbaseline

i . The constant c in (2) is set equal
to 0.5.

The comparison between Figures 2(a) and 2(c) shows
how the baseline mesh has been modified using the afore-
mentioned pressure-driven adaptation strategy. Note, in
particular, that the procedure has been activated only in
those blocks where strong shocks are present and it has the
effect of clustering the grid points around the shock front
and aligning the cell faces with the shock front. Moreover,
the procedure does not significantly alter the cell distribution
of the baseline mesh inside the boundary layer, because
(2) combines the solution-dependent weighting function w

p
i

with wbaseline
i that keeps track of the original distribution of

mesh points within the near-wall region. As a result, only
grid points located near the shocks, either on their upstream
or downstream side, are moved towards the shock fronts.

The positive effects of the mesh adaptation procedure on
the quality of the numerical solution can be observed by
comparing Figures 2(b) and 2(d). In particular, the shock
thickness computed on the adapted mesh is thinner than the
one computed on the baseline mesh and the shock-shock
interaction more clearly outlined. Moreover, the beneficial
effects of the mesh adaptation procedure are not limited to
the shock region but can also be observed on the surface
of the capsule. Figure 3 compares the pressure distribution
along the windward side of the vehicle obtained on the
baseline mesh with that computed on the adapted mesh.
The positive effects of mesh adaptation around the shocks
are highlighted by the significant increase of the pressure
levels that can be observed both in the nose region and on
the surface of the flaps. Improving the prediction of the
pressure distribution on the capsule’s surface significantly
enhances the reliability of the numerical estimate of the
aerodynamic coefficients; this is particularly true for the
moment coefficients that strongly depend upon the pressure
distribution on the flaps.

A more comprehensive report of the results obtained by
the application of this mesh adaptation technique to the
computation of the flow field past the IXV vehicle can be
found in [33].

2.2. Structured Mesh Refinement/Adaptation Using Overset
Meshes. In this section we describe a more innovative

mesh refinement/adaptation technique, suited for struc-
tured, multiblock, shock-capturing solvers, which is based
upon the so-called “Chimera” or overset mesh approach.

Some early examples of application of the overset grid
technology can be found in the pioneering papers by
Volkov [34, 35], whereas some more recent applications are
reported, for instance, in [36, 37]. This approach is extremely
useful for the simulation of flows in domains with complex
boundaries (as it happens to be the case in most engineering
problems of practical interest), because it allows to mesh
complex geometries with relative ease while retaining most of
the computational advantages of algorithms based on block
structured grids: simple data structure, easy application of
iterative schemes based on geometrical multigrid, approxi-
mate factorisation techniques for implicit time integration,
and so on. The flexibility and convenience of the Chimera
approach lies in the process of grid generation, that can be
carried out by producing individual pieces of grid around
each portion of the frontier; the various blocks are then
assembled in a global grid, letting them overlap. Of course,
proper algorithms must be developed to compute grid con-
nections at the block boundaries and possible “hole” cutting
in the inner portion of each block.

Besides making grid generation more flexible, the overset
grid capability can be exploited also for mesh refinement in
regions where the solution is known to exhibit strong gradi-
ents, like wakes, strong expansions, and shocks. This capa-
bility will be illustrated with the following example, which
consists in the calculation of the supersonic flow (free-
stream Mach number equal to 3) past the space launcher
VEGA, shown in Figure 4, during its ascent trajectory. The
model equations are the Reynolds Averaged Navier-Stokes
equations; the one-equation Spalart-Allmaras model [38]
was used for turbulence closure. The CFD solver is an in-
house code [39] that exploits the overset grid capability. The
discretization is based on a finite volume scheme with
second-order accurate ENO [40] approximation of the
inviscid fluxes and centred approximation of the viscous
terms.

The simulation was aimed at assessing the thermal flux
on critical sections of the launcher surface (raceways, retro-
rockets, junctions, etc.) and of the appendages (such as
antennas, cameras, etc.); therefore, any single device pro-
truding off the vehicle’s surface has been carefully discretized,
as shown in the detailed view of Figure 4(b). In addition
to the geometrical description of the finest details of the
launcher, overset meshes have also been exploited for local
refinement in critical regions of the flow field.

