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a  b  s  t  r  a  c  t

Traditional  methods  of recording  fire  burned  areas  and  fire severity  involve  expensive  and  time-
consuming  field  surveys.  Available  remote  sensing  technologies  may  allow  us  to  develop  standardized
burn-severity  maps  for  evaluating  fire  effects  and  addressing  post  fire  management  activities.  This paper
focuses  on  multiscale  characterization  of fire severity  using  multisensor  satellite  data.  To  this  aim,  both
MODIS (Moderate  Resolution  Imaging  Spectroradiometer)  and  ASTER  (Advanced  Spaceborne  Thermal
Emission  and  Reflection  Radiometer)  data  have  been  processed  using  geo-statistic  analyses  to  capture
pattern  features  of burned  areas.
patial autocorrelation statistics Even if in last  decades  different  authors  tried  to  integrate  geo-statistics  and  remote  sensing  image
processing,  methods  used  since  now  are  only  variograms,  semivariograms  and  kriging.  In this  paper,  we
propose  an  approach  based  on  the use  of  spatial  indicators  of  global  and local  autocorrelation.  Spatial  auto-
correlation  statistics,  such  as  Moran’s  I and  Getis–Ord  Local  Gi index,  were  used  to  measure  and  analyze
dependency  degree  among  spectral  features  of  burned  areas.  This  approach  enables  the  characterization
of  pattern  features  of  a burned  area  and  improves  the  estimation  of  fire severity.

© 2011  Elsevier  B.V.  All  rights  reserved.
. Introduction

Fire represents one of the main disturbances of Mediterranean
asin, bringing profound transformations at different temporal and
patial scales which affect ecosystems, landscapes and environ-
ents. Immediately after a fire, there are its direct effects (also

nown as immediate effects or first-order fire effects), which are
ombustion direct consequences, namely fuel consumption, pro-
uction of smoke and ash and heating of soil. Whereas, since a few
ours up to many decades after a fire, there are long-term results
also known as second-order fire-effects), which are indirect results
f fire, namely alteration in vegetation structure and composition,
oil erosion, changes in nutrient levels, micro-climate, hydrology,
egetation succession.

In the Mediterranean Basin, composition and structure of vege-
ation have been and are generally strongly shaped by fires, which
end to operate as a selective force, increasing species diversity, as

ell as a filter favouring the dominance of some species rather than

f other ones (Grace et al., 2006; Pausas and Verdú, 2008).

∗ Corresponding author.
E-mail address: alanorte@imaa.cnr.it (A. Lanorte).

303-2434/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.jag.2011.09.005
Effects of fires on soil, plants, landscape and ecosystems depend
on many factors (among them fire frequency and plant resistance).
Burn severity is a qualitative indicator of the effects of fire on
ecosystems, since it affects forest floor, canopy, etc. Assessing and
mapping burn severity is important to monitor fire effects, to model
and evaluate post-fire dynamics and to estimate the ability of veg-
etation to recover after fire (generally indicated as fire-resilience).
In an operational context, burn severity estimation is critical for
short-term mitigation and rehabilitation treatments. Traditional
methods of recording fire severity involve expensive and time-
consuming field surveys. The use of satellite remote sensing can
help in overcoming such drawbacks.

Remote sensing technologies can provide useful data for
fire management, from risk estimation (Rauste et al., 1997;
Lasaponara, 2005), fuel mapping (Lasaponara and Lanorte, 2006,
2007a,b), fire detection (Lasaponara et al., 2003), to post fire
monitoring (Lasaponara, 2006), including burn area and severity
estimation (Gitas and Desantis, 2009; Hall et al., 2008; Richards,
1995). Methods generally used to estimate fire severity from
satellite are based on spectral indexes, obtained as a combination

of bands which emphasize changes induced by fire in vegetation
spectral behaviour. Several vegetation indexes were used, such
as SVI (Simple Vegetation Index), TVI (Transformed Difference
Vegetation Index), SAVI (Soil Adjusted Vegetation Index), NDVI

dx.doi.org/10.1016/j.jag.2011.09.005
http://www.sciencedirect.com/science/journal/03032434
http://www.elsevier.com/locate/jag
mailto:alanorte@imaa.cnr.it
dx.doi.org/10.1016/j.jag.2011.09.005
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Normalized Difference Vegetation Index) and NBR (Normalized
urn Difference).

