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Introduction

This volume contains the contributions to the second Melfi Workshop
on Advanced Special Function and Integration Methods.

As in the previous workshop we have tried to emphasize the role played
by Special Functions (SF) in different research areas, covering fields from
pure mathematics to applications.

The increasing importance of SF’s, of conventional and generalized na-
ture, in unrelated fields is due to the concurrence of many factors, which can
however be traced back to a common thread.

One of the most attractive aspects of the modern point of view on the SF
theory is perhaps a by product of the Lie treatment, namely the possibility
of expressing a large number of complicated operational relations in terms
of different types of SF. Very recently a breakthrough in this respect has
been offered by elementary methods linked to the so called monomiality
principle. Such a technique provides the tools to explore in a systematic
and unified way a large class of operational identities and offers the keynote
to construct SF of generalized nature. The interest in applications for this
aspect of the problem relies upon the fact that

1) most of the operational identities occurring in this treatment ap-
pears quite naturally in quantum mechanical problems or in applications
concerning wave propagation in classical optics

2) the SF of generalized nature are the suited tool to solve questions
related to classical electromagnetism, like radiation emission by accelerated
charge

3) a large body of the formalism, associated with the monomiality prin-
ciple, is ideally suited for the study of differential equations of different na-
ture, involving parabolic equations related to evolution problems.

Regarding this last point, the combined use of SF and operational tech-
niques becomes a unique tool to solve Schroedinger and Liouville type equa-
tions by means of the evolution operator method.

Modern computer languages, devoted to the solution of practical prob-
lems as charged beam transport in accelerators or optical beam transport
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in laser cavities, utilize evolution operator and algebraic methods in which
the SF’s are an almost obliged step. Furthermore many transforms (Fourier,
Hankel, Wigner, Gauss, Fresnell. . . and their fractional counterparts) are now
being viewed as particular cases of the evolution operator and offers therefore
a new field of application of conventional and generalized SF’s.

In these proceedings we have tried to give an idea of how SF may com-
bine with methods of algebraic nature and provide the answer to various
problems in application. However we did not forget other aspects as the mu-
tual influence between SF’s and Combinatorics which is having during these
last years a significant evolution due, among the other things, to applications
in cryptography.

Even though we have stressed the applicative content of this book, we
must also underline that the research in this field cannot proceed without
the support from more speculative points of view.

The proceedings include therefore contributions on advanced topics
dealing with new types of SF’s belonging to the families of pseudo–SF in-
cluding the so called d–orthogonal polynomials. During the workshop it has
been pointed out that these last mentioned functions may be a crucial tool
for problems in classical and quantum statistics.

As for the last year, we must underline that the success of the Workshop
has been determined by the generous and enthusiastic support of the Melfi
Town Council. In particular we owe our gratitude to the Major Prof. Ernesto
A. Navazio, to On. dr. Nicola Pagliuca to Prof. Luigi Branchini, to prof.
Sandro Calabrese members of the Town Council and to dr. Tania Lasala
director of the culture department. It is also a pleasure to thank dr. G.
Bartolomei, Mr. M. Pierotti for their heroic effort in solving all the logistic
and bureaucratic problems.

It is finally a pleasure to recognize the financial support for the pub-
lication of the proceedings of the Dipartimento di Statistica, Probabilità e
Statistiche Applicate of University of Rome La Sapienza.

Giuseppe Dattoli

Introduction12
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THE EULER–KNOPP TRANSFORMATION
AND ASSOCIATED FAMILIES OF
GENERATING FUNCTIONS

H.M. Srivastava
Department of Mathematics and Statistics

University of Victoria – Victoria, British Columbia V8W 3P4 (Canada)

E-mail: harimsri@math.uvic.ca

Abstract The problem of summation of a slowly convergent series is usually handled
by transforming the given series into another series which converges faster
than the original series. One of many such series transformations, which are
commonly employed for accelerating the convergence of slowly convergent
series, is the familiar Euler–Knopp transformation which was recently gener-
alized by making use of the classical Laguerre and related polynomials. The
main object of this two-part series of lectures is to show how some of these
generalized series transformations, which are presented here rather system-
atically, would lead naturally to the derivation of several general results on
generating functions (involving the Stirling numbers of the second kind) for
a fairly wide variety of special functions and polynomials in one, two, and
more variables. Relevant connections of many of the families of generating
functions, which are considered here, with various known results (given by
earlier authors) are also pointed out.