A preliminary computation on a grid which is not refined
in the interior of the domain provided the approximate
location of the areas featuring strong gradients. Then, on the
basis of this preliminary solution, new blocks were designed
with a commercial CAD code and then discretized using a
commercial grid generator. The overlapping blocks used
for mesh refinement in various critical flow regions can
be clearly seen in the left half of both frames of Figure 5.
The right half of the two frames of Figure 5 shows the density
contours computed on the adapted mesh. It can be seen
that the overlapping grid technology can be an effective tool
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Figure 4: Launcher Vega of the European Space Agency.

to improve the resolution of specific flow features, such as
the bow shock shown in the right frame of Figure 5. The
quality of the aforementioned mesh refinement technique
might be further improved, particularly for shock waves,
if coupled with a shock-detection algorithm capable of
providing a reasonable approximation to the shape of the
shock surface. The overlapping blocks might then be built
with one set of coordinate lines perpendicular to the guessed
shock surface. This kind of semiautomatic procedure for
constructing approximate shock shapes has been used in
conjunction with shock fitting and shall be described in
Section 3.2.

2.3. Unstructured Grid: Anisotropic Mesh Adaptation. The
third methodology to be described consists in the application
of an Anisotropic Mesh Adaptation (AMA) technique to
unstructured, triangular meshes. AMA is more suitable than
the techniques discussed in the previous sections to simulate
flows characterised by complex shock topologies. Indeed,
unstructured grids clearly have the potential of making mesh
adaptation much simpler than it is in the context of struc-
tured grids and allow to easily refine the computational mesh
even when multiple shock interactions occur. In this section
we report the authors’ experience in using angener [41], a
public domain anisotropic mesh generator. The AMA tech-
nique available in angener consists in building a mesh made
of isotropic, almost equilateral triangles in a computational
plane which are then transformed into the physical plane
using a mapping governed by the Hessian of an appropriate
scalar quantity, available from a previous calculation made
on a different grid. In the calculations presented herein we
have chosen the first component of the set of dependent
variables: √ ρ, which is adequate to resolve both shocks and
contact discontinuities. Further details concerning the AMA
technique implemented in the angener code can be found in
[42]. The flow solver is eulfs [43, 44] an in-house, shock-
capturing, vertex-centred code which uses second-order

accurate, multidimensional upwind, Fluctuation Splitting
schemes for the spatial discretization.

To assess the performances of the AMA technique, an
Eulerian flow characterised by multiple interactions has been
computed. The selected flow configuration is a type IV
shock-shock interaction [45], as classified by Edney [46].
This type of interaction arises when a weak (with the term
“weak” we here mean an oblique shock featuring a shock
angle σ which is smaller than that corresponding to the
maximum flow deflection for the given free-stream Mach
number) oblique shock meets the bow shock produced by
a supersonic stream impinging on a blunt nosed body.
Figure 6 shows a sketch of the geometry and flow structure:
in the present case the blunt body is a circular cylinder with
radius R and the origin of the reference frame is located
in the centre of the circle. The free-stream Mach number
is M∞ = 10 and the oblique shock, which forms an angle
σ = 10◦ with respect to the undisturbed flow, crosses the
x-axis at xP/R = 1.667. A first triple point forms where
the oblique shock impinges on the bow shock. A reflected
shock and a contact discontinuity arise in this triple point
and move downstream. The contact discontinuity separates
the supersonic stream which has crossed the reflected oblique
shock from the subsonic flow downstream of the bow shock.
The reflected shock coming from the first triple point rejoins
the bow shock in a second triple point where a new reflected
shock and a contact discontinuity arise. The two contact
discontinuities bound a supersonic jet which is directed
towards the body surface, whereas the second reflected shock
triggers a series of wave reflections inside the supersonic
jet bounded by the two contact discontinuities. Figure 7
shows the density contours computed on an isotropic mesh
which has been constructed using delaundo [47], a public
domain frontal/Delaunay mesh generator [48]. Starting from
the solution displayed in Figure 7(a), an adapted mesh has
been constructed using angener and a solution has been
computed on this new mesh using the eulfs code. The
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AMA/solution process has been repeated three times and
the third mesh and the corresponding solution are displayed
in Figure 7(b). The anisotropically adapted mesh features
roughly twice as many nodes and triangles than the original
mesh; notice that mesh refinement in the most “active” areas
of the flow field is partially balanced by mesh coarsening in
areas of smooth flow variations. It is clear that AMA allows
to improve considerably the resolution of the interaction
region; this allows not only to recognise the various flow fea-
tures, which are indistinguishable in the solution computed
on the uniform grid due to the large numerical thickness
of the captured discontinuities in that region, but also to
reduce the disturbances (even if these are not completely
removed) that are generated along the bow shock: compare
the density isolines computed within the shock layer (here
and in the remainder of this paper, by the term “shock layer”
we refer to the flow region bounded between the bow shock

