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Abstract
In this paper we analyse the adhesion between a rubber block and a rigid randomly rough profile. The
focus of the investigation is on the influence of the work of adhesion and of the fractal dimension Df of
the rough profile on the contact behaviour. In particular, we analyse how the contact area and the power
spectral density of the deformed profile are affected by the two aforementioned quantities. We find that at
sufficiently small loads the influence of Df is negligible. However, the scenario strongly changes at higher
loads as Df strongly affects the number of contact spots. Calculations show that the contact area depends
linearly on the work of adhesion, whereas only a negligible influence of the work of adhesion is found on
the power spectral density (PSD) of the deformed profile.
© Koninklijke Brill NV, Leiden, 2012
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1. Introduction

Theoretical and experimental research on contact mechanics between rough sur-
faces is stimulated by the crucial role that this topic plays in a large number of
engineering applications, ranging from seals [1–4], boundary and mixed lubrica-
tion [5–8], adhesive tapes, MEMS and NEMS, and friction [9–12]. In the last years
two main approaches have been developed to study the contact mechanics of an
elastic body when it is brought into contact with a rough surface: (i) multiasper-
ity contact theories [13–17] where the contact between the surfaces is modelled
as an ensemble of randomly distributed Hertzian contacts between the asperities,
and (ii) Persson’s theory of contact mechanics [9, 18, 19], where the probability
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2 G. Carbone, E. Pierro /

distribution of the contact pressure is shown to be governed by a diffusive pro-
cess. Both approaches predict, with some differences, linearity between the contact
area and the load in the limiting case of small loads. This has also been confirmed
by some numerical and experimental studies [20–26], which have also shown that
Persson’s theory [9, 27] is able to capture, at least qualitatively, the physical mech-
anism involved in contact mechanics of rough surfaces. In particular, the predicted
linearity between the contact area and the load, which covers the range from 0 to
15–20% of the nominal contact area, is in agreement with the numerical results, as
well as the predicted exponent of the power law of the PSD of the interfacial stress
distribution. On the other hand, other studies [17, 28] have shown that multiasper-
ity contact theories predict linearity only for very small load values, whereas as the
load is increased the theoretical predictions rapidly deviate from the asymptotic lin-
earity. Interestingly, both Persson’s theory and multiasperity contact models show
that, given the same material properties, the area vs. load relation is affected only by
the moments of the PSD of the rough surface. However, since many rough surfaces
of practical interest are self-affine fractals (e.g., asphalt and concrete roads), one
may wonder whether the fractal dimension of the rough surface has also a role in
determining the area-load relation.

Since the pioneering investigation of Fuller and Tabor [29], there exist plenty
of studies focusing on the adhesion of rough surfaces. These studies mainly use
multiasperity models to describe the contact between rough surfaces. Within this
framework more recent studies have been carried out to consider also the effect of
asperity plastic deformation on the adhesion of rough solids [30]. Unfortunately,
multiasperity contact models only approximately describe the contact mechanics
between rough surfaces, and, as shown in [28], do not always give satisfactory
results, as they neglect interaction and coalescence between asperities. However,
multiasperity models have the merit of having clarified the main physical aspects
of the contact problem. In this paper we propose a completely different procedure
which provides a fully numerically-exact solution of the equation governing the
contact between rough surfaces. The methodology, different from finite element
model (FEM) [22, 31], is much less expensive from a computational point of view
and guarantees to achieve convergent results. FE models have been also used to
investigate the adhesion contact in presence of plastic deformation [31], which
is neglected in our work because we focus on elastically soft materials, such as
poly(dimethylsiloxane) (PDMS), which usually does not exhibit plastic deforma-
tion. We concentrate our attention on these type of materials, and investigate the
role of the fractal dimension of the rough surface in the area-load and penetration-
load relations, by analysing the adhesion contact between a semi-infinite elastic
space and periodic self-affine fractal 1D rough surfaces.