Maps obtained by difference between pre- and post-fire indexes
rovide a measure of change used to quantify biomass loss, carbon
elease, smoke production, etc. (Xiao et al., 2003). Such evalua-
ions are generally performed on fire perimeter maps (a priori
nown), mainly using fixed threshold values to classify and map
he different levels of burn severity. Nevertheless, as suggested by

any authors, such fixed threshold values are generally not suit-
ble for fragmented landscapes and inadequate for vegetation types
nd geographic regions different from those for which they were
evised (Key and Benson, 2006; Key, 2006; Zhu et al., 2006).

In order to overcome such limitations, a new approach, based on
eo-statistical analyses applied to satellite data, is herein proposed
oth to estimate burn area perimeter and to evaluate the different
egree of burn severity. The use of robust geo-statistical analyses to
rocess satellite data is relatively recent, even if, in last decades dif-
erent authors tried to integrate geo-statistics and remote sensing
mage processing (Curran et al., 1998), but methods used since now
re only variograms, semivariograms and kriging (some examples
re Hyppänen, 1996; Atkinson and Lewis, 2000; López-Granados
t al., 2005).

In this paper, we propose a more robust spatial statistics analysis
pproach, based on the use of spatial indicators of global and local
utocorrelation to capture feature pattern, to map  areas affected by
re and to estimate the degree of fire severity. For the purpose of
his study, ASTER and MODIS derived indexes were processed for

 significant test area located in southern Italy using Moran’s I and
etis–Ord Local Gi index (see Moran, 1948; Getis and Ord, 1994).

. Satellite data

In the present study satellite MODIS and ASTER data have been
sed. MODIS is a key instrument aboard Terra (EOS AM)  and Aqua
EOS PM) satellites.

These data will improve our understanding of global dynam-
cs and processes occurring on land, in oceans, and in lower
tmosphere. MODIS is playing a vital role in the development of
alidated, global, interactive Earth system models able to predict
lobal change accurately enough, to assist policy makers in making
ound decisions concerning the protection of our environment.

Terra’s orbit around the Earth is timed so that it passes from
orth to south across the equator in the morning, while Aqua passes
outh to north over the equator in the afternoon. Terra MODIS,
aunched on December 18, 1999 and Aqua MODIS, launched on

ay 4, 2002, are viewing the entire Earth’s surface, acquiring data
n 36 spectral bands ranging in wavelength from 0.4 �m to 14.4 �m,

ith a high radiometric sensitivity (12 bit).Two bands are imaged
t a nominal resolution of 250 m at nadir, five bands at 500 m,  and
he remaining 29 bands at 1 km.  A ±55-degree scanning pattern at
he EOS orbit of 705 km achieves a 2330-km swath and provides
lobal coverage every one to two days.MODIS bands used in this
ork are the first seven ones, corresponding to a spatial resolution

f 250 and 500 m.  These spectral bands are suitable for the study
f vegetation characteristics. MODIS data used for this study were
cquired on 14 July 2007 and 30 July 2007.

ASTER is a high resolution imaging instrument flying on Terra. It
as the highest spatial resolution (15 meters VNIR) of all five sen-
ors on Terra and collects data in the visible/near infrared (VNIR),
hort wave infrared (SWIR), and thermal infrared bands (TIR). Each
ubsystem is pointable in the crosstrack direction. The VNIR sub-

ystem of ASTER is quite unique. One telescope of the VNIR system
s nadir looking and two ones are backward looking, allowing the
onstruction of three-dimensional digital elevation models (DEM)
ue to the stereo capability of different looking angles.
bservation and Geoinformation 20 (2013) 42–51 43

ASTER has a revisit period of 16 days, to any one location on the
globe, with a revisit time at the equator of four days. ASTER collects
approximately 8 min  of data per orbit (rather than continuously).
Among the 14 ASTER bands in this work we  only considered the
three channels in the VNIR region. For the purpose of our study,
two MODIS and two ASTER multispectral images were acquired on
14 July 2007 and 30 July 2007, respectively before and after a fire
occurrence (22 July 2007).