1. Introduction, Definitions, and Preliminaries

In a large variety of widespread areas of applications, one encounters the
need for summing a given series that usually does not converge as fast as
may be desired. A well–exploited technique for summing a slowly converg-
ing series consists in attempting to transform the given series into another
which converges more rapidly than the original series. One of several such
transformations, which are commonly used for accelerating convergence of
slowly converging series, is the familiar Euler–Knopp transformation (cf.,
e.g., Hardy [5, p. 178 et seq.]), which we recall here as

15
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Theorem 1 (Euler–Knopp) In terms of a given sequence {an}∞n=0, let

A(ν)
n (p) :=

n∑
k=0

(
n + ν

n− k

)
(−p)n−k ak (1.1)

(n ∈ N0 := N ∪ {0}; N := {1, 2, 3, . . .}) ,

where ν is a constant and p is a suitable acceleration parameter.
Then

∞∑
n=0

anz
n =

∞∑
n=0

A(0)
n (p) zn (1 − pz)−n−1 (1.2)

for all values of z and p for which both summands exist and each of the series
converges.

The classical Euler transformation is a special case of Theorem 1 when

z = −1 and p = 1.

For p = 1 (and ν = 0), the definition (1.1) coincides with that of the nth
divided difference �na0. In this special case, Theorem 1 yields a (known)
nonlinear transformation which is not recommended now–a–days (see, for
details, Hartee [6] and Niethammer [10]).

The classical Laguerre polynomials L
(α)
n (x), of order α and degree n in

x, are defined by (cf. Szegö [17, p. 101])

L(α)
n (x) :=

n∑
k=0

(
n + α

n− k

)
(−x)k

k!
(1.3)

or, equivalently, by

L(α)
n (x) =

(
n + α

n

)
1F1 (−n;α + 1;x) , (1.4)

where, as usual, lFm denotes a generalized hypergeometric function with l
numerator and m denominator parameters, defined by (cf., e.g., Erdélyi et
al. [2, Vol. I, Chapter 4])

lFm (λ1, . . . , λl;µ1, . . . , µm; z) :=
∞∑
n=0

(λ1)n · · · (λl)n
(µ1)n · · · (µm)n

zn

n!
(1.5)

(λj ∈ C (j = 1, . . . , l) ; µj ∈ C\Z
−
0 (j = 1, . . . ,m) ;

Z
−
0 := {0,−1,−2, . . .} ; l, m ∈ N0; l < m + 1

and z ∈ C; l = m + 1 and |z| < 1; l = m + 1,

|z| = 1, and R

(∑m
j=1 µj −

∑l
j=1 λj

)
> 0)

H.M. Srivastava16
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with, of course, the Pochhammer symbol (or the shifted factorial) (λ)n given,
in terms of the Gamma functions, by

(λ)n :=
Γ (λ + n)

Γ (λ)
=

{
1 (n = 0)
λ (λ + 1) · · · (λ + n− 1) (n ∈ N) .

Indeed these polynomials are orthogonal over the interval (0,∞) with respect
to the weight function xαe−x; in fact, we have (cf., e.g., Szegö [17, p. 100])

∫ ∞

0
xαe−xL(α)

m (x)L(α)
n (x) dx = Γ (α + 1)

(
n + α

n

)
δm,n (1.6)

(R (α) > −1; m,n ∈ N0) ,

where δm,n denotes the Kronecker delta.

Making use of the classical Laguerre polynomials L
(α)
n (x) , Gabutti and

Lyness [3] gave an interesting generalization of (the Euler–Knopp) Theorem
1. Indeed, by means of several illustrative examples of slowly converging
series, they investigated the optimal choice of the acceleration parameter p
so that the resulting new series has the fastest convergence (see, for details,
[3, p. 265 et seq.]). We recall here their main result contained in

Theorem 2 (Gabutti and Lyness [3]) Let g(t) be any function for which

the following integral representation of the sequence
{
b
(α,ν)
n (λ, µ)

}∞

n=0
exists:

b
(α,ν)
n (λ, µ) :=

(
n + ν

n

)−1 ∫ ∞

0
e−λt tα L(α)

n (t) g (µt) dt (1.7)

(R (λ) > 0) ,

where L
(α)
n (x) denotes the Laguerre polynomials defined by (1.3).

Then

∞∑
n=0

an b(α,ν)
n (λ, µ) =

∞∑
n=0

A(ν)
n (p) (1 − p)−n b(α,ν)

n

(
λ

′
, µ

′)
, (1.8)

where
λ

′
:= p + (1 − p)λ and µ

′
:= (1 − p)µ, (1.9)

and the sequence
{
A

(ν)
n (p)

}∞

n=0
is defined by (1.1), it being assumed that

α, ν, λ, µ, an, and p are so constrained that both sums in (1.8) exist and
converge.

