
Published in IET Software
Received on 6th September 2010
Revised on 4th July 2011
doi: 10.1049/iet-sen.2010.0108

ISSN 1751-8806

Improving artefact quality management in advanced
artefact management system with distributed
inspection
A. De Lucia1 F. Fasano2 G. Scanniello3 G. Tortora1

1Dipartimento di Matematica e Informatica, University of Salerno, Via Ponte Don Melillo, Fisciano, 84084 SA, Italy
2Dipartimento di Scienze e Tecnologie per l’Ambiente e il Territorio, University of Molise, Pesche, Italy
3Dipartimento di Matematica e Informatica, University of Basilicata, Viale Dell’Ateneo, Macchia Romana,
Potenza 85100, Italy
E-mail: giuseppe.scanniello@unibar.it

Abstract: Advanced artefact management system (ADAMS) is an artefact-based process support system for the management of
human resources, projects and software artefacts. This system puts great emphasis on the artefact life cycle by associating software
engineers with the different operations that can be performed on a given artefact. Managing the quality of software artefacts
is considered as one of the main issues. To this end, ADAMS integrates web-based artefact inspection tool (WAIT), a
web-based system implementing a distributed inspection process. A case study has been accomplished to evaluate both the
integration of WAIT in ADAMS and the provided quality management support. The main result of this empirical
investigation is that the integrated system provides an effective support for the management of the quality of software artefacts.

1 Introduction

Many software companies are moving their business to
distributed virtual organisation models [1–3].Q1 However,
such a globalisation creates software engineering challenges
(e.g. cooperation and collaboration for system design) due
to the impact of time zones, distance or diversity of culture
and communication. In global software development, a
combination of traditional and novel methodologies and
practices are required to overcome these challenges and to
take advantage of the opportunities that such development
entails [4–6].

A lot of research effort has been devoted to the
development of methodologies and technologies supporting
coordination and collaboration of distributed software
engineering teams [7–9]. Typical examples are systems for
the management and version control of software artefacts
[10–13]. These systems help to coordinate the activities of
developers by providing capabilities that either avoid
parallel development altogether or assist in resolving
conflicts. These systems also enable software engineers to
work on the same artefact either through a lock-based
policy or concurrently, if branch versions are allowed.
Some of these systems provide feature to deal with some of
the most common problems faced by cooperative
environments, such as context awareness. Nevertheless,
these systems marginally support quality management and
the inspection of software artefacts, in particular.

Software inspection is a software engineering practice
aiming at identifying defects, reducing rework and

producing high-quality software systems [14, 15]. This
practice is not new. In fact, Michael Fagan in 1976 [16]
proposed the first structured inspection process, where team
members individually analyse the software artefact
according to its purpose and scope as well as the inspection
goals. Team members successively perform a face-to-face
meeting to produce a log containing details on the identified
defects. One of the open issues related to the Fagan’s
inspection process concerns to the enactment of a face-to-
face meeting. Research findings question the usefulness of a
meeting [17, 18], since it requires adequate skills and
experience. In fact, to be effective a meeting requires
adequate preparation, efficient moderation, readiness of the
work product for review and cooperation among group
members, besides the simultaneous attendance of all the
team members [19]. In global software development,
geographical distance becomes an augmenting factor for the
costs of face-to-face meetings and the time distance can
even create barriers to the enactment of distributed virtual
meetings conducted using information and communication
technologies (e.g. text-based chat, virtual blackboards, web
platforms or virtual environments like Second Life). In
order to overcome the issues related to enactment of
inspection processes in distributed settings, asynchronous
discussions could be adopted before a face-to-face or virtual
synchronous meeting [20].

In this paper we present a geographically dispersed
inspection process that modifies the Fagan method to
encourage inspection members to perform a preliminary
asynchronous discussion after a preparation phase and

IET Softw., pp. 1–18 1
doi: 10.1049/iet-sen.2010.0108 & The Institution of Engineering and Technology 2011

Techset Composition Ltd, Salisbury

Doc: {IEE}SEN/Articles/Pagination/SEN20100108.3d

www.ietdl.org



before an optional meeting. We have implemented this
process in a web-based artefact inspection tool (WAIT),
which has been integrated in advanced artefact management
system (ADAMS), a web-based fine-grained artefact
management system [21]. ADAMS integrates project
management features, such as work-breakdown structure
definition, resource allocation and schedule management, as
well as artefact management features, such as artefact
versioning, traceability management and artefact quality
management. Originally, the quality management in
ADAMS was limited to the possibility of associating each
artefact type with a checklist, while the inspection process
was externally managed. A more effective support for the
quality management is provided in the system resulting
from the integration of WAIT in ADAMS. In particular, the
resulting system allows planning, scheduling and enactment
of the artefact inspection process, thus integrating the
review phase within the artefact life cycle and the baseline
production process. Furthermore, the integrated system
allows the software engineer to (i) trace the whole
inspection process and effectively manage the different
versions of the artefacts under inspection; (ii) associate the
results of the inspection process to the specific artefact
version; (iii) allow the software engineer to trace each
change to the defect that originated it; (iv) support the
inspection of any type of artefact managed by ADAMS,
including high-level (e.g. analysis and design documents)
and low-level (e.g. source code) artefacts.

To evaluate the effectiveness of integrating WAIT in
ADAMS, we have conducted a case study. The context of
this study constituted Master and Bachelor students in
Computer Science at the University of Salerno, who used
the integrated system as an infrastructure for the
development of their projects and the inspection of the most
important software artefacts. At the end of the project, the
students were asked to fill in a questionnaire to get
information about the perceived usefulness of the
integration of WAIT in ADAMS and the quality
management support, in particular. The main result of the
case study indicated that the subjects appreciated the quality
management support provided by the integrated system.
The data analysis also revealed that a preliminary
asynchronous discussion is considered very useful to
identify the greater part of the actual defects, although the
subjects also considered the meeting enactment as necessary.

This paper is an extension of the work presented in [22],
where a preliminary description of WAIT is provided. In
[23] controlled experiments have also been conducted to
compare our distributed inspections process with Fagan’s
method. With respect to these previous papers, we provide
here the following main new contributions:

A deeper description of the inspection process and of the
integration of WAIT in ADAMS. We also provide here a
running example to explain how the inspection process is
supported by the proposed integrated environment.
A case study conducted with Master and Bachelor students in
12 projects over two academic years to empirically assess the
validity of both the inspection process and the integrated
environment.

The remainder of this paper is organised as follows:
Section 2 discusses related work on distributed software
inspection. An overview of ADAMS and its integration
with WAIT and the quality management in ADAMS are
presented in Sections 3 and 4, respectively. Section 5

describes the inspection process and a running example to
explain how our system supports software engineers. The
case study is presented in Section 6, while final remarks
and future work conclude the paper.

2 Related work

The first inspection process was proposed by Michael Fagan
[16], who defines software inspection as a formal, efficient
and economical method to find errors in design and code.
This method is based on a formal and structured process,
composed of five sequential phases: (i) overview, (ii)
preparation, (iii) inspection, (iv) rework and (v) follow-up.
In the overview phase the artefact author first describes the
overall domain area of the software artefact and then
provides details about it. Documentation concerning the
software artefact to inspect is distributed to all the
participants of the inspection team in the preparation phase.
During the inspection phase a meeting is carried out to
identify defects. In order to address the defects identified in
the rework phase, the moderator should produce a written
report that is provided to the author of the artefact. In the
follow-up phase the moderator checks the quality of the
rework and determines whether a re-inspection is required.

One of the open discussions regarding the Fagan’s
inspection process refers to the meeting. Traditional
inspection practices consider the enactment of a meeting as
essential, while some researchers question its usefulness
[17, 18, 24]. For example, Votta [24] asserts that meetings
may be useless and resource-consuming. However, he also
highlights that a meeting is more appropriate to remove
most of the false defects. A false defect is a defect
identified by an inspector that is not an actual defect. Q2

Porter and Johnson [25], Miller et al. [26] and
Sabaliauskaite et al. [27] confirm that meetings do not
improve defect finding process, and recommend replacing
meetings with some other practices, for example,
asynchronous discussions [19] or nominal teams [28]. In
particular, Johnson and Tjahjono [19] present a controlled
experiment in which they demonstrate that the cost of a
meeting is higher than the cost of an asynchronous
discussion. However, the effectiveness of the inspection
meeting is still an open issue. On the other hand, Bianchi
et al. [29] compares the effectiveness of real teams and
nominal teams, that is, individual inspectors who do not
communicate in a face-to-face meeting. The obtained results
show that nominal teams outperform real teams. On the
other hand, Biffl and Halling [30] analyse the costs and
benefits of nominal inspection teams.