3. Classic methods: the NBR index

After a fire, the spectral behaviour of vegetation changes due
to consumption of fuel, presence of ash, reduced transpiration of
vegetation and increased surface temperature. All these effects
increase reflectance in mid-infrared and reduce surface reflectance
in near-infrared. This is the reason because NBR index (formula 1)
is computed on the basis of the two  burn sensitive bands, infrared
(NIR) and shortwave infrared (SWIR). For this reason, it may  be one
of the best indexes to detect a burn area.

NBR = NIR −  SWIR
NIR + SWIR

(1)

Maps obtained by the difference between pre- and post-fire indexes
(formula (2))  provide a measure of change which then can be used
to estimate biomass loss, carbon release, aerosols production, etc.
(Miller and Thode, 2007). Moreover, the difference in pre/post-
burn NBR index could reflect surface change and characterize burn
severity degree.

dNBR = NBRprefire − NBRpostfire (2)

Some authors suggest the use of relative dNBR (formula (3)) in
order to overcome the drawback linked to misclassification of low
vegetated pixels that could arise using the absolute change image
derived through dNBR (Miller et al., 2009). They argue that absolute
change may  be inappropriate to estimate ecological impacts of fire
and may  misclassify burn severity, especially using fixed threshold
values in fragmented ecosystems with different vegetation types.
Image differences could produce a misclassification in burn severity
especially for low vegetated pixel characterized by small variations
of pre/post-burn NBR index. The use of relative dNBR is recom-
mended to map  fire severity of historic fires, for which field data
may  not be available.

RdNBR = dNBR[abs (NBRprefire)]1/2 (3)

Moreover, the use of a relative index, here called RdNBR (3),  will
also enable us to make comparable burn severity estimation across
space and time, that is a key issue for a landscape level analysis.

4. Spatial autocorrelation statistics

4.1. Spatial autocorrelation: basic concepts

The spatial autocorrelation concept is based on the first geog-
raphy law introduced by Tobler (1970) “Everything is related to
everything else, but nearest things are more related than distant
things”. In other terms, considering the occurrences of a spatial
variable (events), spatial autocorrelation measures the degree of
dependency among events, considering at the same time their sim-
ilarity and their distance relationships.

In absence of spatial autocorrelation, the complete spatial ran-
domness hypothesis is valid: the probability to have an event in
one point with defined (x, y) coordinates is independent on the

probability to have another event belonging to the same variable.
The presence of spatial autocorrelation modifies that probability;
fixed a neighbourhood for each event, it is possible to understand
how much it is modified from the presence of other elements inside
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(9)

where N is the number of events in the whole distribution.
Fig. 1. Possible spatial distributions. (a) Positive spatial autocorre

hat neighbourhood.A distribution can show three types of spatial
utocorrelation (O’Sullivan and Unwin, 2002):

 the variable shows positive spatial autocorrelation (Fig. 1a) when
events are near and similar (clustered distribution);

 the variable shows negative spatial autocorrelation (Fig. 1b)
when, even if events are near, they are not similar (uniform dis-
tribution);

 the variable shows null autocorrelation (Fig. 1c) when there are
no spatial effects, neither about the position of events, or their
properties (random distribution).