and the solid body), which are shown in the leftmost frames
of Figures 7(a) and 7(b).

3. Shock Fitting

Nowadays, shock-fitting techniques are neither widely used
nor even known to most CFD practitioners, so that it might
be worth giving an historical background about the tradi-
tional shock-fitting techniques used in the structured grid
setting and briefly explaining its new developments within
the unstructured grid context.

The first shock-fitting calculation is credited to Emmons
[21, 22], but the undisputed guru of this technique is cer-
tainly Moretti who, along with his students, has greatly
contributed to the popularity of the technique. The recent
book by Salas [2] describes the theoretical foundations of
shock-fitting along with its practical implementation. Shock
fitting, which until recently has only been used in the
structured-grid setting, has historically evolved following
two different algorithmic approaches: boundary shock fitting
and floating shock fitting. In the boundary shock-fitting
approach, the shock is made to coincide with one of the
boundaries of the single- or multiblock mesh which is used
to discretize the flow field. For example, Figure 8 describes
the steady calculation of a bow shock about the fore-body
a blunt nosed object: the fitted bow shock is the leftmost
boundary of the computational mesh. Starting from the
initial configuration shown in Figure 8(a), the grid is de-
formed, see Figure 8(b), due to the motion of the fitted shock
front, until it settles to its final position, shown in Figure 8(c),
which corresponds to vanishing shock speed. Figure 8(d)
shows the computed flow field. Boundary shock fitting is an
algorithmically simple technique, since the treatment of the
algebraic relations that hold across the shock (the Rankine-
Hugoniot relations) is confined to the boundary points and
therefore no modification is required to the computational
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Figure 7: Type IV shock-shock interaction, M∞ = 10: density isolines.

kernel of the code which is used to discretize the governing
PDEs within the smooth regions of the flow field. This
feature greatly simplifies the coding, but clearly makes the
treatment of embedded and/or interacting shocks a “hard
bone to chew” [49].

A step forward towards a technique capable of handling
more complex flow configurations, as well as unsteady flows,
was undertaken by Moretti with the development of the
so-called floating shock fitting, see, for example, [50, 51].
In the floating version of the shock-fitting technique, the
discontinuities are a collection of shock points, shown by
open circles in Figure 9(a), which are allowed to move (float)
freely over a fixed background structured grid. The shock
front is described by its intersections with grid lines, which
gives rise to x and y shock points, as sketched in Figure 9(b).
The main features of the methodology are the same as those
of the boundary fitting technique, except for the need of a
special treatment for grid nodes neighbouring shocks. This
is because approximating derivatives by differences between
nodes located on opposite sides of a shock must be avoided
and therefore, ad hoc finite difference formulae (see, e.g.,
[52, 53]) have to be used in this case. Moreover, since the
x and y shock points are constrained to be located along the
grid lines, see Figure 9(b), the technique is able to adequately
describe isolated shocks, but it does not allow the precise
treatment of the shock-shock interaction point, since the lat-
ter may be located in between grid-lines, as also sketched in
Figure 9(b). The presence of an interaction point needs then
to be modelled by appropriately modifying the calculation
of the neighbouring shock points, see, for example, [54].
Floating shock-fitting codes have been used with success in
the past to compute steady and unsteady two-dimensional
flows involving shock reflections and shock interactions,
see, for example, [50, 52, 55]. Very recently, the floating
shock-fitting (denoted as front-tracking) technique has been
reproposed by Rawat and Zhong [53] in the framework
of high-order, structured-grid schemes. Nonetheless, float-
ing shock fitting is an algorithmically complex technique,

