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Abstract

In this paper we study the nonlinear Schrödinger-Maxwell equa-
tions {

−∆u+ V (x)u+ φu = |u|p−1u in R3,
−∆φ = u2 in R3.

If V is a positive constant, we prove the existence of a ground state
solution (u, φ) for 2 < p < 5. The non-constant potential case is
treated for 3 < p < 5, and V possibly unbounded below.

1 Introduction

In this note, we present some results contained in [1]. We consider the
following system{

−∆u+ V (x)u+ φu = f ′(u) in R3,
−∆φ = u2 in R3,

(SM)

where V : R3 → R and f ∈ C1(R,R). Such a system, also known as the
nonlinear Schrödinger-Poisson, arises in an interesting physical context.
In fact, according to a classical model, the interaction of a charge particle
with an electro-magnetic field can be described by coupling the nonlinear
Schrödinger’s and the Maxwell’s equations (we refer to [2] for more details
on the physical aspects). In particular, if we are looking for electrostatic-
type solutions, we just have to solve (SM). We refer to [1] for the bibliog-
raphy.

∗Comunicazione presentata a Bari in occasione del XVIII Congresso U.M.I.

1



The aim of our paper is to look for the existence of ground state solu-
tions to the problem (SM), namely couples (u, φ) which solve (SM) and
minimize the action functional associated to (SM) among all possible so-
lutions. Up to our knowledge, the literature does not contain any result in
this direction.

We are interested in considering pure power type nonlinearities so that
the problem we will deal with becomes{

−∆u+ V (x)u+ φu = |u|p−1u in R3,
−∆φ = u2 in R3,

(1)

where 2 < p < 5. The solutions (u, φ) ∈ H1(R3) × D1,2(R3) of (1) are the
critical points of the action functional E : H1(R3) × D1,2(R3) → R, defined
as

E(u, φ) :=
1

2

∫
R3

|∇u|2 + V (x)u2− 1

4

∫
R3

|∇φ|2 +
1

2

∫
R3

φu2− 1

p+ 1

∫
R3

|u|p+1.

We are interested in finding a ground state solution of (1), that is a solution
(u0, φ0) of (1) such that E(u0, φ0) 6 E(u, φ), for any solution (u, φ) of (1).

The action functional E exhibits a strong indefiniteness, namely it is
unbounded both from below and from above on infinite dimensional sub-
spaces. This indefiniteness can be removed using the reduction method
described in [3], by which we are led to study a one variable functional
that does not present such a strongly indefinite nature.

The main difficulty related with the problem of finding the critical
points of the new functional consists in the lack of compactness of the
Sobolev spaces embeddings in the unbounded domain R3. Usually, at least
when V is radially symmetric, such a difficulty is overcome by restricting
the functional to the natural constraint of the radial functions where com-
pact embeddings hold. In particular, in [4] a radial solution having min-
imal energy among all the radial solutions has been found. However we
are not able to say if that solution actually is a ground state for our equa-
tion. This is the reason why we will use an alternative method, based on
a concentration-compactness argument on suitable measures, to recover
compactness. Such an approach, very standard in studying the compact-
ness in problems involving the Schrödinger equation, seems to be quite
new for the nonlinear Schrödinger-Maxwell equations and presents sev-
eral difficulties due to the coupling.

We analyze two different situations. First we assume that V is a pos-
itive constant and we look for a minimizer of the reduced functional re-
stricted to a suitable manifoldM introduced by Ruiz in [9]. Such a mani-
fold has two interesting features: it is a natural constraint for the reduced
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functional and it contains, in a sense that we will explain later (see Re-
mark 3.1), every solution of the problem (1). The main result we get is the
following

Theorem 1.1. If V is a positive constant, then the problem (1) has a ground state
solution for any p ∈]2, 5[.

Remark 1.2. By using the strong maximum principle and quite standard argu-
ments, it is easy to see that such a ground state solution does not change sign, so
we can assume it positive.

Afterwards we study (1) assuming the following hypotheses on V :

(V1) V : R3 → R is a measurable function;

(V2) V∞ := lim|y|→∞ V (y) > V (x), for almost every x ∈ R3, and the in-
equality is strict in a non-zero measure domain;

(V3) there exists C̄ > 0 such that, for any u ∈ H1(R3),∫
R3

|∇u|2 + V (x)u2 > C̄‖u‖2.

Remark 1.3. These hypotheses on V , which have been introduced to study sin-
gular nonlinear Schrödinger equations in [5], are satisfied by a large class of po-
tentials including those most meaningful by a physical point of view. An example
of admissible potentials is V : R3 → R defined as V (x) = V1(x)− λV2(x), where
V1 is a potential bounded below by a positive constant and satisfying (V2), λ is a
sufficiently small positive constant and V2 is a positive function such that

∃α1 > 0, α2 > 0:

∫
R3

V2(x)u2 6
∫

R3

α1|∇u|2 + α2u
2, for any u ∈ H1(R3),

and
lim
|x|→+∞

V2(x) = 0.

