2 Proceedings of the Melfi School on Advanced Topics in Mathematics and Physics

PROCEEDINGS OF THE WORKSHOP

ADVANCED SPECIAL FUNCTIONS AND INTEGRATION METHODS

MELFI (PZ), ITALY, 18-23 JUNE 2000

Edited by

GIUSEPPE DATTOLI

ENEA-Frascati, Frascati (RM), Italy

HARI M. SRIVASTAVA

University of Victoria, Victoria, British Columbia, Canada
and

CLEMENTE CESARANO

ENEA-Frascati, Frascati (RM), Italy/University of Ulm, Ulm, Germany

Volume pubblicato con il contributo del
 Dipartimento di Statistica, probabilitì e statistiche applicate
 Università di Roma "La Sapienza" - Roma

www.aracneeditrice.it info@aracneeditrice.it

ISBN 88-7999-298-8

I diritti di traduzione, di memorizzazione elettronica,
di riproduzione e di adattamento anche parziale,
con qualsiasi mezzo, sono riservati per tutti i Paesi.

Scientific Committe

Chairmen
G. Dattoli
G.M. Mastroianni
H.M. Srivastava
G. Korchmaros
ENEA-Frascati, Frascati (RM), Italy
Università della Basilicata, Potenza, Italy
University of Victoria, Victoria, Canada
Università della Basilicata, Potenza, Italy
L. Pasquini
A. Renieri
P.E. RICCI

Università di Roma"La Sapienza", Roma, Italy
ENEA-Frascati, Frascati (RM), Italy
Università di Roma" La Sapienza", Roma, Italy

Scientific Secretary

C. Cesarano

ENEA-Frascati, Frascati (RM), Italy
University of Ulm, Ulm, Germany

Organizing Committe

Chairman
G. Dattoli

ENEA-Frascati, Frascati (RM), Italy
C. Cesarano

ENEA-Frascati, Frascati (RM), Italy
University of Ulm, Ulm, Germany
D. COCOLICCHIO

Università della Basilicata, Potenza, Italy
INFN-Milano, Milano, Italy
S. Noschese

Università di Roma "La Sapienza", Roma, Italy
D. Occorsio

Università della Basilicata, Potenza, Italy
D. SACCHETTI

Università di Roma "La Sapienza", Roma, Italy

Organizing Secretary

G. Bartolomei
T. LaSALA
M. Pierotti

ENEA-Frascati, Frascati (RM), Italy
Comune di Melfi, Melfi (PZ), Italy
ENEA-Frascati, Frascati (RM), Italy

List of Participants

A. Aguglia	sità della Basilicata, Potenza, Italy
C. Belingeri	Università di Roma "La Sapienza", Roma, Italy
Y. Ben Cheikh	University of Monastir, Monastir, Tunisia
P.V. Ceccherini	Università di Roma "La Sapienza", Roma, Italy
C. Cesarano	ENEA-Frascati, Frascati (RM), Italy University of Ulm, Ulm, Germany
W. Chu	Università di Lecce, Lecce, Italy
D. Cocolicchio	Università della Basilicata, Potenza, Italy INFN-Milano, Milano, Italy
Dattoli	ENEA-Frascati, Frascati (RM), Italy
M.C. De Bonis	Università della Basilicata, Potenza, Italy
A. Di Crescenzo	Università della Basilicata, Potenza, Italy
C. Frammartino	Università della Basilicata, Potenza, Italy
M. Funk	Università della Basilicata, Potenza, Italy
B. Germano	Università di Roma "La Sapienza", Roma, Italy
L. Giannessi	ENEA-Frascati, Frascati (RM), Italy
G. Korchmaros	Università della Basilicata, Potenza, Italy
D. Labbate	Università della Basilicata, Potenza, Italy
C. Laurita	Università della Basilicata, Potenza, Italy
M.R. Martinelli	Università di Roma "La Sapienza", Roma, Italy
G.M. Mastroianni	Università della Basilicata, Potenza, Italy
V. Napolitano	Università della Basilicata, Potenza, Italy
S. Noschese	Università di Roma "La Sapienza", Roma, Italy
D. Occorsio	Università della Basilicata, Potenza, Italy
W.A. Paciorek	Global Phasing Ltd., Cambridge, England
O. Polverino	Università della Basilicata, Potenza, Italy
M. Quattromini	ENEA-Frascati, Frascati (RM), Italy
P.E. RIcCI	Università di Roma "La Sapienza", Roma, Italy
M.G. Russo	Università della Basilicata, Potenza, Italy
D. SAcchetti	Università di Roma "La Sapienza", Roma, Italy
M. Scafati-Tallini	Università di Roma "La Sapienza", Roma, Italy
A. Sonnino	Università della Basilicata, Potenza, Italy
H.M. Srivastava	University of Victoria, Victoria, Canada
P. Sziklai	University of Budapest, Hungary
A. Torre	ENEA-Frascati, Frascati (RM), Italy