Of course, real surfaces present 2D roughness, but there are mainly three reasons
for studying 1D rough contacts: (i) first of all one should keep in mind that in order
to obtain physically meaningful results, one needs to include in the analysis all the
spectral components of the surface roughness (which can cover a range of scales
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3

of about 3–4 orders of magnitude), usually resulting in a strong increase of the
computational cost. We observe that this problem is considerably reduced in case
of 1D roughness; (ii) secondly we note that rough surfaces, encountered in many
practical applications, are often strongly anisotropic mainly as a result of machining
and surface treatments (e.g., unidirectional polished surface which presents wear
tracks along the polishing direction, although the resulting roughness is not strictly
1D); (iii) thirdly it is possible to generate 1D rough surfaces which are equivalent,
from the point of view of contact area vs. load relation, to 2D rough surfaces [32,
33].

To deal with the adhesion contact problem we employ a methodology already
presented by one of us in [34], based on a pure continuum mechanics approach
and belonging to the class of Boundary Element Methods (BEMs) [10, 25]. Our
findings suggest that the influence of fractal dimension Df is negligible only in the
range of linearity between the contact area and the applied load, whereas it becomes
very significant at higher loads. We also investigate how the number of contacts is
affected by the applied load and by Df. Our calculations show that when Df is in
the range 1–1.1 the number of contacts is relatively small and increases slowly (less
than linearly) with the load. In this case the relation between the contact area and
load rapidly deviates from linearity. The influence of the Duprè energy of adhesion,
also referred to as work of adhesion, both on the contact area and on the PSD of the
deformed profiles is studied, as well as the behavior of the probability distribution of
local separation (the interfacial voids), which plays a crucial role in many practical
applications, as, for example, in determining the fluid leakage in seals, and fluid
flow in mixed lubrication.

2. The Numerical Model

In this section we briefly summarise the numerical methodology presented in [34].
We consider a periodic contact where an elastic layer of thickness d is interposed
between a flat rigid plate (upper surface) and a periodically rough rigid substrate
with wavelength λ (bottom surface) as shown in Fig. 1. We assume that the rough

Figure 1. An elastic layer of thickness d in adhesion contact with a rough periodic substrate of wave-
length λ.

2557G. Carbone, E. Pierro / J. Adhesion Sci. Technol. 26 (2012) 2555–2570

D
ow

nl
oa

de
d 

by
 [

D
ip

ar
tm

en
to

 d
i P

ro
ge

tt 
E

],
 [

G
. C

ar
bo

ne
] 

at
 0

6:
24

 2
0 

Se
pt

em
be

r 
20

12
 



4

Figure 2. The definition of substrate displacement utot, elastic layer average displacement um and
substrate penetration � into the elastic layer.

surface has roughness in only one direction and is smooth in the orthogonal direc-
tion. Under these conditions the problem at hand is a periodic plane problem, i.e.,
the stress, displacement and strain fields depend only on the x and y coordinates
and have a periodicity λ. Figure 2 shows the total displacement utot of the sub-
strate, the average displacement um of the elastic layer, and the penetration � of
the rigid substrate into the elastic layer. These three quantities are shown to satisfy
the following relation

utot = � + um. (1)

We will focus on the pressure distribution σ(x) and interfacial displacement fluc-
tuation v(x) = u(x) − um. In [10] and [34] it has been shown that the unknown
pressure distribution in the contact area � can be determined by solving the follow-
ing Fredholm integral equation of the first kind with a logarithmic kernel

−
∫

�

G(x − s)σ (s)ds = [h(x) − hmax] + �; x ∈ �, (2)

where � = ⋃L
i=1[ai, bi] is the unknown contact domain. The quantities ai and

bi are the unknown coordinates of the ith contact patch with ai < bi and i =
1,2, . . . ,L, where L is the unknown number of contacts. In equation (2), assuming
the elastic layer is infinitely thick (i.e., d → +∞), the kernel is

G(x) = 2(1 − ν2)

πE
log

[
2

∣∣∣∣ sin

(
kx

2

)∣∣∣∣
]