In global software engineering, geographical distance
becomes an augmenting factor for the costs needed to
perform code inspection and the time distance can even
create barriers to the enactment of a meeting. To overcome
these issues, a number of tools have been proposed for
document tracking and inspection planning [31], comment
preparation [32] and for both the individual preparation and
the group meeting [33]. Meyer [34] proposes to run the
design and code review entirely on the web and desktop-
sharing solutions. This approach is similar to the online
inspection tools, which specifically manage the entire
inspection process online.

A number of online inspection tools have been proposed in
the past, for example [35–37]. Among these tools several
differences can be observed. For example, ICICLE [35]
addresses the inspections of C and C++ code, making use
of specific knowledge on the programming language to

2 IET Softw., pp. 1–18

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-sen.2010.0108

www.ietdl.org



assist the discovery of defects. Knight and Meyer [38, 39]
propose an inspection technique that examines the artefacts
in a series of small checklist-based inspection phases. This
technique is implemented in the InspeQ (inspecting
software in phases to ensure quality) toolset. Scrutiny [36]
is a collaborative and distributed system for the inspection
and review of textual software artefacts. It implements a
process that is similar to the Fagan’s process. Collaborative
software inspection (CSI) [40] adopts the Humphrey’s
inspection model [41]. This tool supports both synchronous
and asynchronous discussions. Decision support for the
moderator is not provided, while process awareness is
provided by e-mail notifications. The asynchronous
inspection of software artefacts (AISA) prototype [37] also
implements the Humphrey’s model. Furthermore, it
addresses the problem of inspecting graphical artefacts
without adopting a checklist. A web-based client is used to
visualise documents that are prepared as clickable image
maps. The approach can lead to a greater number of false
defects as that annotations are made immediately available
to all the participants. To overcome this drawback, InspectA
is proposed in [42].

Collaborative software review system (CSRS) [43] is a
flexible tool supporting different inspection processes. This
is achieved by using a process modelling language for
defining the process phases, the participant roles and the
artefacts to inspect. Asynchronous/synchronous software
inspection support tool (ASSIST) [44] like CSRS is
designed to support any inspection process and any kind of
software artefacts. To this aim, it uses an inspection process
definition language. ASSIST also provides an auto-collation
facility to merge multiple lists of issues or defects by using
their similarity in terms of position, content and
classification. E-mail notifications are used to support
process awareness.

Yamashita [45] proposes Jupiter, an inspection support tool
developed as an eclipse plug-in. This tool only supports
asynchronous discussion among inspectors, addresses the
inspection of source code only and does not support
geographical dispersed reviews. Process awareness is
implemented through e-mail notifications. Differently,
Hedberg and Harjumaa [46] proposed to perform ‘virtual
software inspections’ by implementing a new XML-capable
annotation tool, XATI (XML annotation tool for inspection)
that uses Mozilla as a generic application environment and
to view the artefact under inspection.

Perpich et al. [18] presented a web-based tool, named
Hypercode, to asynchronously support geographically
distributed teams in the inspection of HTML documents.
No support for synchronous and asynchronous discussions
is provided to solve possible conflicts. Similarly, Lanubile
et al. [17] propose a web-based tool, called IBIS (internet-
based inspection system), that adopts a variation of the
Fagan’s inspection process. In particular, starting from the
reorganisation of the inspection process proposed by Sauer
et al. [47], the authors replace the preparation and meeting
phases of the process proposed by Fagan with three new
sequential phases: discovery, collection and discrimination.

None of the highlighted inspection tools are integrated
within an artefact management system. As a consequence,
they do not integrate an inspection process in the software
artefact life cycle and do not provide functionalities to link
the reviews to software artefact versions and maintain and
easily recover inspection data during software evolution. On
the contrary, our proposal provides a large number of
advantages that mainly derive from the support that the

used artefact management system (i.e. ADAMS) provides to
the inspection process implemented in WAIT and the
management of the inspection teams. These advantages can
be summarised as follows:

† integrating the review phase within the artefact life cycle
and the baseline production process;
† tracing the whole checklist-based inspection process;
† identifying defects within any kind of software artefact
since ADAMS is able to manage both high (e.g. UML
models) and low (e.g. source code) level artefacts;
† extending the to-do list with activities concerning the
inspections to perform;
† providing asynchronous communication facilities between
team members;
† including features for classifying the identified defects and
for decision support;
† using e-mail notifications to enhance context-awareness
within an inspection process.

A more detailed comparison between WAIT and the above-
discussed tools can be found in [23].

3 Enhancing ADAMS with distributed
inspection: an overview

ADAMS [21] is a web-based system that integrates project
management features, such as work-breakdown structure
definition, resource allocation and schedule management as
well as artefact management features, such as artefact
versioning, traceability management and artefact quality
management. ADAMS has been implemented using J2EE
technologies, in particular Java Server Pages (JSP) and Java
Servlets; the web server is Apache Tomcat 6.0, while the
database management system is MySql 5.0.

Fig. 1 shows a UML package diagram illustrating the
subsystem decomposition of ADAMS. In the following, we
provide a brief description of the main functionalities
provided by each subsystem of ADAMS. Further details are
available at the ADAMS website [http://adams.dmi.unisa.it/
demo]. Fig. 1 also highlights how the integration of WAIT
in ADAMS has impacted on different subsystems of
ADAMS, in particular on the quality management
subsystem, as described in Section 4.

The resource management subsystem provides administrative
functionalities for human resource and account management,
and allocation of resources on projects. ADAMS adopts a
role-based access control policy. Human resources can be
allocated with different roles on a project (e.g. project
manager, quality manager, architect, tester) or on an artefact
(e.g. developer, auditor).

The project management subsystem is responsible of
managing project definition and scheduling. ADAMS
supports a general and customisable software development
process that is based on the artefacts to be produced and the
relations among them. This allows the project manager to
focus on practical problems involved in the process and
avoids getting lost in the complexity of process modelling,
like in workflow management systems. Functionalities are
provided to define the schedule and allocation of human
resources to software artefacts. The definition of the
schedule is performed during the definition of the artefacts
by specifying the starting and the due date for it. This
information is used to determine the schedule status of each
artefact. Indeed, when a software engineer accesses his/her

IET Softw., pp. 1–18 3
doi: 10.1049/iet-sen.2010.0108 & The Institution of Engineering and Technology 2011

www.ietdl.org

http://adams.dmi.unisa.it/demo
http://adams.dmi.unisa.it/demo


to-do list (containing the set of artefacts he/she has to work
on), the system highlights late and overdue artefacts (see
Fig. 2).

The artefact management subsystem is responsible for the
management of the artefact lifecycle and the fine-grained
management of software artefacts. Any intermediate product
of the software process can be managed in ADAMS as an
artefact. In fact, in ADAMS artefacts can either be atomic
entities or they can be composed of an arbitrary number of
atomic or further-composed artefacts. The fine-grained
management of artefacts proposed in ADAMS allows the
software engineer to choose the granularity level of this

decomposition according to the artefact type, the
concurrency level needed for the human resources allocated
on them, the number of software engineers that are likely
accessing them at the same time, the necessity to specify
responsibilities for specific unit of work and the need for the
definition of traceability links between them. Functionality
for the automatic re-composition of decomposed artefacts
is also provided. The hierarchical organisation of composite
artefacts provides a product-oriented work-breakdown
structure to the project manager as well as concurrent
development functionality. Further details of the fine-grained
management of software artefacts can be found in [21].

Fig. 2 Artefacts to-do list

Fig. 1 Integrated system architecture

4 IET Softw., pp. 1–18

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-sen.2010.0108

www.ietdl.org



A revision control subsystem has been implemented to
create, modify and delete artefacts, as well as to manage the
artefact state and versions. However, in case there is a need
of using an existing repository, the integration can be
executed by replacing the revision control subsystem with
the existing versioning management tool. In particular, it is
possible to interface the revision control subsystem with a
wrapper for other versioning systems, for example CVS
[10] or subversion [48], as well as to implement additional
features such as caching and delta versioning.