The presence of autocorrelation in a spatial distribution is
aused by two effects, that could be clearly defined (Gatrell et al.,
996; Bailey and Gatrell, 1995), but that could not be separately
tudied in the practice:

 first order effects depend on properties of study region and mea-
sures how the expected value (average of the quantitative value
associated to each spatial event) varies in the space with the fol-
lowing expression:

�̂�(s) = lim
ds→0

{
E(Y(ds))

ds

}
(4)

where ds is neighbourhood around s, E (·) is the expected average
and Y(ds) is events number in neighbourhood;

 second order effects express local interactions between events
in a fixed neighbourhood, which tend to the distance between
events i and j. These effects are measured with covariance varia-
tions expressed by the limit:

�(sisj) =
lim

dsidsj → 0

{
E(Y(dsi)Y(dsj))

dsidsj

}
(5)

where symbols are similar to those used in equation 1.
As clarified by the definition of first and second order effects, the

study of spatial autocorrelation requests to know in more detail:
 the quantitative nature of dataset, also called intensity of the spa-
tial process, that is how strong a variable happens in the space
(Murgante et al., 2008; Danese et al., 2009; Murgante and Danese,
2011), with the aim to understand if events are similar or dissim-
ilar;

 the geometric nature of dataset. This needs the conceptualization
of geometric relationships, usually done by the use of matrixes: (i)
a distance matrix is defined to consider at which distance events
influence each other (distance band); (ii) a contiguity matrix is
useful to know if events influence each other; (iii) a matrix of

spatial weights expresses how strong this influence is.

Concerning the distance matrix, a method should be established
o calculate distances in module and direction.
, (b) negative spatial autocorrelation and (c) null autocorrelation.

For this concern Euclidean distance (3),  is the most used module.

dE(si, sj) =
√

(xi − xj)
2 + (yi − yj)

2 (6)

For what concerns direction, existing methods take their name from
the game of chess. They are called tower contiguity (Fig. 2a), bishop
contiguity (Fig. 2b) and queen contiguity (Fig. 2c).

Concerning the spatial weight matrix wij, most diffused methods
to calculate it are the “Inverse Distance” method and the “Fixed
Distance Band” method. In the first one, weights vary in inverse
relation to the distance dz

ij
among events:

wij = dz
ij (7)

where z is a number smaller then 0.
The “Fixed Distance Band” method defines a critical distance

beyond which two  events will never be adjacent. If the areas to
which i and j belong are contiguous, wij will be equal to 1, otherwise
wij will be equal to 0.

4.2. Global indicators of spatial autocorrelation

Global indicators of autocorrelation measure if and how much
the dataset is autocorrelated throughout the study region.

One of the principal global indicators of autocorrelation is the
Moran’s index I (Moran, 1948), defined in formula (8)

I =
N
∑

i

∑
jwij(Xi − X̄)(Xj − X̄)(∑

i

∑
jwij

)∑
i(Xi − X̄)

2
(8)

where N is the total pixel number, Xi and Xj are intensities in points
i and j (with i /= j), X̄ is the average value, wij is an element of the
weight matrix.

If I ∈ [−1; 1]; if I ∈ [−1; 0] there is a negative autocorrelation; if
I ∈ [0; 1] there is a positive autocorrelation. Theoretically, if I con-
verges to 0 there is null autocorrelation, in most of the cases, instead
of 0 the value used to affirm the presence of null autocorrelation is
given in equation (9):
Fig. 2. (a) Tower contiguity, (b) bishop contiguity and (c) queen contiguity.
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Fig. 3. Study area location: (left) orange indicates Basilicata region; (right) map  of
t
r
t

4

c
n

1

G

w
t

d
c
i
a
o

c
u

he burned area as provided by Italian Forestry Service; yellow depicts grassland and
ed forest cover affected by fire on 22 July 2007. (For interpretation of the references
o  color in this figure legend, the reader is referred to the web  version of this article.)

.3. Local indicators of spatial autocorrelation

Local indicators of spatial autocorrelation allow us to locate
lustered pixels, by measuring how much features inside the fixed
eighbourhood are homogeneous.