(3)

and represents the Green function of the semi-infinite elastic body under a periodic
loading, i.e., it represents the displacement v(x) = u(x) − um caused by the appli-
cation of a Dirac comb with peaks δ(x −nλ) separated by a distance λ. Here E and
ν are Young’s modulus and Poisson’s ratio of the elastic layer. In equation (2) the
quantity h(x) represents the height of the rough profile from its mean plane. Since
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5

we are considering a periodic problem, h(x) can be written in terms of a Fourier
series

h(x) =
+∞∑
m=1

hm cos(mq0x + φm), (4)

where the fundamental wavevector q0 = 2π/λ, m is the wavenumber and φm is the
phase of the mth spectral component, uniformly distributed in the interval [0,2π[.
Also we have defined in equation (2) the quantity hmax = max[h(x)], which is
the maximum height of the substrate roughness. Once the pressure distribution is
known the elastic displacements at the interface can be easily determined through
the equations

v(x) = −
∫

�

G(x − s)σ (s)ds; x ∈ D − �,

(5)
v(x) = h(x) − hmax + �; x ∈ �,

where D = [−λ/2, λ/2]. Of course for an infinitely thick layer (d → +∞ as in our
case) the average displacement um is also infinitely large except when the ν = 0.5,
but the difference v(x) = u(x) − um is always finite [10, 34] and can be inter-
preted as the additional elastic displacement of the solid due to the presence of
roughness at the interfaces. In order to close the system of equations we need an
additional condition to determine the yet unknown contact domain �. To this end
(see also [34]), we first observe that for any penetration �, we can calculate the
pressure distribution at the interface through equation (2), and the interfacial elastic
displacement through equation (5), as functions of the unknown coordinates ai and
bi of the ith contact area. To calculate the exact values of the quantities ai and bi at
equilibrium, given isothermal conditions, we need to minimize the interfacial free
energy Utot(a1, b1, . . . , aL, bL,�) of the system at fixed penetration �.

The interfacial free energy (see [34]) is

Utot = Uel + Uad, (6)

where the interfacial elastic energy Uel is [25]

Uel(a1, b1, . . . , aL, bL,�) = 1

2

L∑
i=1

∫ bi

ai

σ (x)[h(x) − hmax + �]dx. (7)

The adhesion energy is

Uad(a1, b1, . . . , aL, bL) = −γ

L∑
i=1

∫ bi

ai

√
1 + [h′(x)]2 dx, (8)

where γ is the work of adhesion. Equations (2), (5), together with the requirement
that the interfacial free energy Utot is a (local) minimum at equilibrium, constitute
a set of closed equations which allows, for any given penetration �, to determine
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6

the coordinates ai and bi of each contact spot, the pressure distribution at the in-
terface, and all other thermodynamic quantities. For the numerical implementation
the reader is referred to [25, 34]. The numerical simulations have been carried out
for self-affine fractal profiles with PSD

CR(q) = C0

( |q|
q0

)−(2H+1)

, (9)

where H is the Hurst exponent of the randomly rough profile. It is related to the
fractal dimension Df = 2 − H . We have utilized a periodic profile with Fourier
components in the range q0 � q � q1, with q1 = Nq0. The rough profiles have
been numerically generated by means of spectral techniques shown in [25].

3. Results

We assume that the elastic block is a soft perfectly elastic material with elastic
modulus E = 1 MPa and Poisson’s ratio ν = 0.5. For each rough profile (considered
as a stochastic process) results have been averaged over 11 different realizations.
The profiles have root mean square roughness 〈h2〉1/2 = 50 µm. We have used λ =
2π/q0 = 0.01 m and q1 = 103q0. The numerical calculations have been carried
out for different values of the separation s = hmax − �, which is defined as the
distance between the mean plane of the deformed surface and the mean plane of
the rough surface. In Fig. 3 we show three different shapes of the deformed profile
at three different values of the separation: s = 86 µm, s = 38 µm and s = 9.6 µm.
The work of adhesion is γ = 0.03 J/m2. The rigid rough substrate profile has a
fractal dimension Df = 1.3. A detailed analysis of Fig. 3 shows that full contact
always occurs between the elastic block and the short wavelength corrugation of
the rough rigid profile, independent of the given value of the separation s. As a
consequence, one would expect that for large wavevectors q the slope of the PSD