Traceability links between related artefacts can also be
inserted and visualised through the traceability management
subsystem and used for impact analysis during software
evolution. In fact, traceability links can be visualised and
browsed to look at the state of previously developed
artefacts, to download latest artefact versions or to subscribe
events on them and to receive notifications on the state of
their development. An example of event could be the
creation of a new version for a software artefact. Event
subscription and notifications are managed by the event and
notification management subsystem, which is used to
enhance context-awareness within the software project [21].

The quality management subsystem is the subsystem that is
more impacted by the integration of WAIT in ADAMS. This
subsystem provides functionalities to manage the quality
within a project. This entails the definition of the artefact
types managed by the system and the standard templates
and review checklists associated with them. More details
are provided in Section 4.

Finally, the cooperative development subsystem includes
tools used to enhance synchronous collaboration within
ADAMS, such as an internal chat and an UML collaborative
editor that enables developers to access and modify the same
diagram concurrently [49], and asynchronous collaboration
tools, for example, the internal e-mail, comments and
feedbacks that can be attached to a specific artefact (or to a
specific artefact version), and the rationale management tool
that enables the software engineers to address open issues
that need to be investigated by the team, using an
argumentation-based approach.

WAIT mainly relies on three of these subsystems, namely
the project management, resource management, and artefact
management subsystems, as it uses many of the above
described functionalities. Moreover, WAIT extends the
quality management subsystems and the metadata. In
particular, the quality management subsystem has been
extended with the distributed inspection functionality,
whereas the metadata has been enriched with inspection
process and defect information.

4 Artefact lifecycle and quality management
in ADAMS

The integration of WAIT in ADAMS entailed the extension of
the artefact lifecycle. Regarding the artefact lifecycle, a
software artefact can assume different states as shown by the
UML statechart diagram of Fig. 3. The status of the artefact
within its lifecycle is shown on the artefact details view as
well as on the to-do list view (see the right-hand side of Fig. 2).

The scheduled state is the initial state of a newly created
artefact. As shown in Fig. 4, in this state a number of
information can be defined, in particular the start and end
date of the artefact, whether branches are allowed to enable
software engineers to work concurrently on the artefact, and
whether the artefact is subject to inspection, and in this case
whether the inspection has to be externally managed (this
was the inspection functionality provided by ADAM before
the integration of WAIT) or the integrated inspection
functionality provided by WAIT has to be used. In both
cases, the quality manager can associate a checklist to the
artefact.

The ‘external’ inspection process allows the quality
manager to associate an artefact with a checklist template
file that can be later downloaded and used for the artefact
inspection. In case the ‘integrated’ inspection process has
been selected for the artefact, an existing web-based
checklist can be used or a new one can be created (see
Fig. 5). Checklists can be defined for each artefact type at
the organisation level (template checklists) and can be

Fig. 3 Artefact lifecycle in ADAMS

IET Softw., pp. 1–18 5
doi: 10.1049/iet-sen.2010.0108 & The Institution of Engineering and Technology 2011

www.ietdl.org



customised at the project level or for a specific artefact. When
a checklist has to be associated to an artefact subject to
inspection, all available checklists already defined for the
corresponding artefact type are proposed by the system.
Then, the quality manager can decide to use or customise
one of them or even to create a new checklist, by defining
all the check-items (see Fig. 5). It is worth noting that the
selection/definition of the checklist for an artefact to be
inspected is one of the activities of the planning phase of
the inspection process described in Section 5.1, that also
includes other activities, such as the definition of the
inspection team and inspection schedule.

Once the artefact is activated (active state in Fig. 3), several
draft versions can be created and maintained by ADAMS. An
artefact that is in the draft state can be either in the locked state
or in the unlocked state. Each time a new version is produced,
the software engineer can tag the artefact as draft, in case
he/she still needs to work on the artefact, or as revision, in
case his/her work is completed and he/she wants to submit
the artefact to an inspection (see Fig. 6). In the latter case,
the system notifies the artefact manager and all members of
the inspection team (see Section 5.1) by using the event
notification mechanism of ADAMS (see Fig. 7).

Note that software engineers can also work concurrently
creating different branches and working independently on

them. Once an artefact is in the branch state, software
engineers cannot submit the artefact to an inspection until
the work on all the branches is completed and a merge
operation is performed (the artefact is in the merge state).

When an artefact is in the revision state, the inspection
process described in Section 5 starts and at the end of the
process the artefact is either approved and closed (baseline)
or sent back to the draft state, in case some rework is
needed. WAIT relies on the event notification mechanism of
ADAMS to keep the artefact manager, as well as all the
members of the inspection team, aware. Baselines can be
reworked only after the artefact manager has explicitly and
formally reopened the artefact, for example, due to an
accepted change request: this causes the transitions of the
artefact back to the draft state.

5 Distributed inspection process

The distributed inspection process implemented in WAIT
modifies the Fagan’s method according to the findings
discussed by Damian et al. [20]. As illustrated in Fig. 8,
the process is composed of seven subsequent phases,
namely planning, overview, discovery and detection,
refinement, inspection meeting, rework and follow-up. The
phases overview, refinement and inspection meeting are

Fig. 4 Artefact creation

Fig. 5 New checklist definition

6 IET Softw., pp. 1–18

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-sen.2010.0108

www.ietdl.org



optional and are performed depending on the software
artefact and the aim of the inspection. In the following,
we detail the different phases of the inspection process
and describe an example of application to the inspection
of a Java class.

5.1 Planning

In this phase the quality manager specifies which artefact
version has to undergo a formal review process, defines a
new checklist or modifies an existing one, and selects the
inspection team members (see Fig. 9). All these features are
accomplished by using the functionalities provided by
ADAMS. After this phase all the inspection participants

receive a notification containing the details of the inspection
and a new task appears in their to-do-list (see Fig. 7).

Fig. 9 shows how the quality manager selects three
members of the project team and creates the inspection
team. In our example, the quality manager also specifies
three check items for the checklist to be used during the
inspection of the Java class addressing the use of identifier
naming conventions, code indentation and meaningfulness
of the identifiers.

5.2 Overview

In the overview, the artefact author explains the design and
the logic of the software artefact under inspection to the

Fig. 6 Artefact check-in

Fig. 7 Inspection related notifications integrated in ADAMS

IET Softw., pp. 1–18 7
doi: 10.1049/iet-sen.2010.0108 & The Institution of Engineering and Technology 2011

www.ietdl.org



other members of the inspection team. To this aim, he/she
produces a document that briefly describes the purpose and
the scope of the artefact and then deploys it in ADAMS.
The event notification management subsystem of ADAMS
is used to notify all the inspection participants. In particular,
the system sends an e-mail containing the reference to the
document produced by the artefact’s author, the schedule of
the inspection, and the information about the Java class to
be inspected.

5.3 Discovery and detection

The inspectors analyse the artefact using the previously
defined checklist (see Fig. 5) and take note of the candidate
defects by highlighting all the cases where the artefact does
not comply with the control checklist. The system records
the identified defects, its location within the software
artefact in terms of page and line numbers or picture/table
sequential number (see Fig. 10). The inspector can also
indicate the severity of a candidate defect and give a brief
comment describing the reason why it contrasts with the
check item.

Anytime, the moderator can visualise the inspector’s defect
log, the check items as well as a preview of the merged defect
logs (see Fig. 11). This information can be used to decide
whether the detection phase can be concluded and the next
phase can start. However, even in case the moderator does
not access this information, ADAMS notifies him/her as
soon as all the inspectors have completed the discovery and
detection phase.Fig. 8 WAIT inspection process

Fig. 9 Inspection planning

Fig. 10 Defect identification

8 IET Softw., pp. 1–18

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-sen.2010.0108

www.ietdl.org



In our example, the three inspectors fill in the defect logs by
specifying each line in the Java class that does not respect a
check item. In particular, regarding the first check item, that
is, respecting the naming conventions, the inspectors
discover a different set of defects: one inspector identified a
defect at line 33, whereas a second inspector identified the
same type of defect at line 68, thus generating a conflict. A
defect is marked as a conflict when only one inspector
identifies it as defect. The inspectors agree on three defects
for the second check item, that is, the code indentation.
None of the inspectors discovers defects for the third check
item, that is, meaningfulness of the identifiers. This
situation is available to the moderator as the tool notifies
him/her about the conflict for the first check item and
reports on the number of discovered defects for the
remaining check items (see Fig. 11).