Z. Weiner
A. Wünsche
G. Bartolomei
M. Pierotti
L. Branchini
S. Calabrese
T. Lasala
A. Nardozza
E. Navazio
E.A. Navazio
N.G. Pagliuca

University of Budapest, Hungary
Humboldt-Universität, Berlin, Germany

ENEA-Frascati, Frascati (RM), Italy ENEA-Frascati, Frascati (RM), Italy

Comune di Melfi, Melfi (PZ), Italy
Comune di Melfi, Melfi (PZ), Italy
Comune di Melfi, Melfi (PZ), Italy
Provincia di Potenza, Potenza, Italy
Public Library, Melfi (PZ), Italy
Comune di Melfi, Melfi (PZ), Italy
Comune di Melfi, Melfi (PZ)
Regione Basilicata, Potenza, Italy

Table of Contents

Introduction 11
H.M. Srivastava
The Euler-Knopp transformation and associated families of generating functions 15
W. Chu
Duplicate inverse series relations and hypergeometric evaluations with $z=1 / 4$ 45
G. Dattoli
Pseudo-Laguerre and Pseudo-Hermite Polynomials 69
C. Cesarano
Monomiality principle and Legendre polynomials 83
T. Isoni, P. Natalini, P.E. Ricci
Symbolic computation of Newton sum rules for the zeros of orthogonal polynomials 97
A. Torre
The fractional Fourier transform: theory and applications 113
Y. Ben Cheikh
Generalized Fourier transform associated with the differential operator D_{z}^{n} in the complex domain 143
A. Wünsche
Hermite and Laguerre 2D polynomials and $2 D$ functions with applications 157
G. Dattoli, S. Lorenzutta
An application of the pseudo hyperbolic function to the theory of arbitrary order coherent states 199
C. Cesarano, A. Di Crescenzo
Pseudo-Bessel functions in the description of random motions 211
L. Giannessi, A. Doria
Solution of Liouville and Von Neumann equation with the symmetric split operator technique 227
M. Quattromini
Covariant smoothing of electromagnetic fields in Monte Carlo simulations 237
S. Noschese, P.E. Ricci
Uniform polynomial approximation to solutions of ordinary differential equations. Two methods 259
D. Occorsio, W. Themistoclakis
Numerical computation of a weakly singular integral operator on the real axis 271
C. Frammartino, M.G. Russo
Numerical remarks on the condition numbers and the eigenvalues of matrices arising from integral equations 291
D. Cocolicchio
Advances in optical sum rules 311
A. SonninoSome results on generalised affine spacesand their applications339
V. Napolitano
On a characterization problem for finite linear spaces 351

Introduction

This volume contains the contributions to the second Melfi Workshop on Advanced Special Function and Integration Methods.

As in the previous workshop we have tried to emphasize the role played by Special Functions (SF) in different research areas, covering fields from pure mathematics to applications.

The increasing importance of SF's, of conventional and generalized nature, in unrelated fields is due to the concurrence of many factors, which can however be traced back to a common thread.

One of the most attractive aspects of the modern point of view on the SF theory is perhaps a by product of the Lie treatment, namely the possibility of expressing a large number of complicated operational relations in terms of different types of SF. Very recently a breakthrough in this respect has been offered by elementary methods linked to the so called monomiality PRINCIPLE. Such a technique provides the tools to explore in a systematic and unified way a large class of operational identities and offers the keynote to construct SF of generalized nature. The interest in applications for this aspect of the problem relies upon the fact that

1) most of the operational identities occurring in this treatment appears quite naturally in quantum mechanical problems or in applications concerning wave propagation in classical optics
2) the SF of generalized nature are the suited tool to solve questions related to classical electromagnetism, like radiation emission by accelerated charge
3) a large body of the formalism, associated with the monomiality principle, is ideally suited for the study of differential equations of different nature, involving parabolic equations related to evolution problems.

Regarding this last point, the combined use of SF and operational techniques becomes a unique tool to solve Schroedinger and Liouville type equations by means of the evolution operator method.

Modern computer languages, devoted to the solution of practical problems as charged beam transport in accelerators or optical beam transport
in laser cavities, utilize evolution operator and algebraic methods in which the SF's are an almost obliged step. Furthermore many transforms (Fourier, Hankel, Wigner, Gauss, Fresnell. . . and their fractional counterparts) are now being viewed as particular cases of the evolution operator and offers therefore a new field of application of conventional and generalized SF's.

In these proceedings we have tried to give an idea of how SF may combine with methods of algebraic nature and provide the answer to various problems in application. However we did not forget other aspects as the mutual influence between SF's and Combinatorics which is having during these last years a significant evolution due, among the other things, to applications in cryptography.