In this study we used the Getis–Ord Local Gi (Getis and Ord,
994; Illian et al., 2008), defined according to formula (10)

i(d) =
∑n

i=1wi(d)xi xi

∑n
i=1wi(d)

S(i)

√[
(N − 1)

∑n
i=1wi(d) −

(∑n
i=1wi(d)

)2
]
⁄N − 2

(10)

hich is very similar to Moran’s index, except for wij (d) which, in
his case, represents a weight which varies according to distance.

The interpretation of Getis and Ord’s Gi meaning is not imme-
iate, but it needs a preliminary classification that should be done
omparing Gi to intensity values. In particular, a high value of the
ndex means positive correlation for high values of intensity, while

 low value of the index means positive correlation for low values

f intensity.

Geostatistical analysis tools are available in several different
ommercial software, such as GIS and image processing ones. We
sed ENVI packages for the current study.

Fig. 4. Calculation of Moran’s I for dNBR.

Fig. 5. Comparison between results obtained by (top) dNBR calculated for Modis

datum and by (bottom) Gi calculated using dNBR as intensity. Correlation between
the  two  indexes is shown in the white rectangle.

4.4. Spatial autocorrelation and remote sensing

In the application of spatial autocorrelation methods in remote
sensing images it is important to define which are the spatial events,
their quantitative nature (intensity) and the conceptualization of
geometric relationships.

In the context of image processing the spatial event is the pixel
and spatial autocorrelation statistics are usually calculated consid-
ering geographical coordinates of its centroid.

Concerning the intensity, it should be chosen strictly consider-

ing the empirical nature of the case of study.

The conceptualization of geometric relationships in the case of
image processing is very easy, because distance between events
is always equal to or is a multiple of pixel size. The contiguity
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Fig. 6. Burned areas with different severity levels obtained with (top) RdNBR calculated for Modis datum and with (bottom) Gi calculated using RdNBR as intensity. Correlation
b

d
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etween the two  indexes is shown in the white rectangle.

istance is called in the image processing lag distance. The appli-
ation of spatial autocorrelation statistics in remote sensed image
llows us to obtain a new raster which contains in each pixel a
umber that expresses how much it is autocorrelated with other
ixels.

. Data processing and results
.1. Study area and data set

The study was carried out in Basilicata Region (South of Italy),
hich in the last years has been characterized by an increasing
number of fires, generally occurring during the dry season from
July to September. Spatial statistical analyses were carried out for
a significant fire event occurred in the municipality of Latron-
ico (Pz), with an extension of 261 ha. The area is characterized
by grasslands, Mediterranean maquis, broadleaf forest and transi-
tional woodland–shrub cover. Fig. 3 shows the location of study
area along with the map  of burned area carried out by Italian
Forestry Service. Yellow areas are related to burned grassland and

red areas are related to forest cover affected by fire.

Both MODIS and ASTER data were used to compute dNBR map
and further processed to assess burned areas and fire severity using
geostatistical analyses described in Section 4.
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Fig. 7. Fire scars as obtained from satellite images (top), Latronico Fires Maps of
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Table 1
Severity categories: dNBR and RdNBR thresholds from (Miller and Thode, 2007).

Severity category dNBR RdNBR

Unchanged <41 <69
Low 41/176 69/315

field survey and listed in Table 1.
urned areas from field surveys made by fire brigate (Corpo Forestale dello Stato)
bottom).

.2. MODIS data processing and results

First, MODIS data were used to compute the following
ndexes, by using MODIS spectral bands 2 (841–876 nm)  and 7
2105–2155 nm)  with a spatial resolution of 500 m.

BRMODIS = MODIS2 − MODIS7

MODIS2 + MODIS7
(11)

sing these two bands we obtained a NBR map  which is particularly
ensitive to changes occurring in vegetation cover affected by fire,
uch as amount of live green vegetation, moisture content, etc. NBR
alues generally range between 1 and −1 as well as NDVI. Strongly
egative NBR values would indicate a larger reflectance in SWIR
han NIR band, and this only occurs over not vegetated areas where
re cannot occur.