5.4 Refinement

When the detection phase is concluded, the moderator
accesses the defect log containing all the defects identified
by the inspectors. In case the inspectors disagree on the
defects for a check item, the system highlights it to the
moderator (see Fig. 11), who decides whether an
asynchronous discussion is needed in the refinement phase.
In this case, the tool sends an e-mail containing the conflict
list to the members of the inspection team. This e-mail also
aims at notifying the team members that the conflicts can
be analysed. The main goals of this phase are to get an
agreement among the team members and to encourage an
asynchronous discussion among the inspectors to remove
false defects and to build the consensus on the true defects.
There is no time constraint for the accomplishment of this

phase. Indeed, the manager decides when this phase can be
concluded according to the project constraints and the state
of the discussion.

According to Lanubile et al. [17], we consider a defect as a
true defect when at least two inspectors recognise it;
otherwise it is marked as a conflict. However, the minimum
number of reviews required to automatically get an
agreement can be specified by the quality manager, for
example, according to the project quality plan.

In this phase, the inspector accesses the merged defect list
and selects one of defects that caused the conflict (see
Fig. 12). To assist the inspector, the system highlights the
conflicts using a different colour for the conflicts and
provides hypertextual links to the defect details. By
accessing the defect details, the inspector decides whether it
is a true or false defect.

The merged defect list is shared among the members of the
team. Hence, when an inspector solves a conflict, it is also
removed from the list of the remaining inspectors. When all
the conflicts for a check item are solved, the highlighting is
removed as well. As this phase is not mandatory, the
moderator can decide to skip it and directly resolve
conflicts on the identified defects.

In our example, the inspectors focus on the first check item
(naming conventions). However, despite agreeing on most of
the defects, two conflicts are not solved. Accordingly, the
inspection moderator decides to schedule a meeting to
resolve the conflict.

5.5 Inspection meeting

Unsolved conflicts can be synchronously discussed using an
inspection meeting implemented as a chat. As shown in

Fig. 11 Merged defect list (moderator’s view)

Fig. 12 Merged defect list (inspector’s view)

IET Softw., pp. 1–18 9
doi: 10.1049/iet-sen.2010.0108 & The Institution of Engineering and Technology 2011

www.ietdl.org



Fig. 13, when an inspector accesses the chat, he/she visualises
the checklist and the output of the inspection process for each
inspector. One column for each inspector is shown. The
column associated to the current inspector (Mario Rossi in
the example) is highlighted (the column background colour
is light grey), while the last column visualises the moderator
decision. An inspector can access the defect logs of the other
inspectors grouped by check item. However, only the
column regarding the logged inspector is editable. It is worth
noting that conflicts – as well as the inspector that caused
them – can be identified by looking at the text indicating the
number of conflicts (red/light grey). Further details about the
conflict (check item, location, author and comments) for
each defect are accessible by pressing the defect count
button. The checkbox in the inspector’s column is used to
indicate whether the artefact is compliant with the check
item. The tool automatically deselects this checkbox when
defects are discovered. Communication among the inspectors
is supported by instant messaging (on the bottom left hand
side). The instant messaging tool also visualises the
connected members (on the bottom right hand side).

Besides coordinating the meeting and supporting the
inspector during the conflict resolution, the moderator has
the possibility to fill in his/her own checklist and conclude
the inspection process specifying whether the artefact can
be baselined or not. In the latter case the author has to fix
the defects during the follow-up. The revision is concluded
when all the check items are satisfied. In case an agreement
is not reached on a check item, the moderator response is
considered. The discussion of the unsolved conflicts can
start even in case not all the participants join the inspection
meeting. This enables the enactment of meetings to resolve
conflicts that do not involve some inspectors.

In our example, the three inspectors access the meeting and
discuss on the two unsolved conflicts. At the end of the
discussion the moderator decided to classify them as true
defects.

5.6 Rework and follow-up

In case defects are identified, the author has to fix them during
the rework phase. Once defects are addressed, the author
creates a new version of the artefact that is validated by the
moderator during the follow-up phase. As a result of this
phase, a new baseline of the artefact can be created or a
further re-inspection is required. The system maintains the
defect logs for each artefact version. Thus, in case the

artefact undergoes several inspections, it is possible to
access the defect logs of each version.

6 Case study

We previously compared the distributed inspection process
implemented in WAIT with the Fagan’s method through
controlled experiments [23]. We report here on the results of
a case study conducted within a University setting during a
preliminary usage of the integrated WAIT–ADAMS system.
Among the different kinds of empirical research strategies,
case study represents a suitable methodology for software
engineering research, because it studies phenomena in a
natural context that are hard to study in isolation [50].

The presentation of this study follows the guidelines
suggested by Yin [51]. The study has both a research
perspective, aiming at qualitatively assessing the integration
of a distributed inspection software system (i.e. WAIT,
within an artefact management system), and an application
perspective, trying to evaluate the advantages of adopting
the integrated system in software projects.

6.1 Context, data set and planning

The system resulting from the integration of WAIT in
ADAMS has been experimented within the projects
conducted by the students of the Computer Science
program at the University of Salerno. The case study was
carried out over two sequential academic years from April
2007 to July 2008. Each project team included between 3
and 16 Bachelor students (2nd year B.Sc.) with software
engineer and/or developer roles and one or two Master
students (2nd year M.Sc.) with roles of project and quality
managers. The Bachelor students were attending the
software engineering course, whereas Master students were
attending the software project management course. Bachelor
students had previously attended programming and database
management courses, while master students had also
attended advanced courses of programming and software
engineering. In the case study, the Bachelor students played
the role of inspectors, while the Master students acted as
moderators of the inspections.

The students were asked to use the integrated WAIT–
ADAMS system to incrementally design and develop
software systems with a distributed architecture (typically
three-tier) using Java, web technologies and relational
database management system. We randomly grouped the

Fig. 13 Communication environment to support the inspection meeting phase

10 IET Softw., pp. 1–18

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-sen.2010.0108

www.ietdl.org



students in teams and then we allocated each team on a
software project. The team adopted an incremental
development process similar to the one suggested in [52].
In particular, the teams performed a complete requirements
analysis and high-level design and then proceeded with an
incremental development of each identified subsystems. The
Master students were responsible for coordinating the
projects, defining the schedule, organising meetings,
collecting process metrics and allocating human resources
to tasks. They were also responsible for defining process
and product standards of the project, collecting product
metrics, managing the artefact reviews for quality control
and acting as moderators during the inspection.

With regard to the case study presented in the paper, we
asked the Master students (i.e. the quality managers) to
identify the software artefacts to inspect and to create a
checklist for each type of artefact that had to undergo an
inspection (see Fig. 5). They were also responsible to
compose the inspection teams (see Fig. 9) and to schedule
the inspections (planning phase of the inspection process in
Section 5.1).

The Bachelor students (i.e. the inspectors) performed the
inspections planned by the quality manager according to the
inspection process described in Section 5. To start an
inspection the manager has to turn the state of an artefact
into a revision state (see Fig. 6).

6.2 Research questions

To assess the integration of WAIT in ADAMS and to evaluate
the advantages of adopting it, we have defined the following
two research questions:

RQ1: Is the integration of WAIT in ADAMS useful to support
the moderator within the inspection process?
RQ2: Is the integration of WAIT in ADAMS useful to support
the inspector within the inspection process?

To address these questions, the moderators and the
inspectors were required to fill in two different
questionnaires to assess the effectiveness of the distributed
inspection system and the support provided by the
integrated system. Each student had the questionnaire to fill
in his/her to-do list on ADAMS. Once filled in, the
questionnaires were uploaded in ADAMS.

The questionnaires for the moderators and the inspectors
are shown in Tables 1 and 2, respectively. In both the
questionnaires the answers are based on a five-point Likert
scale [28]: (1) strongly agree; (2) agree; (3) neither agree
nor disagree; (4) disagree; (5) strongly disagree.

These questionnaires were designed to (i) minimise
comprehension problems (e.g. reducing as much as possible
the use of unfamiliar terms), (ii) reduce complexity and
memory overload and (iii) increase respondent attention
(e.g. reducing the number of questions to the essential). The
subjects were also asked to annotate problems and
observations useful to improve the integrated system.