Figure 3. The deformed shapes of the elastic body at three different separations s = 86 µm, s = 38 µm
and s = 9.6 µm, and the rough rigid substrate profile.
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7

Figure 4. The PSD of the rigid substrate profile with fractal dimension Df = 1.3, compared to the
PSD of the deformed shape of the elastic body, obtained for γ = 0.05 J/m2, σ/E∗ = 0.0075. C(q)

and q are measured in m3 and m−1, respectively.

of the deformed profile in a log–log diagram should be almost the same as that
of the rigid rough profile. This is confirmed in Fig. 4, where the PSD of the rigid
substrate profile (fractal dimension Df = 1.3, work of adhesion γ = 0.05 J/m2) has
been compared to the PSD of the deformed shape of the elastic body. We observe
that the curves are almost parallel in the high frequency range. This seems to occur
independently of the fractal dimension of the rigid rough profile. To show this,
recall first that, as equation (9) shows, in a log–log diagram the PSD of a self-affine
rough profile is a straight line with slope −(2H + 1); therefore, if one plots the
quantity (2H + 1)−1 log10 CR(q) instead of CR(q) the PSDs of different profiles
are represented by straight lines which are all parallel to each other with slope −1.
Figure 5 shows the quantities (2H + 1)−1 log10 Cv(q) (where Cv(q) is the PSD
of the deformed profile) as a function of the wavevector q for different deformed
profiles in contact with self-affine fractals with Hurst exponent H = 2−Df equal to
0.7, 0.9 and 1. Results are shown for a dimensionless applied load σ/E∗ = 0.0075,
where E∗ = E/(1−ν2) is the reduced elastic modulus. At high spatial frequencies,
the slope of the curves seems to be exactly the same for all curves and equal to −1.
As a reference curve we have plotted the quantity (2H + 1)−1 log10 CR(q) for a
rough profile with H = 1. This type of behavior is a consequence of the adhesion
interactions which, as shown in [18] and [35], cause full contact to occur in the
high q-vector range when the Hurst exponent of the surface H > 0.5, i.e., Df <

1.5, as indeed happens for the rough profiles we have considered in the numerical
simulations. Interestingly Fig. 5 shows that the range of q-vectors where the slope
of the curves is −1 extends toward smaller values of q-vector as the Hurst exponent
increases. When H = 1 we notice that the curve Cv(q) of the deformed profile
and the curve CR(q) of the rough substrate are parallel over the entire q-vector
range. We also observe that increasing the fractal dimension reduces the PSD of the
deformed profile. This is a consequence of the decrease of contact area caused by
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8

Figure 5. A comparison between the quantities (2H + 1)−1 log10 Cv(q) obtained as a result of the
contact between the elastic layer and three different rough surfaces with Hurst exponents H = 0.7,
H = 0.9 and H = 1. The reference curve is the quantity (2H + 1)−1 log10 CR(q) for a rough surface
with H = 1. At large q-vectors, the slope of the curves is −1, independent of the fractal dimension.
The calculations have been carried out for σ/E∗ = 0.0075. C(q) and q are measured in m3 and m−1,
respectively.

the rapid increase of the average square slope m2 = 〈[h′(x)]2〉 = ∫
dqq2C(q) of the

profile.
At smaller frequencies a careful observation of Fig. 5 shows, instead, that (except

when H = 1) the slope of the deformed profile PSD differs from that of the PSD of
the rough profile. By following Persson’s theory [25, 27] we should expect that, in
this frequency range, the power spectrum of the deformed profile follows a power
law of the type Cv(q) ≈ q−(2+H), which in a log–log diagram should be represented
just by a straight line with slope −(2 + H). This is necessarily true for the case of
rough profiles with Hurst exponent H = 1, since in this case we have shown in
Fig. 5 that the slope is equal to −(2H + 1) = −3 = −(2 + H).