primarily because of the need to interface the inherently
unstructured collection of points used to represent the
shock fronts with the underlying structured mesh, which is
described using the classical IJK data structure. A thorough
account of these difficulties can be found in [53]. Taking
advantage of the availability of public domain software
libraries [56–60] that accomplish unstructured, volumet-
ric, and surface mesh generation, a novel unstructured
shock-fitting technique that combines features of both the
boundary and floating shock-fitting techniques has been
recently developed by two of the authors [23–27]. In this
novel unstructured shock-fitting approach the shock front
is discretized as a double-sided, triangulated surface (a
polygonal curve in 2D) which is treated as a zero-thickness,
internal boundary by the shock-capturing eulfs [43, 44]
solver (whose main features have already been described in
Section 2.3) which is used to discretize the governing PDEs
within the computational domain. The two sides of the
triangulated shock surface correspond to the upstream and
downstream sides of the discontinuity. A set of dependent
variables is assigned to each of the grid points which belong
to both sides of the discontinuity. The local shock speed
and nodal values on the high pressure side of the shock
are computed by enforcing the Rankine-Hugoniot relations
across the discontinuity. The shock is allowed to move over
and independently of a background tetrahedral (triangular in
2D) grid which is locally adapted at each time step to ensure
that the nodes and the triangles (edges in 2D) that make up
the shock front are part of a constrained Delaunay tetrahe-
dralization (triangulation in 2D). The coupling of the shock-
fitting technique with a shock-capturing solver also enables a
hybrid mode of operation in which some of the shocks are fit-
ted, whereas all others are captured. The reader is referred to
[23–27] for a detailed description of the two-, respec-
tively three-dimensional, version of this novel unstructured
shock-fitting approach; here we report some examples
demonstrating how the advances in unstructured mesh
generation enabled us to bring shock fitting back to life.



Modelling and Simulation in Engineering 9

Fitted shock

(a) (b)

(c) (d)

Figure 8: Boundary shock-fitting: (a) initial grid; (b) the grid deforms due to the shock displacement; (c) the fitted shock has settled to its
final location; (d) computed flow field.

(a) Shock points floating over a background mesh: reprinted
from [50]
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Figure 9: Floating shock fitting.

3.1. Two-Dimensional, Unstructured Shock Fitting. The cur-
rent capabilities of the two-dimensional version of the un-
structured shock-fitting technique will be demonstrated
by referring to the same test case already examined in
Section 2.3. In two dimensions this technique is able not only
to fit the shock waves, but also the contact discontinuities
and the interaction points where various discontinuities
meet. The shock fitting simulation uses the unadapted mesh
shown in Figure 7(a) as the background triangulation. The
fitted discontinuities are approximated by a set of linear
splines (shown by the heavier solid lines in Figure 10) and
their initial location is guessed using a preliminary shock-
capturing calculation performed on the background grid.
Starting from this initial solution, the shock-fitting calcula-
tion is advanced in time until steady state is reached: at each
time step, the background triangulation is locally modified

to accommodate the fitted discontinuities which are free to
move at a speed which obeys the Ranking-Hugoniot jump
relations. Local remeshing along the discontinuities requires
a constrained Delaunay triangulation (CDT), a task which is
carried out using the triangle code [56], a public domain
software developed by Shewchuk [56] and based on Rup-
pert’s algorithm [61]. At steady state, the speed of the discon-
tinuities vanishes and the shock-fitting grid does not change
any longer. Note that the converged shock-fitting grid,
Figure 10, and the background one, Figure 7(a), only differ in
the neighbourhood of the fitted discontinuities. Figure 7(a)
shows the density isocontours computed by shock cap-
turing on the same grid also used as background tri-
angulation in the shock-fitting simulation; the shock-fitting
result is shown in Figure 10. The superiority of the shock-
fitting solution over a shock-capturing solution computed
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Figure 10: Type IV shock-shock interaction, M∞ = 10: shock-fitting
calculation.