Even though we have stressed the applicative content of this book, we must also underline that the research in this field cannot proceed without the support from more speculative points of view.

The proceedings include therefore contributions on advanced topics dealing with new types of SF's belonging to the families of pseudo-SF including the so called d-orthogonal polynomials. During the workshop it has been pointed out that these last mentioned functions may be a crucial tool for problems in classical and quantum statistics.

As for the last year, we must underline that the success of the Workshop has been determined by the generous and enthusiastic support of the Melfi Town Council. In particular we owe our gratitude to the Major Prof. Ernesto A. Navazio, to On. dr. Nicola Pagliuca to Prof. Luigi Branchini, to prof. Sandro Calabrese members of the Town Council and to dr. Tania Lasala director of the culture department. It is also a pleasure to thank dr. G. Bartolomei, Mr. M. Pierotti for their heroic effort in solving all the logistic and bureaucratic problems.

It is finally a pleasure to recognize the financial support for the publication of the proceedings of the Dipartimento di Statistica, Probabilità e Statistiche Applicate of University of Rome La Sapienza.

Giuseppe Dattoli

THE EULER-KNOPP TRANSFORMATION AND ASSOCIATED FAMILIES OF GENERATING FUNCTIONS

H.M. Srivastava
Department of Mathematics and Statistics
University of Victoria - Victoria, British Columbia V8W 3P4 (Canada)
E-mail: harimsri@math.uvic.ca

Abstract

The problem of summation of a slowly convergent series is usually handled by transforming the given series into another series which converges faster than the original series. One of many such series transformations, which are commonly employed for accelerating the convergence of slowly convergent series, is the familiar Euler-Knopp transformation which was recently generalized by making use of the classical Laguerre and related polynomials. The main object of this two-part series of lectures is to show how some of these generalized series transformations, which are presented here rather systematically, would lead naturally to the derivation of several general results on generating functions (involving the Stirling numbers of the second kind) for a fairly wide variety of special functions and polynomials in one, two, and more variables. Relevant connections of many of the families of generating functions, which are considered here, with various known results (given by earlier authors) are also pointed out.

1. Introduction, Definitions, and Preliminaries

In a large variety of widespread areas of applications, one encounters the need for summing a given series that usually does not converge as fast as may be desired. A well-exploited technique for summing a slowly converging series consists in attempting to transform the given series into another which converges more rapidly than the original series. One of several such transformations, which are commonly used for accelerating convergence of slowly converging series, is the familiar Euler-Knopp transformation (cf., e.g., Hardy [5, p. 178 et seq.]), which we recall here as

Theorem 1 (Euler-Knopp) In terms of a given sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$, let

$$
\begin{gather*}
A_{n}^{(\nu)}(p):=\sum_{k=0}^{n}\binom{n+\nu}{n-k}(-p)^{n-k} a_{k} \tag{1.1}\\
\left(n \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\} ; \mathbb{N}:=\{1,2,3, \ldots\}\right),
\end{gather*}
$$

where ν is a constant and p is a suitable acceleration parameter.
Then

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n} z^{n}=\sum_{n=0}^{\infty} A_{n}^{(0)}(p) z^{n}(1-p z)^{-n-1} \tag{1.2}
\end{equation*}
$$

for all values of z and p for which both summands exist and each of the series converges.

The classical Euler transformation is a special case of Theorem 1 when

$$
z=-1 \quad \text { and } \quad p=1
$$

For $p=1$ (and $\nu=0$), the definition (1.1) coincides with that of the nth divided difference $\triangle^{n} a_{0}$. In this special case, Theorem 1 yields a (known) nonlinear transformation which is not recommended now-a-days (see, for details, Hartee [6] and Niethammer [10]).

The classical Laguerre polynomials $L_{n}^{(\alpha)}(x)$, of order α and degree n in x, are defined by (cf. Szegö [17, p. 101])

$$
\begin{equation*}
L_{n}^{(\alpha)}(x):=\sum_{k=0}^{n}\binom{n+\alpha}{n-k} \frac{(-x)^{k}}{k!} \tag{1.3}
\end{equation*}
$$

or, equivalently, by

$$
\begin{equation*}
L_{n}^{(\alpha)}(x)=\binom{n+\alpha}{n}{ }_{1} F_{1}(-n ; \alpha+1 ; x) \tag{1.4}
\end{equation*}
$$

where, as usual, ${ }_{l} F_{m}$ denotes a generalized hypergeometric function with l numerator and m denominator parameters, defined by (cf., e.g., Erdélyi et al. [2, Vol. I, Chapter 4])