All the questions except Q1 are different in the
questionnaires of the moderators and the inspectors. The
rationale for using two different questionnaires relies on the
fact that the moderators and the inspectors use different
functionalities of the integrated system since their roles in
the enactment of the inspection process is completely
different. Therefore with respect to the moderator, we
formulated the questions thus getting information on the

Table 1 Moderators’ questionnaire

Id Question

Q1 I found useful that the to-do list allows accessing my inspections and also shows the progress status of my inspections

Q2 I found useful the possibility of accessing an artefact under inspection together with the list of identified defects

Q3 I found useful that the software system notifies the team member allocated to an inspection

Q4 I found useful that the software system notifies me when the defect detection starts

Q5 I found useful that the software system notifies me when the asynchronous discussion on the possible defects starts

Q6 I found useful that the software system notifies the developers of a given artefact when the inspection process is

accomplished and defects are detected

Q7 I found useful the way to access the identified defects (during the rework phase)

Q8 During the creation of a new version of a revised artefact, I found useful that the software system allows developers to

specify which defect has been addressed and which defect needs to be addressed

Q9 I found useful that the software system allows associating checklists to each type of artefact

Q10 During the definition of the inspection team, I found useful the possibility of accessing information about who worked on an

artefact, how the project team is composed, who already inspected similar artefacts, etc

Q11 I found useful the traceability layer to schedule inspections for artefacts depending on previously inspected related artefacts

Table 2 Inspectors’ questionnaire

Id Question

Q1 I found useful that the to-do list allows accessing my inspections and also shows the progress status of my inspections

Q2 I found useful the notification received when the moderator allocates me on an inspection

Q3 I found useful the notification received when the defect detection of an inspection assigned to me starts

Q4 I found useful the notification received when the asynchronous discussion is started on the candidate defects

Q5 I found useful the notification received when defects are identified on an artefact I have produced

Q6 I found useful the filtering of the list of artefacts (I am working on) containing defects

Q7 I found useful the list of the defects of the artefact (I am working on)

Q8 During the creation of a new version of a revised artefact, I found useful that the software system allows developers to

specify which defect has been addressed and which defect needs to be addressed

IET Softw., pp. 1–18 11
doi: 10.1049/iet-sen.2010.0108 & The Institution of Engineering and Technology 2011

www.ietdl.org



support the integrated tool provides to manage the teams and
the inspection process. On the other hand, the questionnaire
of the inspectors aimed at gathering information on the
support the environment provides to inspect software
artefacts. Further on, differences between the questionnaires
also concern the questions formulated to get information on
the usefulness perceived by moderators and inspectors on
the context-awareness within the defined inspection process
supported by the notification mechanisms of ADAMS.

To analyse the data of the post-experiment survey
questionnaires, we used a Mann–Whitney test in order to
find out whether the median answer is significantly different
from the neutral mid option (i.e. ‘uncertain’). We also
graphically represent the results of the post-experiment
survey questionnaires by using bar plots, since they provide
a quick visual representation to summarise ordinal
variables. The values for the question, whose answers that
are significantly different from the mid option, are
highlighted in red (dark grey). For replication purposes the
raw data and the R script of the bar plots can be
downloaded from http://sesa.dmi.unisa.it/tr/wait.rar.

6.3 Results

Table 3 reports on some descriptive statistics of the students’
projects accomplished in the case study. In particular, the first
column shows the ID of the project, whereas the second and
third columns summarise the composition of each team. The
subsequent two columns report on the number of high-level
artefacts and source code files produced by the teams. The
total number of artefacts and the total number of created
versions of these artefacts are shown in the sixth and
seventh columns, respectively. A brief description of the
developed software systems is provided in the following:

† eTour is an application for Smartphone that supports
tourists during the discovery of artistic and cultural heritage;
† SMEG is a SCORM compliant engine able to trace the
fruition of e-learning contents;
† Web Agency is a web-based system that provides
functionalities form the management of websites
development and deployment companies;
† Holiday Heaven is a web-based hotel reservation and
customer management system.

† Nova is a distributed information system to support the
technical assistance centres in small and medium-sized
companies;
† EasyUse is a web application for the management of tourist
and beach resorts;
† H-@-Commerce is an e-commerce platform that provides
features for the auction sale, marketing, inventory and
supply of products or services over the Internet;
† ELEION is a system for the electronic vote for Italian
political elections;
† Nomadblue is a client/server application that handles
information messages/advertisements via Bluetooth;
† 4Gym is software to automate the management of gym and
sport centres;
† Planet Video is a web application to coordinate and
optimise the management of video rental companies;
† Supermarket is a client/server application to manage the
inventory of a supermarket.

The study involved 94 Bachelor students and 13 Master
students allocated on 12 software projects. In particular, a
team was composed of 16 Bachelor students and two
Master students sharing management responsibilities. Five
teams were composed of nine Bachelor students and one
Master student, while three teams were composed of eight
Bachelor students and one Master student. The remaining
three teams were composed of three Bachelor students and
one Master student.

Table 3 also shows that the average number of produced
artefacts was about 540 (9 artefacts were produced within
the smallest project and 1120 artefacts were produced
within the largest one). The low number of artefacts
produced within the smallest project was due to the fact that
the team members did not produce fine-grained software
artefacts during the software development process. For
instance, the requirements analysis and design documents
were produced as single software artefacts. The average
number of produced versions was about 1416. For six
projects the number of source code artefacts is one. This is
due to the fact that some teams decided to use the
versioning management system integrated in the
development environment to manage source code artefacts.
A compressed archive containing the source code was

Table 3 Projects statistics

ID Project name # students # artefacts # of versions Document pages CC LOC

BS MS HLA LLA Tot RAD SDD ODD

1 eTour 16 2 886 214 1100 2954 219 28 66 392 48 427

2 SMEG 9 1 166 1 167 361 93 23 22 23 5414

3 Web Agency 9 1 776 62 838 1901 108 41 61 171 17 325

4 Holiday Heaven 9 1 582 96 678 1591 188 42 472 162 16 263

5 Nova 9 1 257 1 258 701 115 25 27 81 11 982

6 EasyUse 9 1 444 1 445 652 84 20 30 31 2739

7 H-@-Commerce 8 1 718 67 785 2416 262 36 24 103 24 878

8 ELEION 8 1 840 211 1051 2676 462 31 40 169 11939

9 Nomadblue 8 1 1051 69 1120 3612 179 31 94 318 35 292

10 4Gym 3 1 8 1 9 42 108 21 41 65 8474

11 Planet Video 3 1 14 1 15 45 83 37 20 79 9023

12 Supermarket 3 1 17 1 18 37 89 29 32 70 9456

average values 479.9 60.4 540.3 1415.7 165.8 30.3 77.4 138.7 16768

BS ¼ Bachelor students; MS ¼Master students; HLA ¼ high-level artefacts; LLA ¼ low-level artefacts; CC ¼ code classes; LOC ¼ lines of

code

12 IET Softw., pp. 1–18

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-sen.2010.0108

www.ietdl.org

http://sesa.dmi.unisa.it/tr/wait.rar


uploaded in ADAMS. In this case no inspection was enacted
in the integrated system. Finally, some metrics about both
high-level and low-level artefacts are reported. In particular,
the number of pages for three of the main documents
produced, namely the requirements analysis document
(RAD), the system design document (SDD) and the object
design document (ODD), are provided. In this case, the
RAD is the longest document (on average about 165 pages
long), whereas the SDD is the shortest (on average about
30 pages). It is important to point out that the ODD of the
project 4 is huge, as compared to the others, as the authors
decided to include the entire documentation generated by
the JavaDoc program to specify the application program
interface. Concerning the source code, the number of code
classes and the number of lines of code (LOC) for each
project is reported. In this case, the average number of code
classed is about 138 (318 classed were produced for the
biggest project and 23 for the smallest one) and the average
number of LOC is about 17K (about 48K for the biggest
project and 2.7K for the smallest one).

Table 4 summarises some descriptive statistics on the
inspections the teams accomplished within each project. In
particular, for each project the total number of inspected
artefacts is reported. Information on the number of
performed inspections and the average number of defects
for each inspection is provided as well. We got the raw data
to compute the descriptive statistics in Table 4 by directly
accessing to the database of the ADAMS system.

The average number of performed inspection was about 51
(see Table 4). In particular, the largest and smallest numbers
of performed inspections were 94 and 19, respectively. The
teams inspected high-level (e.g. requirements analysis and
design documents) and low-level software artefacts (i.e.
source code). Concerning the high-level software artefacts,
the teams used the system to inspect the whole or a part of
the following documents: RAD, SDD, ODD and test plan
documents. All these artefacts were based on the templates
suggested in [52].