on an unadapted mesh of comparable resolution is evident:
the detailed view of the region of interaction, shown in
the smaller frame of Figure 10, shows that the various
discontinuities are clearly identifiable in the shock-fitting
solution, whereas their features are completely lost in the
shock-capturing calculation, shown in Figure 7(a). If we
now compare the shock-fitting solution of Figure 10 with
the shock-capturing solution on the anisotropically adapted
mesh, shown in Figure 7(b), both calculations appear to be
of comparable quality. In particular, both solutions feature
smooth contours within the shock layer, even though small
wavelength disturbances are visible in the proximity of the
bow shock in the shock capturing solution. When compar-
ing shock fitting with shock capturing computed on the
anisotropically adapted mesh, it is worth underlining that
the former technique requires roughly half the number of
grid points and triangles than the latter. A more thorough
comparison between shock fitting and shock capturing on
anisotropically adapted meshes can be found in [24].

3.2. Three-Dimensional, Unstructured Shock Fitting. Al-
though the three-dimensional version of the unstructured,
shock-fitting methodology is conceptually the same as its
two-dimensional version described in Section 3.1, the imple-
mentation of these ideas in 3D is very challenging and far
from trivial. A three-dimensional shock-fitting calculation
proceeds similarly to the two-dimensional case. A prelimi-
nary shock-capturing calculation on the background mesh
provides the initial solution and the approximate shape
and location of the fitted shock surface(s). The generation
of the initial shock surface(s) proceeds as follows: a cloud
of candidate shock points is extracted from the shock-
capturing calculation using the algorithm by Ma et al. [62];
these shock points are then processed using various tools
available in the meshlab [58] software and a preliminary,
triangulated shock surface is obtained. The shock-fitting
calculation is then advanced in time until steady state is
reached. During its time evolution, the fitted shock surface is
allowed to float over the background tetrahedral mesh using
the shock speed computed within each of the grid points that
belong to the shock surface. Volumetric remeshing in the

neighbourhood of the shock surface requires a constrained
Delaunay tetrahedralization (CDT). This complex operation
is performed at each time step using TetGen, a public
domain code recently developed by Si [57]. Differently from
the two-dimensional case, the solution of a CDT problem
in three dimensions may require the insertion of several
additional mesh points (so-called Steiner points), a situation
that needs to be properly handled by the shock-fitting
algorithm. Moreover, since the shock surface may change its
area and shape during its motion, it has to be periodically
remeshed. Surface remeshing is required also to ensure that
the local mesh size of the shock surface triangulation is
comparable to that of the background tetrahedral mesh; the
fulfilment of this criterion avoids the appearance of badly
shaped tetrahedra in the neighbourhood of the shock front.
Unfortunately, most of the available surface-meshing tools
have been developed for computer graphics applications
and are typically designed to optimise the distribution of
triangles over the surface based upon geometrical features
(e.g., the local curvature), rather than user-specified criteria.
The solution to our specific surface meshing problem has
therefore required a remarkable effort in the search and
testing of appropriate software libraries. Among the various
tools we have come across, Yams, a surface-meshing code
developed by Frey [60], turned out to be the one that best
suited our needs.

The three-dimensional version of the unstructured,
shock-fitting technique has been applied to the calculation
of hypersonic flows past geometrically simple bodies, such
as the flow past a hemisphere, as well as rather complex
ones, including the IXV vehicle described in Section 2.1. A
detailed account of these efforts can be found in [26, 27].
The qualitative features of the three-dimensional version of
the technique are here described by reference to the high
speed flow past a blunt object which consists in a cylinder
with a hemispherical nose and a conical flare forming an
angle of 30◦ with respect to the cylinder’s axis. The free-
stream conditions are Mach number M∞ = 4.04 and angle of
attack equal to 20◦. This flow configuration has been studied
both experimentally and numerically by Houtman et al. [63];
it is characterised by a bow shock and an embedded shock
which originates at the cylinder-cone junction. Figure 11(a)
shows an experimental visualisation of the flow field, which
highlights the type VI shock-shock interaction, as classified
by Edney [46], which occurs along the windward side of the
body.