$$
\begin{align*}
& { }_{l} F_{m}\left(\lambda_{1}, \ldots, \lambda_{l} ; \mu_{1}, \ldots, \mu_{m} ; z\right):=\sum_{n=0}^{\infty} \frac{\left(\lambda_{1}\right)_{n} \cdots\left(\lambda_{l}\right)_{n}}{\left(\mu_{1}\right)_{n} \cdots\left(\mu_{m}\right)_{n}} \frac{z^{n}}{n!} \tag{1.5}\\
& \left(\lambda_{j} \in \mathbb{C}(j=1, \ldots, l) ; \mu_{j} \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}(j=1, \ldots, m) ;\right. \\
& \mathbb{Z}_{0}^{-}:=\{0,-1,-2, \ldots\} ; l, m \in \mathbb{N}_{0} ; l<m+1 \\
& \text { and } z \in \mathbb{C} ; l=m+1 \text { and }|z|<1 ; l=m+1 \\
& \left.|z|=1, \text { and } \Re\left(\sum_{j=1}^{m} \mu_{j}-\sum_{j=1}^{l} \lambda_{j}\right)>0\right)
\end{align*}
$$

with, of course, the Pochhammer symbol (or the shifted factorial) $(\lambda)_{n}$ given, in terms of the Gamma functions, by

$$
(\lambda)_{n}:=\frac{\Gamma(\lambda+n)}{\Gamma(\lambda)}= \begin{cases}1 & (n=0) \\ \lambda(\lambda+1) \cdots(\lambda+n-1) & (n \in \mathbb{N})\end{cases}
$$

Indeed these polynomials are orthogonal over the interval $(0, \infty)$ with respect to the weight function $x^{\alpha} e^{-x}$; in fact, we have (cf., e.g., Szegö [17, p. 100])

$$
\begin{gather*}
\int_{0}^{\infty} x^{\alpha} e^{-x} L_{m}^{(\alpha)}(x) L_{n}^{(\alpha)}(x) d x=\Gamma(\alpha+1)\binom{n+\alpha}{n} \delta_{m, n} \tag{1.6}\\
\left(\mathfrak{R}(\alpha)>-1 ; m, n \in \mathbb{N}_{0}\right)
\end{gather*}
$$

where $\delta_{m, n}$ denotes the Kronecker delta.
Making use of the classical Laguerre polynomials $L_{n}^{(\alpha)}(x)$, Gabutti and Lyness [3] gave an interesting generalization of (the Euler-Knopp) Theorem 1. Indeed, by means of several illustrative examples of slowly converging series, they investigated the optimal choice of the acceleration parameter p so that the resulting new series has the fastest convergence (see, for details, [3, p. 265 et seq.]). We recall here their main result contained in

Theorem 2 (Gabutti and Lyness [3]) Let $g(t)$ be any function for which the following integral representation of the sequence $\left\{b_{n}^{(\alpha, \nu)}(\lambda, \mu)\right\}_{n=0}^{\infty}$ exists:

$$
\begin{align*}
b_{n}^{(\alpha, \nu)}(\lambda, \mu) \quad & :=\binom{n+\nu}{n}^{-1} \int_{0}^{\infty} e^{-\lambda t} t^{\alpha} L_{n}^{(\alpha)}(t) g(\mu t) d t \tag{1.7}\\
& (\mathfrak{R}(\lambda)>0),
\end{align*}
$$

where $L_{n}^{(\alpha)}(x)$ denotes the Laguerre polynomials defined by (1.3).
Then

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n} b_{n}^{(\alpha, \nu)}(\lambda, \mu)=\sum_{n=0}^{\infty} A_{n}^{(\nu)}(p)(1-p)^{-n} b_{n}^{(\alpha, \nu)}\left(\lambda^{\prime}, \mu^{\prime}\right) \tag{1.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda^{\prime}:=p+(1-p) \lambda \quad \text { and } \quad \mu^{\prime}:=(1-p) \mu \tag{1.9}
\end{equation*}
$$

and the sequence $\left\{A_{n}^{(\nu)}(p)\right\}_{n=0}^{\infty}$ is defined by (1.1), it being assumed that $\alpha, \nu, \lambda, \mu, a_{n}$, and p are so constrained that both sums in (1.8) exist and converge.

For $\nu=0$, (the Gabutti-Lyness) Theorem 2 obviously provides a new (possibly wider) family of series to which the Euler-Knopp transformation (Theorem 1) may be applied. Moreover, for other admissible values of ν, it
provides an apparently new class of transformations. In this two-part series of lectures, we aim at presenting some recent developments in connection with the aforementioned series transformations, especially in the derivation of numerous families of generating functions (involving the Stirling numbers of the second kind) for a remarkably wide variety of special functions and polynomials in one, two, and more variables. We also consider relevant connections of the results presented here with those given in earlier works on the subject.