For ν = 0, (the Gabutti–Lyness) Theorem 2 obviously provides a new
(possibly wider) family of series to which the Euler–Knopp transformation
(Theorem 1) may be applied. Moreover, for other admissible values of ν, it

The Euler–Knopp transformation and associated families of generating functions 17
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provides an apparently new class of transformations. In this two–part series
of lectures, we aim at presenting some recent developments in connection
with the aforementioned series transformations, especially in the derivation
of numerous families of generating functions (involving the Stirling numbers
of the second kind) for a remarkably wide variety of special functions and
polynomials in one, two, and more variables. We also consider relevant con-
nections of the results presented here with those given in earlier works on
the subject.

2. A Unified Presentation of the Laguerre and Hermite
Polynomials

In the remarkably vast and widely scattered literature on special functions
and polynomials, there are numerous generalizations of the classical Laguerre

polynomials L
(α)
n (x) defined by (1.3) and of the classical Hermite polynomi-

als Hn (x) defined by (cf. Szegö [17, p. 106])

Hn (x) :=

[n/2]∑
k=0

(−1)k
(
n

2k

)
(2k)!

k!
(2x)n−2k (2.1)

= (2x)n 2F0

(
−1

2
n,−1

2
n +

1

2
;−;−x−2

)
,

which satisfy the orthogonality property (cf., e.g., Szegö [17, p. 105]):∫ ∞

−∞
e−x2

Hm (x)Hn (x) dx = 2nn!
√
π δm,n (2.2)

(m,n ∈ N0) ,

where, as before in (1.6), δm,n is the Kronecker delta. Indeed the relationship

of these polynomials with the classical Laguerre polynomials L
(α)
n (x) is given

by

H2n+ε (x) = (−1)n 22n+εn!xεL
(ε− 1

2)
n

(
x2

)
(ε = 0 or 1) . (2.3)

One of the aforementioned generalizations of the classical Laguerre and
Hermite polynomials is provided by (for example) the generalized Hermite
polynomials considered by Gould and Hopper [4]. In their attempt to present
a unified investigation of many of these known extensions and generalizations
of the classical Laguerre and Hermite polynomials, Srivastava and Singhal

[16] introduced a sequence
{
G

(α)
n (x, r, q, κ)

}∞

n=0
of polynomials (of degree n

in xr and in α) defined by the following Rodrigues–type formula:

G(α)
n (x, r, q, κ) :=

x−α−κn

n!
exp (qxr)

(
xκ+1 d

dx

)n

{xα exp (−qxr)} , (2.4)

H.M. Srivastava18
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where the parameters α, q, r, and κ are unrestricted, in general (with, of

course, κ �= 0). The Srivastava–Singhal polynomials G
(α)
m (x, r, q, κ) are gen-

erated by [16, p. 78, Equation (3.2)]

(1 − κt)−α/κ exp
(
qxr

[
1 − (1 − κt)−r/κ

])
(2.5)

=
∞∑
n=0

G(α)
n (x, r, q, κ) tn

and, more generally, by [16, p. 78, Equation (3.1)]

∞∑
n=0

(λ1)n · · · (λl)n
(µ1)n · · · (µm)n

G(α)
n (x, r, q, κ) tn

= exp (qxr)
∞∑
n=0

(−qxr)n

n!
(2.6)

· l+1Fm

(
λ1, . . . , λl,

α + nr

κ
;µ1, . . . , µm;κt

)
,

which would immediately reduce to the generating function (2.5) upon set-
ting

l = m and λj = µj (j = 1, . . . , l (or m)) .

We recall here the following relationships of the Srivastava–Singhal poly-

nomials G
(α)
n (x, r, q, κ) with some other known polynomials which are seem-

ingly relevant to our present investigation (cf. [16, p. 76]; see also a more
recent work by Hubbell and Srivastava [7]):

G(α)
n (x, r, q,−1) = G(α−n+1)

n (x, r, q, 1) (2.7)

=
(−x)n

n!
Hr

n (x, α, q) ,

where Hr
n (x, α, q) denotes the aforementioned Gould–Hopper generalization

of the classical Hermite polynomials;

G(0)
n (x, 2, 1,−1) = G(1−n)

n (x, 2, 1, 1) =
(−x)n

n!
Hn (x) ; (2.8)