A preliminary shock-capturing calculation has been
performed using a grid which also served as background grid
for the shock-fitting calculations. Two different shock-fitting
solutions have also been computed: in the first only the
bow shock has been fitted, whereas in the second also
the embedded shock has been fitted; Figure 11(b) shows
both fitted shock surfaces at steady state. It is worth
underlining that the current three-dimensional version of the
shock-fitting algorithm is able to fit more than a single shock
surface, but the fitted shock surfaces are not allowed to
mutually interact. The cause of this limitation is not related
to modeling issues (the two-dimensional interaction models
described in [24] can be extended to the three-dimensional
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(a) Shadowgraph, reprinted from [63]
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Figure 11: Supersonic (M∞ = 4.04) flow past a cylinder with conical flare.

case without major problems), but it has to do with a spe-
cific mesh generation problem. Indeed, in the three-di-
mensional space, two shocks interact along a curve. This
requires the capability to remesh different shock surfaces
while prescribing the position of those shock points that are
located along the curve where the shock surfaces meet. We
are currently investigating this issue and we are confident
that we shall be able to “fit” three-dimensional shock-shock
interactions in the near future, as we already do in two space
dimensions. For the time being, the interaction between
different fitted shocks is handled by terminating the fitted
surface of the embedded shock shortly before it reaches the
bow shock and letting the shock-capturing code capture
the shock-shock interaction. Although this is clearly sub-
optimal than a fully fitted interaction, it however provides
improved resolution compared to the situation in which only
the bow shock is fitted and the embedded one is captured.
This point will be supported with examples in the remainder
of this section; for further details the reader is referred to
[25, 27]. Figure 12, which shows the normalised pressure
distribution on the body surface and on the symmetry plane
for all three numerical solutions, allows to pinpoint some
significant details of the flow structure predicted by the
shock-fitting and shock-capturing simulations. The shock-
capturing solution is characterised by a large shock thickness,
which has nearly the same width as the shock layer thickness
in the stagnation region. In the neighbourhood of the
stagnation point, the shock-fitting solutions are seen to be
better defined and predict a pressure peak which is much
closer to the theoretical stagnation value and higher than that
predicted by the shock-capturing calculation.

The shock-shock interaction causes an abrupt change of
the shock slope which is clearly visible in Figure 12. In all
solutions, the shock-shock interaction is spread over a region
of finite width. This is because in all three calculations the
shock-shock interaction is captured by the shock-capturing
solver, even when both the bow shock and the embedded

shock are fitted. The pressure distribution on the body
surface is characterised by a second peak which occurs in
the proximity of the shock-shock interaction. This is an area
where the three numerical simulations show relevant mutual
differences. The pressure level which is reached at this second
pressure peak in the shock-capturing solution is visibly lower
than those predicted by the two shock-fitting solutions.
Moreover, downstream of this second pressure peak, the
shock-capturing calculation features smoother contour lines
that those predicted by the shock-fitting calculations, which
is an indication of the fact that the shock-shock interac-
tion has been excessively smeared in the shock-capturing
calculation. The relevant role played by the shock-shock
interaction is clearly highlighted by the fact that also the
two shock-fitting solutions display nonnegligible differences
in the neighbourhood of the second pressure peak. This
observation also points to the fact that the capability of fitting
shock-shock interactions in three dimensions would be an
important add-on to the current methodology.

4. Conclusions

Building upon the authors’ experience in the field of the
numerical simulation and of the development of numerical
techniques, this paper highlights the strong relationship that
exists between the development and application of mesh
adaptation/refinement/generation techniques and the com-
putation of high-quality solutions of flows featuring strong
shocks.