2. A Unified Presentation of the Laguerre and Hermite Polynomials

In the remarkably vast and widely scattered literature on special functions and polynomials, there are numerous generalizations of the classical Laguerre polynomials $L_{n}^{(\alpha)}(x)$ defined by (1.3) and of the classical Hermite polynomials $H_{n}(x)$ defined by ($c f$. Szegö [17, p. 106])

$$
\begin{align*}
H_{n}(x) & :=\sum_{k=0}^{[n / 2]}(-1)^{k}\binom{n}{2 k} \frac{(2 k)!}{k!}(2 x)^{n-2 k} \tag{2.1}\\
& =(2 x)^{n}{ }_{2} F_{0}\left(-\frac{1}{2} n,-\frac{1}{2} n+\frac{1}{2} ;-;-x^{-2}\right)
\end{align*}
$$

which satisfy the orthogonality property (cf., e.g., Szegö [17, p. 105]):

$$
\begin{gather*}
\int_{-\infty}^{\infty} e^{-x^{2}} H_{m}(x) H_{n}(x) d x=2^{n} n!\sqrt{\pi} \delta_{m, n} \tag{2.2}\\
\left(m, n \in \mathbb{N}_{0}\right)
\end{gather*}
$$

where, as before in (1.6), $\delta_{m, n}$ is the Kronecker delta. Indeed the relationship of these polynomials with the classical Laguerre polynomials $L_{n}^{(\alpha)}(x)$ is given by

$$
\begin{equation*}
H_{2 n+\varepsilon}(x)=(-1)^{n} 2^{2 n+\varepsilon} n!x^{\varepsilon} L_{n}^{\left(\varepsilon-\frac{1}{2}\right)}\left(x^{2}\right) \quad(\varepsilon=0 \text { or } 1) \tag{2.3}
\end{equation*}
$$

One of the aforementioned generalizations of the classical Laguerre and Hermite polynomials is provided by (for example) the generalized Hermite polynomials considered by Gould and Hopper [4]. In their attempt to present a unified investigation of many of these known extensions and generalizations of the classical Laguerre and Hermite polynomials, Srivastava and Singhal [16] introduced a sequence $\left\{G_{n}^{(\alpha)}(x, r, q, \kappa)\right\}_{n=0}^{\infty}$ of polynomials (of degree n in x^{r} and in α) defined by the following Rodrigues-type formula:

$$
\begin{equation*}
G_{n}^{(\alpha)}(x, r, q, \kappa):=\frac{x^{-\alpha-\kappa n}}{n!} \exp \left(q x^{r}\right)\left(x^{\kappa+1} \frac{d}{d x}\right)^{n}\left\{x^{\alpha} \exp \left(-q x^{r}\right)\right\} \tag{2.4}
\end{equation*}
$$

where the parameters α, q, r, and κ are unrestricted, in general (with, of course, $\kappa \neq 0$). The Srivastava-Singhal polynomials $G_{m}^{(\alpha)}(x, r, q, \kappa)$ are generated by [16, p. 78, Equation (3.2)]

$$
\begin{align*}
(1-\kappa t)^{-\alpha / \kappa} & \exp \left(q x^{r}\left[1-(1-\kappa t)^{-r / \kappa}\right]\right) \tag{2.5}\\
& =\sum_{n=0}^{\infty} G_{n}^{(\alpha)}(x, r, q, \kappa) t^{n}
\end{align*}
$$

and, more generally, by [16, p. 78, Equation (3.1)]

$$
\begin{align*}
\sum_{n=0}^{\infty} & \frac{\left(\lambda_{1}\right)_{n} \cdots\left(\lambda_{l}\right)_{n}}{\left(\mu_{1}\right)_{n} \cdots\left(\mu_{m}\right)_{n}} G_{n}^{(\alpha)}(x, r, q, \kappa) t^{n} \\
\quad & \exp \left(q x^{r}\right) \sum_{n=0}^{\infty} \frac{\left(-q x^{r}\right)^{n}}{n!} \tag{2.6}\\
& \quad \cdot l+1 F_{m}\left(\lambda_{1}, \ldots, \lambda_{l}, \frac{\alpha+n r}{\kappa} ; \mu_{1}, \ldots, \mu_{m} ; \kappa t\right),
\end{align*}
$$

which would immediately reduce to the generating function (2.5) upon setting

$$
l=m \quad \text { and } \quad \lambda_{j}=\mu_{j} \quad(j=1, \ldots, l(\text { or } m))
$$