However, for fractal dimensions different from H = 1 this is not a foregone con-
clusion. So let us represent in Fig. 6 the quantities (2 + H)−1 log10[Cv(q)] as a
function of the wavevector q , for the dimensionless applied load σ/E∗ = 0.0075,
and for three different values of the Hurst exponent H , i.e., H = 0.7, H = 0.9 and
H = 1. If Persson’ predictions were correct these curves should run parallel to each
other. Figure 6 seems to confirm this type of behavior. The best fits (dashed lines)
of (2 + H)−1 log10[Cv(q)] in the low range of q-vectors for the three cases consid-
ered (H = 0.7,0.9,1) have slopes approximately close to −1. In the high range of
q-vectors, because of adhesion interaction, the numerically calculated curves move
away from the dashed lines, i.e., the slope of the PSD of the elastically deformed
solid changes for all the fractal dimensions, except, as already noticed, for H = 1.

Because of the crucial importance, in many practical applications (e.g., mixed
lubrication, lip seals, static seals) the local interfacial separation t (x) = v(x) −
h(x)+ s between the deformed profile and the underlying rough rigid surface needs
to be analysed. In Fig. 7 we show the PSD of the local separation distribution
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9

Figure 6. A comparison between the quantities (2 + H)−1 log10 Cv(q) obtained as a result of the
contact between the elastic layer and three different rough surfaces with Hurst exponents H = 0.7,
H = 0.9 and H = 1. In the low frequency range the dashed lines (best fits of the numerical data) all
have slope close to −1, in agreement with Persson’s theory. The calculations have been carried out for
σ/E∗ = 0.0075. Cv(q) and q are measured in m3 and m−1, respectively.

Figure 7. The PSD of the rigid substrate profile for fractal dimension Df = 1.3 compared to the PSD
of the deformed shape, and that of the interfacial separation t (x). The curves have been obtained for
γ = 0.05 J/m2 and σ/E∗ = 0.0075. C(q) and q are measured in m3 and m−1, respectively.

t (x). As expected, since in the non-contact regions the deformed profile is much
smoother than the underlying rough surface, the high frequency spectral content
of t (x) must almost be the same as that of the rough surface. Indeed the PSD of
the rigid substrate profile and the PSD of the interfacial separation almost perfectly
overlap in a wide range of spatial frequencies. This is at least a partial confirma-
tion of the assumptions made in [5, 36] to estimate the root mean square and the
probability density function of local separations. Figure 8 shows the normalized
probability density function (PDF) p(t) of the interfacial separation t (x) in the
non-contact area (where t > 0), for H = 0.7, and γ = 0.05 J/m2. Of course, the
probability density function P(t) of t (x) in the nominal contact area differs from
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10

Figure 8. The normalized probability density function (PDF) p(t) of the local separation t (x) in the
non-contact area (t (x) > 0) for H = 0.7 and γ = 0.05 J/m2, σ/E∗ = 0.011.

p(t), since it has a delta function at the origin with its weight determined by the area
of real contact i.e., given by A/A0δ(t), where A is the real contact area and A0 is
the non-contact area; therefore, we can write P(t) = A/A0δ(t) + (1 − A/A0)p(t).
Interestingly, the trend of the calculated p(t) appears in good agreement with some
theoretical prediction by Persson [36].

Until now our discussion has been focused on the PSDs of deformed profiles and
local separations t (x), and on the probability density function of t (x). However, it
is also crucial to look at the true contact area and how it depends on fractal dimen-
sion Df. As discussed in Section 1 both multiasperity contact models and Persson’s
theory predict an asymptotic linearity between the true contact area and the applied
mean load through the relation

A

A0
= κ

σ

E∗m1/2
2

(10)

where σ is the external applied load and the predicted values of the factor κ differ
depending on which model one employs: multiasperity contact theories or Persson’s
theory.