In order to well characterize and identify burned areas, we
omputed and used delta NBR (dNBR) expected to perform better
han other methods in capturing the spatial complexity of severity
ithin fire perimeters. Positive dNBR values represent a decrease

n vegetation while negative values represent increased vegetation
over. Finally another index was calculated, here called IMODIS (12),
btained from the NBR computed pre- and post-fire occurrence.
dNBRMODIS = NBRprefire − NBRpostfire√
|NBRprefire|

(12)
Moderate 176/366 316/640
High >366 >640

The intensity is generally chosen, considering the main feature of
phenomenon to analyze. In this paper, we  used two types of inten-
sity, computed using Eqs. (11) and (12), respectively.

In other words, Moran’s I and Getis and Ord’s Gi were calculated
using first dNBRMODIS (expressed by Eq. (11)) and then RdNBRMODIS
(expressed by Eq. (12)) as intensity.

For all these cases, the first step was  the use of the global
indicator to obtain lag distance useful to calculate Gi, which was
performed using queen’s contiguity, selected in order to conduct
the analysis in all directions.

To find the optimal lag distance, global Moran’s I was  used and
calculated for different values of lag distances. The best value is the
lag that maximizes I (Fig. 4) and captures image autocorrelation in
the best way. The lag found in both cases is 2 pixels.

At this point, local indicators of spatial association were calcu-
lated using lag distance found and queen’s contiguity.

Results from this assessment are shown in Figs. 5 and 6 where
burned areas are obtained with (see figures bottom) and without
(see figures top) the use of geo-statistical analysis.

In particular, Fig. 5 shows the comparison between different
MODIS classification results obtained from (top) dNBRMODIS and
(bottom) Gi calculated using the dNBRMODIS as intensity. Inten-
sities (dNBRMODIS and RdNBRMODIS) and their respective Gi were
classified according to the following steps:

- dNBRMODIS was classified finding empirically its minimum and
maximum value in the burned area. Range between such values
was  then split in equal classes;

-  INBR was classified with the same method applied to dNBRMODIS
raster;

- Gi was  classified considering a parabolic relationship found
between Gi values and intensity used for its calculation each time.
So Figs. 5 and 8 contain parabolic relationships found between
dNBRMODIS and Gi while Figs. 6 and 9 contain parabolic relation-
ships found between RdNBRMODIS and Gi.

Considering point (i) it should be noticed that we obtained seven
classes ranging from 0.1dNBR to 0.6dNBR. In order to assess the
physical significance of analyses, we compared our classes and
range values to results obtained by independent studies (Miller and
Thode, 2007) conducted in different geographical areas using field
observations. We  found a strong consistency between our range
values and those indicated by Miller and Thode (2007),  except for
the fact that the authors scaled NBRMODIS by 1000 to transform
data to integer format. Therefore, if we rescale dNBR values to be
compared, the seven classes we obtained are now ranging from
100 dNBRMODIS to 600 dNBRMODIS, which means that all classes we
obtained are related to burned area from low to high values. Con-
sidering point (ii), it should be noticed that we  obtained 4 classes
and making the same considerations for RdNBRMODIS as previously
done for dNBR we obtained that the last three classes ranging from
250 to 800 are related to burned areas from low to high values of
fire severity category, identified by Miller and Thode (2007) using
Considering that the classification is carried out using both Gi
and intensity values, it should be noted that: (i) a high value of Getis
and Ord’s Gi means positive correlation for high values of intensity,
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ig. 8. Burned areas with different severity levels obtained with (top) dNBR calcula
etween the two  indexes is shown in the white rectangle.

hus providing pixels strongly affected by fire and characterized by
igh fire severity level, (ii) while a low value of Getis and Ord’s Gi

ndex means positive correlation for low values of intensity, thus
roviding pixels characterized by low levels of fire severity or unaf-
ected by fire. The correlation between the two indexes is shown in
he white rectangle in Fig. 5.