G(α+1)
n (x, 1, 1, κ) = κn Y α

n (x;κ) (κ ∈ N) , (2.9)

where Y α
n (x;κ) (α > −1;κ ∈ N) denotes the Konhauser biorthogonal poly-

nomials (cf. [8]; see also [12]);

G(α+n)
n (x, 1, 1,−1) = G(α+1)

n (x, 1, 1, 1) = L(α)
n (x) . (2.10)

The Euler–Knopp transformation and associated families of generating functions 19
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For the Srivastava–Singhal polynomials defined by (2.4), it is known
also that (cf. [16, p. 79, Equation (3.6)])

∞∑
n=0

(
m + n

n

)
G

(α)
m+n (x, r, q, κ) tn

= (1 − κt)−m−α/κ exp
(
qxr

[
1 − (1 − κt)−r/κ

])
(2.11)

·G(α)
m

(
x (1 − κt)−1/κ , r, q, κ

)
(
m ∈ N0; κ �= 0; |t| < |κ|−1

)
.

Upon replacing x in (2.11) by x1/r (r �= 0), if we set

t = − p

1 − κp

(
|p| < |κ|−1

)
,

we easily find from (2.11) that

G(α)
m

(
x1/r, r, q, κ

)
= (1 − κp)−m−α/κ exp

(
qx

[
1 − (1 − κp)−r/κ

])
(2.12)

·
∞∑
n=0

(m+n
n

)
G

(α)
m+n

(
x1/r

(1−κp)1/κ
, r, q, κ

)(
− p

1−κp

)n
(
m ∈ N0; κ, r �= 0; |p| < |κ|−1

)
.

By applying the generating function (2.12), we now state and prove a
generalization of (the Gabutti–Lyness) Theorem 2, which is given by (see,
for details, Srivastava [13])

Theorem 3 Let g (t) be any function for which the following integral rep-

resentation of the sequence
{
c
(α,β)
n (λ, µ; ν)

}∞

n=0
exists:

c(α,β)
n (λ, µ; ν) :=

(
n + ν

n

)−1 ∫ ∞

0
e−λt tβ G(α)

n

(
t1/r, r, q, κ

)
g (µt) dt

(R (λ) > 0; κ, r �= 0) , (2.13)

where G
(α)
n (x, r, q, κ) denotes the Srivastava–Singhal polynomials defined by

(2.4).
Then

∞∑
n=0

an c(α,β)
n (λ, µ; ν) =

∞∑
n=0

A(ν)
n (p) (1 − κp)−n−[α−(β+1)r]/κ (2.14)

·c(α,β)
n

(
λ

′
, µ

′
; ν

)
,

where

λ
′
:= q + (λ− q) (1 − κp)r/κ and µ

′
:= µ (1 − κp)r/κ , (2.15)
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and the sequence
{
A

(ν)
n (p)

}∞

n=0
is defined by (1.1), it being assumed that α,

β, λ, µ, q, r, κ, an, and p are so constrained that both sums in (2.14) exist
and converge.

Proof . Denote, for convenience, the infinite series on the left–hand side of
(2.14) by �. Then, by appealing to the definition (2.13) as well as the gen-
erating function (2.12), we obtain

� :=
∞∑
n=0

an c(α,β)
n (λ, µ; ν)

=
∞∑
n=0

an

(
n + ν

n

)−1 ∫ ∞

0
e−λt tβg (µt) (1 − κp)−n−α/κ exp

(
qt

[
1 − (1 − κp)−r/κ

])

·
∞∑
j=0

(
n + j

j

)
G

(α)
n+j

(
t1/r

(1 − κp)1/κ
, r, q, κ

)(
− p

1 − κp

)j

dt

=
∞∑

n,j=0

an

(
n + ν

n

)−1(
n + j

j

)
(1 − κp)−n−j−α/κ (−p)j

·
∫ ∞

0
exp

(
−t

{
λ− q

[
1 − (1 − κp)−r/κ

]})
tβg (µt)

G
(α)
n+j

(
t1/r

(1 − κp)1/κ
, r, q, κ

)
dt

=
∞∑
j=0

j∑
n=0

an

(
n + ν

n

)−1(
j

j − n

)
(1 − κp)−j−α/κ (−p)j−n

·
∫ ∞

0
exp

(
−t

{
λ− q

[
1 − (1 − κp)−r/κ

]})
tβg (µt)

·G(α)
j

(
t1/r

(1−κp)1/κ
, r, q, κ

)
dt, (2.16)

provided that the inversions of the order of summation and integration can
be justified by absolute convergence of the integral and series involved.