Following these theories the fractal dimension Df of the profile should enter only
through the term m

1/2
2 . Thus, two rough profiles with different fractal dimensions

but with the same value of m2 should also present the same contact area vs. load
relation. In particular Persson’s theory shows that even out of the linear range, Df
should not affect directly the contact area vs. load relation. In order to verify this
theoretical prediction in Fig. 9 the quantity A/A0 obtained from our numerical
calculations is shown, for different values of H , as a function of σ̃ /

√
m2, where

σ̃ = 2σ/(E∗q0hmax). One can observe that for small loads, as predicted by the
theories, the true contact area is only marginally affected by the fractal dimension.
In particular for H = 0.7 and 0.8 the curves almost perfectly overlap. However,
when the load is increased the influence of Df becomes significant, in contrast with
the predictions of the existing theories.
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Figure 9. The true contact area A/A0 as a function of the quantity σ̃ /
√

m2, where
σ̃ = 2σ/(E∗q0hmax) is the dimensionless applied load, for four different Hurst exponents H = 0.7,
H = 0.8, H = 0.9 and H = 1. As predicted by the theories, there is only a marginal influence of the
fractal dimension on the true contact area at small loads, while for high load values the influence is
significant.

Figure 10. The true contact area A/A0 as a function of the dimensionless applied load
σ̃ = 2σ/(E∗q0hmax), for four different Hurst exponents H = 0.7, H = 0.8, H = 0.9 and H = 1.
Observe that for H = 1 (i.e., Df = 1) the curve deviates from linearity.

Interestingly, in Fig. 9 the quantity A/A0 decreases (given the same value of
σ̃ /

√
m2) as the Hurst exponent H is increased. Vice versa, in Fig. 10 A/A0 in-

creases with H , but this time A/A0 is plotted as a function of σ̃ . Therefore, it
is clear that m2 plays an important role, and the different behaviours observed
in the two aforementioned figures can be explained if one notices that m2 =∫ q1
q0

dqq2CR(q) = C0q
3
0 [(q1/q0)

2−2H − 1]/(2 − 2H) decreases sufficiently fast as
H is increased. It is worth noticing in Fig. 10 that the range of linearity tends to
shrink as Hurst’s exponent H increases from 0.7 to 1. Moreover the linearity al-
most disappears when the fractal dimension is Df = 1 (i.e., H = 1). This result
suggests that the fractal geometry of the rough surface is a key parameter to guar-
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Figure 11. The number of contacts spot as a function of the dimensionless applied load
σ̃ = 2σ/(E∗q0hmax), for four different Hurst exponents H = 0.7, H = 0.8, H = 0.9 and H = 1.
Observe that for H = 0.9 and H = 1 the number of contacts increases very slowly with the load.

antee linearity between contact area and load. The reason is that a sufficiently high
fractal dimension makes the contact split in several small contact spots, whose num-
ber almost linearly increases with the applied load, whereas the average load in the
contact spots remains almost the same. Figure 11 confirms this scenario (see, e.g.,
the curve at H = 0.7) and also shows that for H = 0.9 and H = 1 the number of
contacts changes very slowly as the load is increased. This means that the contact
area per single contact spot and the average stress in the contact spot do not remain
constant as the load is increased. As a consequence, the contact behavior enters
a sort of Hertzian regime, which manifests itself with a lack of linearity between
contact area and load.

We now proceed to analyse the influence of the work of adhesion on the PSD of
the deformed elastic layer and on the true contact area. In Fig. 12 the PSD of the
deformed shape of the elastic body is shown, as resulted from numerical calcula-
tions, for H = 0.7 and three different values of the work of adhesion γ = 0.03 J/m2,
γ = 0.04 J/m2, γ = 0.05 J/m2. The PSD of the rigid substrate profile is also repre-
sented. It is clear that in the low-mid range of q-vectors, the PSD of the deformed
profiles is not influenced by the work of adhesion. This is expected since at low
or mid spatial frequencies the influence of the work of adhesion on the contact be-
havior is very negligible [18, 35]. At higher frequencies the influence of the work
of adhesion is stronger, but still very marginal. In particular, we expect that larger
values of the work of adhesion should facilitate full contact conditions to be es-
tablished in the high q-vectors range, so that the PSD of deformed surface would
take slightly larger values as γ is increased. This indeed is what one observes by
analysing Fig. 12 in detail. However, the effect of γ is very small and we may
conclude that the work of adhesion does not play an important role in determining
the PSD of the deformed profile. Vice versa, the real contact area is significantly
affected by the work of adhesion. Figure 13 shows indeed the values of the true
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Figure 12. The PSD of the rough profile for H = 0.7 compared to the PSD of the deformed shape
of the elastic body, obtained from numerical calculations for three different values of the work of
adhesion γ = 0.03 J/m2, γ = 0.04 J/m2, γ = 0.05 J/m2. In the low-mid range of q-vectors the PSDs
of the deformed profiles are not influenced by the work of adhesion. C(q) and q are measured in m3

and m−1, respectively.