RQ1: Support provided to the moderator: Fig. 14
summarises the answers provided by the moderators. In
particular, they strongly agreed on the usefulness of
accessing their inspections and their progress status (see
bars of Q1). In fact, the strongly agree answer is
significantly different (P-value ¼ 0.002) from the mid
value. Furthermore, one subject suggested removing from
the to-do list the software artefacts that underwent the

inspection process and were baselined. In fact, the to-do list
is not automatically updated as ADAMS delegates the
moderator to manually allocate/de-allocate a software
engineer on a given artefact. We plan to address this issue
in the new version of our system.

The subjects also found useful the feature that allows
accessing an artefact under inspection together with the
list of identified defects. All the moderators except
one answered ‘I strongly agree’ on the question Q2
(P-value ¼ 0.001).

The bars of the statements from Q3 to Q5 indicate that the
moderators found the notification mechanism useful (P values
are 0.002 for Q3 and Q4 and 0.006 for Q5). Despite the
positive judgment, the managers found less useful the fact
that the system sends a notification when an asynchronous
discussion starts (see bars of Q5). Others would have
preferred a notification concerning the accomplishment of
the asynchronous discussion, that is, the refinement phase.

The moderators found very useful the notifications sent
to the authors before starting the rework phase
(P-value , 0.001) as shown by the bars of Q6. As shown
by the bars of Q7, the moderators also found very useful
that the software system shows the defects that have been
addressed and defects that needs to be addressed
(P-value ¼ 0.001). However, some moderators suggested
highlighting in green the defects that have been corrected
and in red the remaining defects. In particular, 4 out of 13
were the subjects that asked for this modification.

The bars of the statement of Q8 indicates that the
moderators generally found useful that during the creation
of a new version of a revised artefact the integrated system
allowed to specify which defect have been addressed and
which defects need to be addressed (P-value ¼ 0.002).

The bars of both Q9 and Q10 indicate that the moderators
agree (P-value ¼ 0.005) on the usefulness of both associating
a checklist to an artefact type and accessing information on
the inspection teams. As shown by the bars of Q11, the
subjects strongly agreed (P-value ¼ 0.001) on the
usefulness of obtaining traceability links on the software
artefacts that could be affected by the defects of a given
inspected artefact. This shows another interesting advantage
provided by the integration of WAIT within ADAMS.

According to the analysis of the answers provided by the
subjects, we can positively address the research question
RQ1. In particular, we can conclude that the system
proposed here effectively supports the moderators.

Table 4 Statistics of the inspection performed

Project ID Inspected

artefacts

Inspected high-level

artefacts

Inspected source

code artefacts

Number of

Inspections

Avg. number of

identified defects

1 77 26 51 85 7.8

2 20 13 0 26 4.5

3 48 15 33 63 6.8

4 43 15 28 56 7.1

5 23 12 0 30 12.8

6 24 13 0 38 6.6

7 36 16 20 58 18.2

8 69 23 46 90 5.9

9 72 20 52 94 10.6

10 8 8 0 27 19.3

11 13 13 0 30 16.5

12 12 12 0 19 18.2

average values 37.17 15.58 21.58 51.33 11.2

IET Softw., pp. 1–18 13
doi: 10.1049/iet-sen.2010.0108 & The Institution of Engineering and Technology 2011

www.ietdl.org



RQ2: Support provided to the inspector: The data of the
questionnaire filled in by the inspectors are visually
summarised in Fig. 15. This figure reveals that the
agreement level of the subjects is concordant (P-value
,0.001) about the possibility of accessing their on-going
inspections and the corresponding progress status within
their to-do list (see bars of Q1).

Similarly, the bars of the statements from Q2 to Q4
(P-values are all less than 0.001) show that the inspectors

agreed on the usefulness of the notification mechanism
provided by the integrated environment. Similarly to the
results achieved with the moderators, the inspectors found
less useful the notification regarding the start of the
asynchronous discussion, that is, the refinement phase. In
fact, the bar of the mid-value of Q4 indicates that the
subjects neither agree nor disagree with respect to the
usefulness of such a kind of notification. The subjects
found more useful the notification received when defects

Fig. 14 Bar plots of the moderators’ questionnaires

14 IET Softw., pp. 1–18

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-sen.2010.0108

www.ietdl.org



are identified on an artefact they produced. In fact they
strongly agree (P-value , 0.001) on this notification
mechanism as the bars of Q5 show.

The bars of the question Q6 indicate that the inspectors
expressed a positive judgment on the possibility of filtering
the list of artefacts. Most subjects answered agree to the
statement Q6 (P-value ,0.001). On the other hand,
inspectors found useful the possibility of showing the defect

identified for an artefact they are working on (see bars Q7).
The agreement level was mainly strongly agree (P-value
,0.001).

As shown by the bars of Q8, the inspectors agreed on the
fact that the software system distinguishes the defects that
have been addressed and the defects that still need to be
considered (P-value ,0.001). It is worth noting that the
moderators found this feature more useful than the inspectors.

Fig. 15 Bar plots of the inspectors’ questionnaires

IET Softw., pp. 1–18 15
doi: 10.1049/iet-sen.2010.0108 & The Institution of Engineering and Technology 2011

www.ietdl.org



Concluding, the research question RQ2 can be positively
answered, thanks to the analysis of the inspectors’
questionnaires. In particular, most inspectors found useful
the integration of WAIT in ADAMS to perform inspections
in distributed settings.

6.4 Threats to validity

We describe here the threats to validity (i.e. internal, external,
construct and conclusion) that may affect the results of the
presented case study. Internal validity threats regard
external factors that may affect the observed results. We
attempted to simulate a real working environment with
strict deadlines, although Bachelor and Master students
were used as subjects. Another factor that may have
influenced the internal validity is the difficulty to
comprehend the statements, for example, ambiguous, not
clear, not well formulated. However, we designed the
questionnaire to minimise these problems. Furthermore, the
subjects were asked to contact one of the authors in case of
problems related to the comprehension of the statements.
None of them asked for clarifications, thus enabling us to
believe that the statements were clearly formulated.

External validity threats concern the generalisation of the
results and are always present when empirical
investigations are conducted with students. However,
moderators have been selected among last-year Master
students, so they have analysis, development and
programming experience, and they are not far from junior
industrial analysts. In fact, most of the involved Masters
students had some working experience due to the
internship they made in the industry as final part of their
Bachelor degree. Further on, the use of students in
empirical investigations like the one presented in this paper
cannot be considered a major issue [53], since the
cognitive processes to use our technology are more or less
similar across students and industry professionals. To
confirm or contradict the results, we have planned,
however, to conduct experimentations in industrial research
projects, to confirm or contradict the results presented in
the paper. This part of our research is actually the most
challenging and will possibly take place over the next
years. Similarly to [54], the execution of these studies will
also enable us to assess whether or not our technology is
ready to be transferred to the software industry. A further
threat that might affect the external validity concerns the
fact that the software systems developed by the students are
small/medium sized, but they represent a good benchmark
as they cover many different projects with different goals.
Furthermore, students used the proposed inspection process
and system on different types of artefacts having different
size, for example, RAD, scenarios, use cases, class models,
sequence diagrams and source code. However, to better
assess the developed technology, we aim to assess our
technology on case studies conducted on larger projects
developed in collaboration with industrial partners.

Construct validity threats concerns the questionnaire used
in the study. To mitigate this validity the questionnaire was
designed using standard ways and scales [28]. Furthermore,
the statements are expressed in positive manner, so there is
the risk that subjects answered them without paying
attention. In investigations based on survey questionnaires,
it is usually impossible to know whether the subjects
answer truthfully. Also, the subjects’ motivations could
affect the answers and then the observed results. To avoid
social threats caused by evaluation apprehension, the

students were not evaluated on the number and quality of
inspections they conducted.

Threats to conclusion validity concern the issues that affect
the ability to draw a correct conclusion. In this study, threats
to conclusion validity concern the selection of the subjects,
the data collection and the validity of the statistical tests.
With regard to the selection of the populations, we drew
fair samples and conducted our experiments with subjects
belonging to these samples. Non-parametric tests were used
to analyse the answers provided by the subjects.