From a visual inspection of Fig. 5, we can notice that results
btained by (top) dNBRMODIS exhibit some pixels which could not
ave been affected by fire. A similar behaviour can be observed in

he results of (bottom) Gi calculated using dNBR as intensity.

In Fig. 5 (top and bottom), some problems appear to be present:
i) the overestimation of burned area, and (ii) the presence of addi-
ional pixels classified as burned area. The overestimation of burned
r Aster datum and with (bottom) Gi calculated using dNBR as intensity. Correlation

area is due to pixel size which is not adequate for detecting a
fire-affected area of about 200 ha. Of course, the whole pixel is
classified as burned even if only a small part of it is affected by
fire.

To check reliability of obtained results, we  also considered inten-
sity obtained by means of Eq. (10), which should be able to better
classify fire affected pixels. Such results are shown in Fig. 6 where
burned areas are obtained with (see bottom) and without (see top)
the use of geo-statistical analysis. Areas with different fire sever-

ity levels were obtained with (top) RdNBR calculated for MODIS
images and with (bottom) Gi calculated using RdNBR as inten-
sity. Correlation between the two indexes is shown in the white
rectangle.
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Fig. 9. Burned areas with different severity levels obtained with (top) RdNBR calculated for Aster datum and with (bottom) Gi calculated using RdNBR as intensity. Correlation
b
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etween the two  indexes is shown in the white rectangle.

Fig. 6 (bottom) clearly shows that the classification carried out
sing both Gi and intensity values enabled us to exclude sporadic
ixels wrongly classified as fire affected using only RdNBR index,
hereas a group of seven pixels (Fig. 6, bottom) is still present.

 comparison with field surveys clearly suggests that this area is
orrectly classified as burned area linked to an additional fire of
bout 200 ha occurred in the same period (26 July 2007) very close
o the fire of our concern as highlighted in Fig. 7.
Of course, the overestimation of the burned area is still due
o pixel size, but the joint use of spectral indexes and statistical
nalyses enables us to correctly classify the burned area and to
iscriminate fire severity.
The use of spatial statistics allows us to obtain improved
identification of burned areas and, consequently, of fire sever-
ity classifications for both the investigated indexes dNBR and
RdNBR.

5.3. ASTER data processing and results

To evaluate the results obtained from MODIS data for the fire

under investigation, we also elaborated ASTER satellite images. As
in the previous case for MODIS, also ASTER data were used to assess
burned areas and fire severity with and without the use of geosta-
tistical analyses described in Section 4.
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ASTER data were used to compute NBR based indexes using
STER 3 (760–860 nm)  and 7 (2235–2285 nm)  spectral channels,
ith a spatial resolution of 30 m,  using formula (13).

BRASTER = ASTER2 − ASTER7

ASTER2 + ASTER7
(13)

n this case NBRASTER values were multiplied by 1000 and converted
o integer format to follow Miller and Thode (2007) and compare
BRASTER. As in the previous case for MODIS, another index was cal-
ulated, here called RdNBRASTER (see formula (14)), obtained from
BR computed pre- and post-fire occurrence.

dNBRASTER = NBRprefire − NBRpostfire√
|NBRprefire/1000|

(14)

ince we scaled NBR by 1000 to transform data to integer format,
n formula 14 the pre-fire NBR must be divided by 1000. Taking the
bsolute value of pre-fire, NBR in the denominator allows comput-
ng the square-root without changing the sign of original dNBR.

Fig. 8 depicts Aster burned areas with different severity lev-
ls obtained by dNBRaster (top) and Gi (bottom) calculated using
NBRaster as intensity. Correlation between the two  indexes is
hown in the white rectangle. Results were found with the same
lassification method used for MODIS images. Again, a parabolic
elationship was found between intensity and Getis and Ord’s Gi.
pplying this relationship, significant values of Gi were found cor-
esponding to dNBRaster classes.