If we now set

t = (1 − κp)r/κ u and dt = (1 − κp)r/κ du,

we find from (2.16) that

� =
∞∑
j=0

j∑
n=0

an

(
n + ν

n

)−1(
j

j − n

)
(−p)j−n (1 − κp)−j−[α−(β+1)r]/κ

·
∫ ∞

0
e−λ

′
u uβ G

(α)
j

(
u1/r, r, q, κ

)
g
(
µ

′
u
)
du, (2.17)
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where λ
′
and µ

′
are defined by (2.15).

Finally, we interpret the integral in (2.17) by means of the definition
(2.13). We thus obtain

� =
∞∑
j=0

j∑
n=0

an

(
n + ν

n

)−1(
j

j − n

)
(−p)j−n

· (1 − κp)−j−[α−(β+1)r]/κ

(
j + ν

j

)
c
(α,β)
j

(
λ

′
, µ

′
; ν

)

=
∞∑
j=0

(1 − κp)−j−[α−(β+1)r]/κ c
(α,β)
j

(
λ

′
, µ

′
; ν

)

·
j∑

n=0

(
j + ν

j − n

)
(−p)j−n an,

which, in view of the definition (1.1), is precisely the infinite series on the
right–hand side of the assertion (2.14) of Theorem 3.

Since [15, p. 381, Equation 7.6(19); see also Equation (2.9) above]

Y α
n (x; s) = s−n G(α+1)

n (x, 1, 1, s) (s ∈ N) , (2.18)

where Y α
n (x; s) denotes one class of biorthogonal polynomials introduced by

Konhauser (cf. [8]; see also [12]) for α > −1 and s ∈ N, by setting

q = r = 1 and κ = s (s ∈ N)

and making some simple notational changes such as α �−→ α + 1, we can
specialize Theorem 3 in order to deduce

Corollary 1 Let g (t) be any function for which the following integral rep-

resentation of the sequence
{
d

(α,β)
n (λ, µ; ν)

}∞

n=0
exists:

d(α,β)
n (λ, µ; ν) :=

(
n + ν

n

)−1 ∫ ∞

0
e−λt tβ Y α

n (t; s) g (µt) dt (2.19)

(R(λ) > 0; s ∈ N)

in terms of the Konhauser biorthogonal polynomials Y α
n (x; s) given by (2.18)

and (2.4).
Then

∞∑
n=0

an d(α,β)
n (λ, µ; ν) =

∞∑
n=0

A(ν)
n (p) (1 − κp)−n+(β−α)/s

·d(α,β)
n

(
λ

′
, µ

′
; ν

)
, (2.20)
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where

λ
′
:= 1 + (λ− 1) (1 − p)1/s and µ

′
:= µ (1 − p)1/s , (2.21)

and the sequence
{
A

(ν)
n (p)

}∞

n=0
is defined by (1.1), it being assumed that

α, β, λ, µ, an, and p are so constrained that both sums in (2.20) exist and
converge.

Recalling that [cf. Equations (2.10) and (2.18)]

Y α
n (x; 1) = L(α)

n (x) (n ∈ N0) , (2.22)

it is easily seen from the definitions (1.4) and (2.11) that

b(α,ν)
n (λ, µ) = d(α,α)

n (λ, µ; ν)
∣∣∣
s=1

. (2.23)

Thus the main result (Theorem 2) of Gabutti and Lyness [3] is a further
special case of Corollary 1 above when

s = 1 and α = β. (2.24)

Numerous other corollaries and consequences of Theorem 3, in addi-
tion to Corollary 1 above, can indeed be deduced by suitably specializing
the various parameters involved in Theorem 3. For instance, we can easily
derive a corollary associated with the (Gould–Hopper) generalized Hermite
polynomials Hr

n (x, α, q) by using the relationship (2.7).

3. Applications of Theorem 3 Involving Generating
Functions

By appropriately choosing the function g(t) in our definition (2.13) followed
by some suitable variable as well as parameter changes or (alternatively) by
appealing directly to the generating function (2.12) (with p �−→ pz), it is not
difficult to show that

∞∑
n=0

an G(α)
n

(
x1/r, r, q, κ

)
zn

= (1 − κpz)−α/κ exp
(
qx

[
1 − (1 − κpz)−r/κ

])
(3.1)

·
∞∑
n=0

A(0)
n (p)G(α)

n

(
x1/r

(1 − κpz)1/κ
, r, q, κ

)(
z

1 − κpz

)n

(|z| < |κp|−1 ;κ, r, p �= 0),

where A
(0)
n (p) is defined by (1.1) with, of course, ν = 0.
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