7 Final remarks and future work

To drive software development towards engineering-level
precision, software companies have to use quality-
enhancing techniques, methods and tools right from the
early phases of the development process [48]. To this end,
special conceived development systems are needed to
support companies to develop and maintain reliable
software products. As a first step towards this direction, in
this paper we have reported the results of the integration of
a web-based tool, that is, WAIT – web-based artefact
inspection tool, implementing a distributed inspection
process checklist based within an artefact-based process
support system, namely ADAMS.

The validity and the effectiveness of the integrated system
were assessed in a case study conducted with Master and
Bachelor students in Computer Science of the University of
Salerno. Master students acted as quality managers and
inspection moderators, while Bachelor students acted as
inspectors. A questionnaire was proposed to the subjects to
get information about the quality management support
provided by the system resulting from the integration of
WAIT in ADAMS.

This study revealed that the subjects found the
asynchronous discussion (i.e. the refinement phase) useful
to solve conflicts on potential defects. The greater part of
the subjects asserted that the meetings were rarely adopted.
The study also revealed that the teams did not perform the
meeting when the number of unsolved conflicts at the end
of the asynchronous discussion is very low. However, to
resolve the potential defects unsolved during the
asynchronous discussion, the subjects considered necessary
the enactment of a meeting. This result confirms the
achievements obtained by the experimentation presented in
[23], where the distributed inspection process (without
considering the integration in ADAMS) was compared with
the Fagan’s method by means of controlled experiments.
We also observed that in case meetings were required, they
were carried out to discuss very few conflicts. The results
obtained from our empirical investigations together with the
ones presented in [17] confirm that a virtual meeting is
more effective in case a preliminary asynchronous
discussion is conducted before.

We also noticed that differences between the moderators
and the inspectors exist on the perceived usefulness of the
functionalities implemented in ADAMS. In particular, we
observed that the moderators generally found the
notifications more useful. This is a predictable result, as
moderators need tools to monitor the project and inspection
process, in particular. Therefore in the future we plan to
further differentiate the notification mechanism according to
the role of a software engineer within the inspection process.

Other improvement areas can be derived from the results of
the case study. A first direction would be to add some features
to further simplify the defect localisation within the software

16 IET Softw., pp. 1–18

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-sen.2010.0108

www.ietdl.org



artefact. A second direction should aim at adding new features
to better support synchronous discussion among inspectors
and moderators. As a possible further direction for our
research, we plan to support different reading techniques to
identify defects within software artefacts, for example,
ad hoc and scenario-based [55, 56]. We also plan to further
assess our system using the technology acceptance model
[57]. This will enable us to better investigate the
relationships that exist between the usefulness of our
system, its ease of use and its use.

Our research agenda also includes an empirical evaluation
with practitioners to evaluate whether the technology
implemented and experimented in our research laboratory
can be transferred to the software industry [58, 59].
Therefore we have conducted a state of the practice
industrial survey within Italian software companies/
organisations [60]. This research strategy is typically
conducted when the use of a technique or tool has already
taken place or before it is introduced. One of the main
findings of this investigation is that the software companies
manifested great interest in the integration of distributed
inspection methods within a software artefact management
system. Despite the available number of distributed
inspection processes and tools, the industrial practice is still
far to adopt them since the management consider them non-
effective. Another relevant point is the lack of integrated
environments to support all the phases of a development
process. Finally, although most of the software companies
use software configuration management systems to access
the level two of CMM [http://www.sei.cmu.edu/pub/
documents/02.reports/pdf/02tr012.pdf] and to get ISO 9000
certification, distributed inspection tools are not widely
employed in the industrial practice despite they are being
recognised useful to improve software quality.

According to the case study results and the main findings of
a recent state of the practice industrial survey [60], we have
conceived a research plan between academy and industry to
further investigate the developed technology and possibly
speed up its transfer to the industry. To this end, we are
planning controlled experiments and case studies with some
of the industries involved in the survey that manifested
interest in the experimentation of distributed inspection
methods. This part of our research is actually the most
challenging and will take place over the next few years.

8 References

1 Dewan, P., Agarwal, P., Shroff, G., Hegde, R.: ‘Distributed side-by-side
programming’. Proc. 2009 ICSE Workshop on Cooperative and Human
Aspects on Software Engineering, Washington, DC, 2009, pp. 48–55

2 Herbsleb, J.D., Paulish, D.J., Bass, M.: ‘Global software development at
Siemens: experience from nine projects’. Proc. Int. Conf. Software
Engineering, 2005, pp. 524–533

3 Lings, B., Lundell, B., Agerfalk, P.J., Fitzgerald, B.: ‘A reference model
for successful distributed development of software systems’. Proc. Int.
Conf. Global Software Engineering, 2007, pp. 130–139

4 Lanubile, F., Damian, D., Oppenheimer, H.L.: ‘Global software
development: technical, organizational, and social challenges’, ACM
SIGSOFT Softw. Engng. Notes, 2003, 28, (6), p. 2

5 Panjer, L.D., Damian, D., Storey, M.: ‘Cooperation and coordination
concerns in a distributed software development project’. Proc. 2008
Int. Workshop on Cooperative and Human Aspects of Software
Engineering, Leipzig, Germany, 2008, pp. 77–80

6 Prikladnicki, R., Audy, J.L., Evaristo, R.: ‘Global software development
in practice lessons learned’, Softw. Process: Improve. Pract., 2003, 8,
(4), pp. 267–281

7 Aversano, L., De Lucia, A., Gaeta, M., Ritrovato, P., Stefanucci, S.,
Villani, M.L.: ‘Managing coordination and cooperation in distributed
software processes: the GENESIS environment’, Softw. Process
Improve. Pract., 2004, 9, (4), pp. 239–263

8 Booch, G., Brown, A.W.: ‘Collaborative development environments’,
in’, in ‘Advances in computers’ (Academic Press, 2003), vol. 59 Q3

9 Lanubile, F., Ebert, C., Prikladnicki, R., Vizcaino, A.: ‘Collaboration
tools for global software engineering’, IEEE Softw., 2010, 27, pp. 52–55

10 Berliner, B.: ‘CVS II: parallelizing software development’. Proc.
USENIX Winter 1990 Technical Conf., Berkeley, CA, 1990,
pp. 341–352

11 Estublier, J., Leblang, D., VanDerHoek, A., et al.: ‘Impact of software
engineering research on the practice of software configuration
management’, Trans. Softw. Engng. Meth., 2005, 14, (4), pp. 383–430

12 Heydon, A., Levin, R., Mann, T., Yu, Y.: ‘Software configuration
management using Vesta’ (Springer, 2006)

13 Serban, A.: ‘Visual sourcesafe 2005 Software configuration
management in practice: best practice management and development
of visual studio. NET 2005 applications with this easy-to-use SCM
tool from Microsoft’ (Packt Publishing, 2007)

14 Freedman, D.P., Weinberg, G.M.: ‘Handbook of walkthroughs,
inspections, and technical reviews: evaluating programs, projects, and
products’ (Little Brown & Co., 1982, 3rd edn.)

15 Laitenberger, O., DeBaud, J.M.: ‘An encompassing life cycle centric
survey of software inspection’, J. Syst. Softw., 2000, 50, (1),
pp. 5–31

16 Fagan, M.E.: ‘Design and code inspections to reduce errors in program
development’, IBM Syst. J., 1976, 15, (3), pp. 182–211

17 Lanubile, F., Mallardo, T., Calefato, F.: ‘Tool support for geographically
dispersed inspection teams’, Softw. Process: Improve. Pract., 2003, 8,
(4), pp. 217–231

18 Perpich, J.M., Perry, D.E., Porter, A.A., Votta, L.G., Wade, M.W.:
‘Anywhere, anytime code inspections: using the web to remove
inspection bottlenecks in large-scale software development’. Proc. Int.
Conf. Software Engineering, 1997, pp. 14–21

19 Johnson, P.M., Tjahjono, D.: ‘Does every inspection really need a
meeting?’, Empirical Softw. Engng., 1998, 3, (1), pp. 9–35

20 Damian, D., Lanubile, F., Mallardo, T.: ‘On the need for mixed media in
distributed requirements negotiations’, IEEE Trans. Softw. Engng.,
2008, 34, (1), pp. 116–132

21 De Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: ‘Fine-grained
management of software artefacts: the ADAMS system’, Softw. Pract.
Exp., 2010, 40, (11), pp. 1007–1034

22 De Lucia, A., Fasano, F., Scanniello, G., Tortora, G.: ‘Integrating a
distributed inspection tool within an artefact management system’.
Proc. Int. Conf. Software and Data Technology, 2007, pp. 184–189