The examples provided show that mesh adaptation/
refinement/generation techniques that adapt the computa-
tional mesh to the shock front are a key ingredient to achieve
accurate solutions for this kind of flow fields.

The application of these techniques in the framework of
the shock-capturing approach allows to significantly reduce
the numerical errors induced by the capture of the shock
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Figure 12: Supersonic (M∞ = 4.04) flow past a cylinder with conical flare: pressure isocontours predicted by the shock capturing and shock
fitting calculations.

waves. Three different examples of mesh adaptation/ refine-
ment/generation techniques, used in conjunction with three
different shock-capturing solvers, have been discussed and
analyzed. Specifically, the first two examples show how it is
possible to improve the solution quality in the structured-
grid framework by means of (i) a mesh adaptation technique
that does not involve topological changes in the mesh, or (ii)
an overlapping mesh technique whereby additional blocks
are superimposed to a background computational mesh.
Finally, the third example shows that the same target can
be achieved, with greater flexibility, using an unstructured,
anisotropic mesh adaptation technique.

The use of different shock-capturing codes, both com-
mercial and in-house developed, structured, and unstruc-
tured, contributes towards making these observations of
broad validity.

Nevertheless, more relevant and conclusive enhance-
ments in terms of solution quality can be obtained by
means of a shock-fitting technique for unstructured grids.
Indeed, the use of this newly developed technique com-
pletely removes the capturing process that is the source of
most of the problems that plague current shock-capturing
schemes. The proposed shock-fitting technique heavily relies
upon unstructured mesh adaptation/refinement/generation
techniques and it is worth underlining that only the devel-
opment of advanced algorithms and the availability of public
domain tools for unstructured mesh generation have made

the development of this novel shock-fitting technique
possible.

All the analyses presented in this paper deal with steady
flows and have been conducted using second-order accurate
discretizations in space. We believe, however, that most of the
conclusions that have been drawn are applicable to higher
order discretizations and unsteady flows as well.

Very high-order methods on structured grids have been
extensively used since almost two decades to perform LES
or DNS of compressible turbulence, as reviewed in the
two recent articles by Johnsen et al. [8] and Pirozzoli
[64]. In this particular context, shock-capturing schemes
are severely challenged by two conflicting requirements:
on the one hand, the discretization scheme should be
minimally dissipative in order to be able to adequately
simulate all relevant turbulent scales; on the other hand,
it must supply a sufficient amount of artificial dissipation
around the shocks to avoid un-physical oscillations. This task
can be accomplished using different discretization schemes,
away and near the discontinuities, which are blended by
means of a shock sensor. A number of variations of these
hybrid shock-capturing techniques are described in the
two aforementioned papers, along with their merits and
limitations.

Although structured grid adaptation or refinement is
hardly foreseeable in the context of LES or DNS, the
advantages offered by shock-fitting, whenever the flow
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topology makes it applicable, are clearly acknowledged by the
“compressible” LES/DNS community [8, 64]. It is also true,
however, as demonstrated using the test-cases presented in
[8], that not only is the accurate treatment of the shock wave
important to achieve accurate results in the entire domain,
but also the properties of the numerical scheme used in
smooth regions of the flowfield. It follows that the coupling
between high-order schemes and improved shock modeling
(such as the high-order shock-fitting technique presented
in [53]) appears fully justified, at least in the context of
LES/DNS.

The last two decades have also seen a growing interest
in the development of high-order methods for unstructured
grids [65]. These are expected to be more efficient than
second-order accurate schemes, at least for selected appli-
cations requiring high accuracy. High-order methods on
unstructured grids naturally lend themselves to the coupling
with anisotropic mesh adaptation [66]. From the viewpoint
of mesh generation/adaptation, high-order methods are less
demanding than second-order accurate ones as they require
coarser meshes than the latter to achieve the same error
level. This is certainly true within boundary layers and
wakes, but not around shocks, since also high-order methods
need to locally downgrade their accuracy to first order
around captured discontinuities. In this respect, the coupling
between our newly developed unstructured shock-fitting
algorithm and high-order unstructured grid schemes looks
particularly promising.
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