Figure 13. The true contact area A/A0, for H = 0.7, obtained from numerical calculations (points)
for three different values of the dimensionless applied load σ̃ = 2σ/(E∗q0hmax), σ̃ = 0.05, σ̃ = 0.1,
σ̃ = 0.15, and three values of the work of adhesion γ = 0.03 J/m2, γ = 0.04 J/m2, γ = 0.05 J/m2.
The solid lines are the linear fits of the data.

contact area A/A0 (full circles) obtained for three different values of the dimen-
sionless applied load σ̃ = 0.05, σ̃ = 0.1, σ̃ = 0.15, and three different values of
the work of adhesion γ = 0.03 J/m2, γ = 0.04 J/m2 and γ = 0.05 J/m2. The solid
lines are the linear fits of the data. We observe this time a strong influence of work
of adhesion in determining the real contact area and more interestingly a linear re-
lation seems to exist between the true contact area A/A0 and γ , independently of
the applied load. Figure 14 shows the contact area A/A0 as a function of the di-
mensionless applied load σ̃ , for different work of adhesion values γ = 0.03 J/m2,
γ = 0.04 J/m2, γ = 0.05 J/m2, the Hurst exponent is H = 0.7. Dashed lines rep-
resent linear fits of the three curves. The data have also been linearly extrapolated
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Figure 14. The true contact area A/A0 as a function of the dimensionless applied load
σ̃ = 2σ/(E∗q0hmax), for different values of the work of adhesion γ = 0.03 J/m2, γ = 0.04 J/m2,
γ = 0.05 J/m2, and for H = 0.7. Dashed lines represent the linear fits of the three curves. The data
have been linearly extrapolated to the adhesionless case (γ = 0) by means of the least squares method.
Also Persson’s predictions for non-adhesion contact is shown.

to the adhesionless case (γ = 0) by means of the least squares method, and the
resulting curve is compared with Persson’s predictions for non-adhesion contact.
We observe, in agreement with other calculations [25], that, in the linear range, the
numerically calculated slope factor κ ≈ 3.11 is almost 2 times the value predicted
by Persson’s theory, i.e., κ = √

8/π ≈ 1.6.

4. Conclusion

In this paper the adhesion between a rubber block and a rigid randomly rough profile
has been investigated. The roughness has been described by a self-affine fractal, of
which the statistical properties are completely determined by the root mean square
roughness, its fractal dimension Df, and by the roll-off and cut-off wavevectors.
We have employed a spectral method to generate the randomly rough profiles with
different fractal dimensions. For any given Df and root mean square roughness, sev-
eral realizations of the same profile (stochastic process) have been generated. The
calculated data then have been statistically averaged and the influence of the fractal
dimension Df on the contact area, on the power spectral density of the deformed
surface and on the number of contacts in the nominal contact area have been in-
vestigated. In particular, we have found that at small load (i.e., in the linear regime
between contact area and load) the influence of Df is negligible. However, at higher
load this is no longer true and the influence of the fractal dimension Df becomes
significant. We also found that the linear regime between contact area and load be-
comes smaller and smaller as the fractal dimension is reduced to a unit value. This
result suggests that the fractal geometry of the rough surface is a key parameter to
guarantee linearity between contact area and load. Calculations also show that the
contact area depends linearly on the work of adhesion, whereas only a negligible
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influence of this quantity has been found on the power spectral density (PSD) of the
deformed profiles. Moreover, because of its relevance in the field of mixed lubri-
cation and seals, we have calculated the PSD and the probability density function
(PDF) of the local separations between the deformed profile and rough rigid sur-
face. We observe that the high-frequency spectral content of the local separation is
almost the same as that of the rigid rough surface. This may suggest a methodology
to calculate the PDF of the local separation from the existing theories of contact
mechanics.
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