We recall here the following relationships of the Srivastava-Singhal polynomials $G_{n}^{(\alpha)}(x, r, q, \kappa)$ with some other known polynomials which are seemingly relevant to our present investigation (cf. [16, p. 76]; see also a more recent work by Hubbell and Srivastava [7]):

$$
\begin{align*}
G_{n}^{(\alpha)}(x, r, q,-1) & =G_{n}^{(\alpha-n+1)}(x, r, q, 1) \tag{2.7}\\
& =\frac{(-x)^{n}}{n!} H_{n}^{r}(x, \alpha, q)
\end{align*}
$$

where $H_{n}^{r}(x, \alpha, q)$ denotes the aforementioned Gould-Hopper generalization of the classical Hermite polynomials;

$$
\begin{gather*}
G_{n}^{(0)}(x, 2,1,-1)=G_{n}^{(1-n)}(x, 2,1,1)=\frac{(-x)^{n}}{n!} H_{n}(x) \tag{2.8}\\
G_{n}^{(\alpha+1)}(x, 1,1, \kappa)=\kappa^{n} Y_{n}^{\alpha}(x ; \kappa) \quad(\kappa \in \mathbb{N}) \tag{2.9}
\end{gather*}
$$

where $Y_{n}^{\alpha}(x ; \kappa)(\alpha>-1 ; \kappa \in \mathbb{N})$ denotes the Konhauser biorthogonal polynomials ($c f$. [8]; see also [12]);

$$
\begin{equation*}
G_{n}^{(\alpha+n)}(x, 1,1,-1)=G_{n}^{(\alpha+1)}(x, 1,1,1)=L_{n}^{(\alpha)}(x) \tag{2.10}
\end{equation*}
$$

For the Srivastava-Singhal polynomials defined by (2.4), it is known also that (cf. [16, p. 79, Equation (3.6)])

$$
\begin{align*}
\sum_{n=0}^{\infty}\binom{m+n}{n} \quad & G_{m+n}^{(\alpha)}(x, r, q, \kappa) t^{n} \\
=(1-\kappa t)^{-m-\alpha / \kappa} & \exp \left(q x^{r}\left[1-(1-\kappa t)^{-r / \kappa}\right]\right) \tag{2.11}\\
& \cdot G_{m}^{(\alpha)}\left(x(1-\kappa t)^{-1 / \kappa}, r, q, \kappa\right) \\
& \left(m \in \mathbb{N}_{0} ; \kappa \neq 0 ; \quad|t|<|\kappa|^{-1}\right) .
\end{align*}
$$

Upon replacing x in (2.11) by $x^{1 / r}(r \neq 0)$, if we set

$$
t=-\frac{p}{1-\kappa p} \quad\left(|p|<|\kappa|^{-1}\right)
$$

we easily find from (2.11) that

$$
\begin{align*}
G_{m}^{(\alpha)}\left(x^{1 / r}, r, q, \kappa\right)= & (1-\kappa p)^{-m-\alpha / \kappa} \exp \left(q x\left[1-(1-\kappa p)^{-r / \kappa}\right]\right) \tag{2.12}\\
& \cdot \sum_{n=0}^{\infty}\binom{m+n}{n} G_{m+n}^{(\alpha)}\left(\frac{x^{1 / r}}{(1-\kappa p)^{1 / \kappa}}, r, q, \kappa\right)\left(-\frac{p}{1-\kappa p}\right)^{n} \\
& \left(m \in \mathbb{N}_{0} ; \kappa, r \neq 0 ;|p|<|\kappa|^{-1}\right)
\end{align*}
$$

By applying the generating function (2.12), we now state and prove a generalization of (the Gabutti-Lyness) Theorem 2, which is given by (see, for details, Srivastava [13])

Theorem 3 Let $g(t)$ be any function for which the following integral representation of the sequence $\left\{c_{n}^{(\alpha, \beta)}(\lambda, \mu ; \nu)\right\}_{n=0}^{\infty}$ exists:

$$
\begin{align*}
c_{n}^{(\alpha, \beta)}(\lambda, \mu ; \nu):= & \binom{n+\nu}{n}^{-1} \int_{0}^{\infty} e^{-\lambda t} t^{\beta} G_{n}^{(\alpha)}\left(t^{1 / r}, r, q, \kappa\right) g(\mu t) d t \\
& (\mathfrak{R}(\lambda)>0 ; \kappa, r \neq 0) \tag{2.13}
\end{align*}
$$

where $G_{n}^{(\alpha)}(x, r, q, \kappa)$ denotes the Srivastava-Singhal polynomials defined by (2.4).

Then

$$
\begin{gather*}
\sum_{n=0}^{\infty} a_{n} c_{n}^{(\alpha, \beta)}(\lambda, \mu ; \nu)=\sum_{n=0}^{\infty} A_{n}^{(\nu)}(p)(1-\kappa p)^{-n-[\alpha-(\beta+1) r] / \kappa} \tag{2.14}\\
\cdot c_{n}^{(\alpha, \beta)}\left(\lambda^{\prime}, \mu^{\prime} ; \nu\right)
\end{gather*}
$$

where

$$
\begin{equation*}
\lambda^{\prime}:=q+(\lambda-q)(1-\kappa p)^{r / \kappa} \quad \text { and } \quad \mu^{\prime}:=\mu(1-\kappa p)^{r / \kappa} \tag{2.15}
\end{equation*}
$$

and the sequence $\left\{A_{n}^{(\nu)}(p)\right\}_{n=0}^{\infty}$ is defined by (1.1), it being assumed that α, $\beta, \lambda, \mu, q, r, \kappa, a_{n}$, and p are so constrained that both sums in (2.14) exist and converge.