23 De Lucia, A., Fasano, F., Scanniello, G., Tortora, G.: ‘Evaluating
distributed inspection through controlled experiments’, IET Softw.,
2009, 3, (5), pp. 381–394

24 Votta, L.: ‘Does every inspection need a meeting?’, ACM Softw. Engng.
Notes, 1993, 18, (5), pp. 107–114

25 Porter, A.A., Johnson, P.M.: ‘Assessing software review meetings:
results of a comparative analysis of two experimental studies’, IEEE
Trans. Softw. Engng., 1997, 23, (3), pp. 129–145

26 Miller, J., Wood, M., Roper, M.: ‘Further experiences with scenarios and
checklists’, Empirical Softw. Engng., 1998, 3, (1), pp. 37–64

27 Sabaliauskaite, G., Kusumoto, S., Inoue, K.K.: ‘Assessing defect
detection performance of interacting teams in object-oriented design
inspection’, Inf. Softw. Technol., 2004, 46, (13), pp. 875–886

28 Oppenheim, N.: ‘Questionnaire design, interviewing and attitude
measurement’ (Pinter Publishers, 1992)

29 Bianchi, A., Lanubile, F., Visaggio, G.: ‘A controlled experiment to
assess the effectiveness of inspection meetings’. Proc. 7th Int. Symp.
on Software Metrics, METRICS, Washington, DC, 2001, pp. 42–50

30 Biffl, S., Halling, M.: ‘Investigating the defect detection effectiveness
and cost benefit of nominal inspection teams’, IEEE Trans. Softw.
Engng., 2003, 29, (5), pp. 385–397

31 Aurum, A., Petersson, H., Wohlin, C.: ‘State-of-the-art: software
inspections after 25 years’, Softw. Test. Verif. Reliab., 2002, 12, (3),
pp. 133–154

32 Bull. Inspection Process Assistant: User Guide, 1997
33 Iniesta, J.B.: ‘A tool and a set of metrics to support technical reviews’, in

Ross, M., et al. (Ed.): ‘Software Quality Management II, Volume II:
Building Quality into Software’ (Computational Mechanics,
Southampton, UK, 1994), pp. 579–594

34 Meyer, B.: ‘Design and code reviews in the age of the internet’,
Commun. ACM, 2008, 51, (9), pp. 67–71

35 Brothers, L.R., Sembugamoorthy, V., Muller, M.: ‘ICICLE: Groupware
for code inspections’. Proc. 1990 ACM Conf. Computer Supported
Cooperative Work, 1990, pp. 169–181

36 Gintell, J.W., Arnold, J., Houde, M., Kruszelnicki, J., McKenney,
R., Memmi, G.: ‘Scrutiny: a collaborative inspection and review
system’. Proc. European Conf. Software Engineering, 1993,
pp. 344–360

IET Softw., pp. 1–18 17
doi: 10.1049/iet-sen.2010.0108 & The Institution of Engineering and Technology 2011

www.ietdl.org

http://www.sei.cmu.edu/pub/documents/02.reports/pdf/02tr012.pdf
http://www.sei.cmu.edu/pub/documents/02.reports/pdf/02tr012.pdf


37 Stein, M., Riedl, J., Harner, S.J., Mashayekhi, V.: ‘A case study of
distributed, asynchronous software inspection’. Proc. Int. Conf.
Software Engineering, 1997, pp. 107–117

38 Knight, J.C., Meyers, E.A.: ‘Phased inspections and their
implementation’, Softw. Engng. Notes, 1991, 16, (3), pp. 29–35

39 Knight, J.C., Meyers, E.A.: ‘An improved inspection technique’,
Commun. ACM, 1993, 36, (11), pp. 51–61

40 Mashayekhi, V., Drake, J.M., Tsai, W.T., Reidl, J.: ‘Distributed,
collaborative software inspection’, IEEE Softw., 1993, 10, (5),
pp. 66–75

41 Humphrey, W.S.: ‘Managing the software process. SEI Series in
Software Engineering’ (Addison-Wesley Longman Publishing,
Boston, MA, USA, 1989)

42 Murphy, P., Miller, J.: ‘A process for asynchronous software
inspection’. Proc. Int. Workshop on Software Technology and
Engineering Practice, 1997, pp. 96–104

43 Johnson, P.M.: ‘An instrumented approach to improving software
quality through formal technical review’. Proc. Int. Conf. Software
Engineering, 1994, pp. 113–122

44 Macdonald, F., Miller, J.: ‘A comparison of tool-based and paper-based
software inspection’, Empirical Softw. Engng., 1998, 3, (3),
pp. 233–253

45 Yamashita, T.: ‘Evaluation of Jupiter: a lightweight code review
framework’. MS thesis, University of Hawaii, 2006, drafted from
csdl.ics.hawaii.edu/techreports/06-09/06-09.pdf

46 Hedberg, H., Harjumaa, L.L.: ‘Virtual software inspections for
distributed software engineering projects’. Proc. ICSE Int. Workshop
on Global Software Development, Orlando, FL, May 2002

47 Sauer, C., Jeffery, D.R., Land, L., Yetton, P.: ‘The effectiveness of
software development technical reviews: a behaviorally motivated
program of research’, IEEE Trans. Softw. Engng., 2000, 26, (1),
pp. 1–14

48 Collins-Sussman, B., Fitzpatrick, B., Pilato, C.: ‘Version control with
subversion’ (O’Reilly, 2004), drafted from http://svnbook.red-bean.com/

49 De Lucia, A., Fasano, F., Scanniello, G., Tortora, G.: ‘Enhancing
collaborative synchronous UML modelling with fine-grained
versioning of software artefacts’, Int. J. Visual Languages Comput.,
2007, 18, pp. 492–503

50 Runeson, P., Höst, M.: ‘Guidelines for conducting and reporting case
study research in software engineering’, Empirical Softw. Engng.,
2009, 14, (2), pp. 131–164

51 Yin, R.K.: ‘Case study research: design and methods’ (Sage, Thousand
Oaks, CA, 1994)

52 Bruegge, B., Dutoit, A.: ‘Object-oriented software engineering’
(Prentice-Hall, 2003, 2nd edn.)

53 Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., et al.: ‘Preliminary
guidelines for empirical research in software engineering’, IEEE
Trans. Softw. Engng., 2002, 28, (8), pp. 721–734

54 Colosimo, M., De Lucia, A., Scanniello, G., Tortora, G.: ‘Evaluating
legacy system migration technologies through empirical studies’, Inf.
Softw. Technol., 2009, 51, (2), pp. 433–447

55 Cheng, B., Jeffrey, R.: ‘Comparing inspection strategies for software
requirements specifications’. Proc. 1996 Australian Software
Engineering Conf., 1996, pp. 203–211

56 Porter, A.A., Votta, L.G., Basili, V.R.: ‘Comparing detection methods
for software requirements inspections: a replicated experiment’, IEEE
Trans. Softw. Engng., 1995, 21, (6), pp. 563–575

57 Davis, F.D.: ‘Perceived usefulness, perceived ease of use, and user
acceptance of information technology’, MIS Quart., 1989, 13, (3),
pp. 319–340

58 Pfleeger, S.L., Menezes, W.: ‘Marketing technology to software
practitioners’, IEEE Softw., 2000, 17, (1), pp. 27–33

59 Redwine, S.T., Riddle, W.E.: ‘Software technology maturation’. Proc.
8th Int. Conf. Software Engineering, London, UK, 1985, pp. 189–200

60 De Lucia, A., Fasano, F., Scanniello, G., Tortora, G.: ‘Software quality
assessment and software error/defect identification: preliminary results
from a state of the practice survey’. Submitted to 12th Product
Focused Software Development and Process Improvement, 2011

18 IET Softw., pp. 1–18

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-sen.2010.0108

www.ietdl.org

http://svnbook.red-bean.com/


SEN20100108
Author Queries

A. De Lucia, F. Fasano, G. Scanniello, G. Tortora

Q1 References are renumbered to be in numerical order as per the journal style.

Q2 Footnotes are moved into the text as per the journal style. Please confirm their placement.

Q3 Please provide the editor names in [8].

www.ietdl.org


	1 Introduction
	2 Related work
	3 Enhancing ADAMS with distributed inspection: an overview
	4 Artefact lifecycle and quality management in ADAMS
	5 Distributed inspection process
	6 Case study
	7 Final remarks and future work
	8 References