As previously done for MODIS data investigations, considering
oint (i) of Section 5.2 we obtained several fire severity classes,
hose range values were compared with results obtained from
iller and Thode (2007).  We  found a strong consistency between

ur classes and range values indicated by Miller and Thode (2007)
n the basis of field surveys. In particular, the last five classes we
btained were higher than 200 and therefore they correspond to
oderate and high fire severity according to severity category by
iller and Thode (2007) herein listed in Table 1. Nevertheless, when
e applied this classification to the whole ASTER dNBRaster image,

 high number of pixels were identified as burned area with fire
everity levels ranging from moderate to high. As it is shown in Fig. 8
bottom), also in the case of ASTER dNBRaster images, the applica-
ion of spatial statistics enabled us to improve both the detection of
urned areas and the assessment of fire severity levels. The classifi-
ation of Gi (bottom), calculated using dNBR as intensity, excluded
nburned areas.

Finally, Fig. 9 shows different severity levels obtained by
dNBRASTER (top) and Gi (bottom) calculated using RdNBRASTER as

ntensity. Correlation between the two indexes is shown in the
hite rectangle.

The visual comparison between bottom and top of Fig. 9 clearly
hows that the classification carried out using both Gi and inten-
ity values enabled us to exclude sporadic pixels wrongly classified
s burned areas using only RdNBR index. A comparison with field
urveys clearly suggests that (i) this area is correctly classified as
urned area and (ii) fire severity categories well identified the dif-
erent levels of fire severity.

In particular, both mapping of the entire burned area and corre-
ponding to different levels of fire severity, have been reached with
PS tracking.

Results from all performed analyses pointed out that, for both
ODIS and ASTER images, a parabolic relationship was found

etween intensity and Getis and Ord’s Gi. Applying this relation-
hip, significant values of Gi were found corresponding to dNBR
lasses. Obtained results enable us to recognize fire burned areas

nd quantitatively characterize fire patterns and burn severity.

Of course, the use of Aster images limited the overestimation
f burned areas due to a most adequate pixel size for investigated
mall fires (around 200 ha). Finally, the joint use of spectral indexes
bservation and Geoinformation 20 (2013) 42–51

and statistical analyses enables us to correctly detect burned areas
and to assess fire severity using both investigated indices dNBR and
RdNBR.

6. Conclusions

In this paper, we propose a robust statistical approach, based on
the use of spatial indicators of global and local autocorrelation, to
detect burned area and estimate fire severity. Spatial autocorrela-
tion statistics, such as Moran’s I and Getis–Ord Local Gi  index (see
Moran, 1948; Getis and Ord, 1994), were used to capture pattern
features of burned areas.

We focused on the multiscale analyses using both MODIS
(Moderate Resolution Imaging Spectroradiometer) and ASTER
(Advanced Spaceborne Thermal Emission and Reflection Radiome-
ter) data to identify burned areas and characterize burn severity.
Pre- and post-fire satellite MODIS and ASTER images were pro-
cessed for a significant test area in Southern Italy. Spectral indexes
generally used for fire severity estimation were analyzed and pro-
cessed with and without using geostatistical analyses.

The comparison of results obtained for both MODIS  and ASTER
images with and without the use of spatial autocorrelation statistics
clearly pointed out the improvements achieved using both global
and local spatial autocorrelation statistics. Our results showed that
these statistics applied to MODIS and ASTER data allowed us (i) to
detect burned areas and (ii) to discriminate fire severity.

The new approach is independent on sensors used for the eval-
uation as well as on vegetation cover types affected by fire, being
the value obtained really close to those obtained by independent
studies carried out in diverse geographic regions and land cover
types.

Assessing and mapping burn severity is important for monitor-
ing fire effects, modeling and evaluating post-fire dynamics and
estimating vegetation resilience, which is the ability of vegetation
to recover after fire. The availability of satellite high resolution
imagery provides the opportunity to obtain useful information for
fire management, from risk evaluation to post-fire damage estima-
tion.

The herein proposed approach could be directly incorporated
into mapping process from local up to global scale.
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