Proof. Denote, for convenience, the infinite series on the left-hand side of (2.14) by \Im. Then, by appealing to the definition (2.13) as well as the generating function (2.12), we obtain

$$
\begin{align*}
& \Im:=\sum_{n=0}^{\infty} a_{n} c_{n}^{(\alpha, \beta)}(\lambda, \mu ; \nu) \\
& =\sum_{n=0}^{\infty} a_{n}\binom{n+\nu}{n}^{-1} \int_{0}^{\infty} e^{-\lambda t} t^{\beta} g(\mu t)(1-\kappa p)^{-n-\alpha / \kappa} \exp \left(q t\left[1-(1-\kappa p)^{-r / \kappa}\right]\right) \\
& \cdot \sum_{j=0}^{\infty}\binom{n+j}{j} G_{n+j}^{(\alpha)}\left(\frac{t^{1 / r}}{(1-\kappa p)^{1 / \kappa}}, r, q, \kappa\right)\left(-\frac{p}{1-\kappa p}\right)^{j} d t \\
& =\sum_{n, j=0}^{\infty} a_{n}\binom{n+\nu}{n}^{-1}\binom{n+j}{j}(1-\kappa p)^{-n-j-\alpha / \kappa}(-p)^{j} \\
& \cdot \int_{0}^{\infty} \exp \left(-t\left\{\lambda-q\left[1-(1-\kappa p)^{-r / \kappa}\right]\right\}\right) t^{\beta} g(\mu t) \\
& G_{n+j}^{(\alpha)}\left(\frac{t^{1 / r}}{(1-\kappa p)^{1 / \kappa}}, r, q, \kappa\right) d t \\
& =\sum_{j=0}^{\infty} \sum_{n=0}^{j} a_{n}\binom{n+\nu}{n}^{-1}\binom{j}{j-n}(1-\kappa p)^{-j-\alpha / \kappa}(-p)^{j-n} \\
& \cdot \int_{0}^{\infty} \exp \left(-t\left\{\lambda-q\left[1-(1-\kappa p)^{-r / \kappa}\right]\right\}\right) t^{\beta} g(\mu t) \\
& \cdot G_{j}^{(\alpha)}\left(\frac{t^{1 / r}}{(1-\kappa p)^{1 / \kappa}}, r, q, \kappa\right) d t, \tag{2.16}
\end{align*}
$$

provided that the inversions of the order of summation and integration can be justified by absolute convergence of the integral and series involved.

If we now set

$$
t=(1-\kappa p)^{r / \kappa} u \quad \text { and } \quad d t=(1-\kappa p)^{r / \kappa} d u
$$

we find from (2.16) that

$$
\begin{align*}
& \Im=\sum_{j=0}^{\infty} \sum_{n=0}^{j} a_{n}\binom{n+\nu}{n}^{-1}\binom{j}{j-n}(-p)^{j-n}(1-\kappa p)^{-j-[\alpha-(\beta+1) r] / \kappa} \\
& \cdot \int_{0}^{\infty} e^{-\lambda^{\prime} u} u^{\beta} G_{j}^{(\alpha)}\left(u^{1 / r}, r, q, \kappa\right) g\left(\mu^{\prime} u\right) d u \tag{2.17}
\end{align*}
$$

where λ^{\prime} and μ^{\prime} are defined by (2.15).
Finally, we interpret the integral in (2.17) by means of the definition (2.13). We thus obtain

$$
\begin{aligned}
& \Im= \sum_{j=0}^{\infty} \sum_{n=0}^{j} a_{n}\binom{n+\nu}{n}^{-1}\binom{j}{j-n}(-p)^{j-n} \\
& \cdot(1-\kappa p)^{-j-[\alpha-(\beta+1) r] / \kappa}\binom{j+\nu}{j} c_{j}^{(\alpha, \beta)}\left(\lambda^{\prime}, \mu^{\prime} ; \nu\right) \\
&= \sum_{j=0}^{\infty}(1-\kappa p)^{-j-[\alpha-(\beta+1) r] / \kappa} c_{j}^{(\alpha, \beta)}\left(\lambda^{\prime}, \mu^{\prime} ; \nu\right) \\
& \cdot \sum_{n=0}^{j}\binom{j+\nu}{j-n}(-p)^{j-n} a_{n}
\end{aligned}
$$

which, in view of the definition (1.1), is precisely the infinite series on the right-hand side of the assertion (2.14) of Theorem 3.

Since [15, p. 381, Equation 7.6(19); see also Equation (2.9) above]

$$
\begin{equation*}
Y_{n}^{\alpha}(x ; s)=s^{-n} G_{n}^{(\alpha+1)}(x, 1,1, s) \quad(s \in \mathbb{N}) \tag{2.18}
\end{equation*}
$$

where $Y_{n}^{\alpha}(x ; s)$ denotes one class of biorthogonal polynomials introduced by Konhauser (cf. [8]; see also [12]) for $\alpha>-1$ and $s \in \mathbb{N}$, by setting

$$
q=r=1 \quad \text { and } \quad \kappa=s \quad(s \in \mathbb{N})
$$

and making some simple notational changes such as $\alpha \longmapsto \alpha+1$, we can specialize Theorem 3 in order to deduce

Corollary 1 Let $g(t)$ be any function for which the following integral representation of the sequence $\left\{d_{n}^{(\alpha, \beta)}(\lambda, \mu ; \nu)\right\}_{n=0}^{\infty}$ exists:

$$
\begin{align*}
d_{n}^{(\alpha, \beta)}(\lambda, \mu ; \nu) & :=\binom{n+\nu}{n}^{-1} \int_{0}^{\infty} e^{-\lambda t} t^{\beta} Y_{n}^{\alpha}(t ; s) g(\mu t) d t \tag{2.19}\\
(\Re(\lambda) & >0 ; s \in \mathbb{N})
\end{align*}
$$

in terms of the Konhauser biorthogonal polynomials $Y_{n}^{\alpha}(x ; s)$ given by (2.18) and (2.4).

Then

$$
\begin{array}{r}
\sum_{n=0}^{\infty} a_{n} d_{n}^{(\alpha, \beta)}(\lambda, \mu ; \nu)=\sum_{n=0}^{\infty} A_{n}^{(\nu)}(p)(1-\kappa p)^{-n+(\beta-\alpha) / s} \\
\cdot d_{n}^{(\alpha, \beta)}\left(\lambda^{\prime}, \mu^{\prime} ; \nu\right) \tag{2.20}
\end{array}
$$

where

$$
\begin{equation*}
\lambda^{\prime}:=1+(\lambda-1)(1-p)^{1 / s} \quad \text { and } \quad \mu^{\prime}:=\mu(1-p)^{1 / s} \tag{2.21}
\end{equation*}
$$

and the sequence $\left\{A_{n}^{(\nu)}(p)\right\}_{n=0}^{\infty}$ is defined by (1.1), it being assumed that $\alpha, \beta, \lambda, \mu, a_{n}$, and p are so constrained that both sums in (2.20) exist and converge.

Recalling that [$c f$. Equations (2.10) and (2.18)]

$$
\begin{equation*}
Y_{n}^{\alpha}(x ; 1)=L_{n}^{(\alpha)}(x) \quad\left(n \in \mathbb{N}_{0}\right) \tag{2.22}
\end{equation*}
$$

it is easily seen from the definitions (1.4) and (2.11) that

$$
\begin{equation*}
b_{n}^{(\alpha, \nu)}(\lambda, \mu)=\left.d_{n}^{(\alpha, \alpha)}(\lambda, \mu ; \nu)\right|_{s=1} \tag{2.23}
\end{equation*}
$$

Thus the main result (Theorem 2) of Gabutti and Lyness [3] is a further special case of Corollary 1 above when

$$
\begin{equation*}
s=1 \quad \text { and } \quad \alpha=\beta \tag{2.24}
\end{equation*}
$$

Numerous other corollaries and consequences of Theorem 3, in addition to Corollary 1 above, can indeed be deduced by suitably specializing the various parameters involved in Theorem 3. For instance, we can easily derive a corollary associated with the (Gould-Hopper) generalized Hermite polynomials $H_{n}^{r}(x, \alpha, q)$ by using the relationship (2.7).

3. Applications of Theorem 3 Involving Generating Functions

By appropriately choosing the function $g(t)$ in our definition (2.13) followed by some suitable variable as well as parameter changes or (alternatively) by appealing directly to the generating function (2.12) (with $p \longmapsto p z$), it is not difficult to show that

$$
\begin{align*}
& \sum_{n=0}^{\infty} a_{n} G_{n}^{(\alpha)}\left(x^{1 / r}, r, q, \kappa\right) z^{n} \\
&=(1-\kappa p z)^{-\alpha / \kappa} \exp \left(q x\left[1-(1-\kappa p z)^{-r / \kappa}\right]\right) \tag{3.1}\\
& \cdot \sum_{n=0}^{\infty} A_{n}^{(0)}(p) G_{n}^{(\alpha)}\left(\frac{x^{1 / r}}{(1-\kappa p z)^{1 / \kappa}}, r, q, \kappa\right)\left(\frac{z}{1-\kappa p z}\right)^{n} \\
&\left(|z|<|\kappa p|^{-1} ; \kappa, r, p \neq 0\right)
\end{align*}
$$

where $A_{n}^{(0)}(p)$ is defined by (1.1) with, of course, $\nu=0$.