Because of technical difficulties related with the presence of the poten-
tial, we are not allowed to use the same device as in the previous case.
In particular the use of the Ruiz’ constraint appears quite involved, and
minimizing the functional on the Nehari manifold turns out to be a more
natural approach. However this causes that only the case 3 < p < 5 can be
considered.

Another difficulty consists in the fact that we are not allowed to repeat
the same concentration and compactness argument on positive measures
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as in the constant potential case. The reason is that, since V may have
some singularities, we have no way to affirm that the integral∫

Ω

|∇u|2 + V (x)|u|2

is nonnegative for any u ∈ H1(R3) and Ω ⊂ R3, and consequently the
measures could be not positive. We get the following

Theorem 1.4. If V satisfies (V1-3) then the problem (1) has a ground state solu-
tion for any p ∈]3, 5[.

Theorems 1.1 and 1.4 will be proved, respectively, in Section 3 and 4.
It is remarkable that, up to our knowledge, this latter theorem is the

first existence result obtained for (1) when V is non-radial, and the nonlin-
earity is superlinear. Actually, in [10], existence and nonexistence results
have been proved when the nonlinearity is asymptotically linear. How-
ever, the device used in [10] seems that does not work for nonlinearities
such as |u|p−1u, with 1 < p < 5.

2 Some preliminary results

We first recall some well-known facts. For every u ∈ L12/5(R3), there exists
a unique φu ∈ D1,2(R3) solution of

−∆φ = u2, in R3.

It can be proved that (u, φ) ∈ H1(R3) × D1,2(R3) is a solution of (1) if and
only if u ∈ H1(R3) is a critical point of the functional I : H1(R3) → R
defined as

I(u) =
1

2

∫
R3

|∇u|2 + V (x)u2 +
1

4

∫
R3

φuu
2 − 1

p+ 1

∫
R3

|u|p+1, (2)

and φ = φu.
The functions φu possess the following properties (see [4] and [9])

Lemma 2.1. For any u ∈ H1(R3), we have:

i) ‖φu‖D1,2(R3) 6 C‖u‖2, where C does not depend from u. As a consequence
there exists C ′ > 0 such that∫

R3

φuu
2 6 C ′‖u‖4;
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ii) φu > 0;

iii) for any t > 0: φtu = t2φu;

iv) for any θ > 0: φuθ(x) = θ2φu(θx), where uθ(x) = θ2u(θx);

v) for any Ω ⊂ R3 measurable,∫
Ω

φuu
2 =

∫
Ω

∫
R3

u2(x)u2(y)

|x− y|
dx dy.

3 The constant potential case

In this section we will assume that V is a positive constant. Without
lost of generality, we suppose V ≡ 1. It can be proved (see [9]) that if
(u, φ) ∈ H1(R3)×D1,2(R3) is a solution of (1), then it satisfies the following
Pohozaev type identity∫

R3

1

2
|∇u|2 +

3

2
u2 +

5

4
φu2 − 3

p+ 1
|u|p+1 = 0. (3)

As in [9], we introduce the following manifold

M :=
{
u ∈ H1(R3) \ {0}

∣∣∣ G(u) = 0
}
,

where
G(u) :=

∫
R3

3

2
|∇u|2 +

1

2
u2 +

3

4
φuu

2 − 2p− 1

p+ 1
|u|p+1.

Remark 3.1. Observe that if u ∈ H1(R3) is a nontrivial critical point of I , then
u ∈M, since G(u) = 0 can be obtained by a linear combination of 〈I ′(u), u〉 = 0
and (3), with φ = φu. As a consequence if (u, φ) ∈ H1(R3) × D1,2(R3) is a
solution of (1), then u ∈M.

The next lemma, whose proof is contained in [9], describes some prop-
erties of the manifoldM:

Lemma 3.2. 1. For any u ∈ H1(R3), u 6= 0, there exists a unique number
θ̄ > 0 such that uθ̄ ∈M (where uθ̄ is defined in Lemma 2.1). Moreover

I(uθ̄) = max
θ>0

I(uθ);

2. there exists a positive constant C, such that for all u ∈M, ‖u‖p+1 > C;
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3. M is a natural constraint of I , namely every critical point of I|M is a
critical point for I.

By 3 of Lemma 3.2 we are allowed to look for critical points of I re-
stricted toM.
With an abuse of notations, we denote by θ : H1(R3) \ {0} → R+ also the
map such that for any u ∈ H1(R3), u 6= 0 :

I
(
uθ(u)

)
= max

θ>0
I(uθ).

By 1 of Lemma 3.2, it is well defined.
Set

c1 = inf
g∈Γ

max
θ∈[0,1]

I(g(θ));

c2 = inf
u6=0

max
θ>0

I(uθ);

c3 = inf
u∈M

I(u);

where

Γ =
{
g ∈ C

(
[0, 1], H1(R3)

)
| g(0) = 0, I(g(1)) 6 0, g(1) 6= 0

}
. (4)

Lemma 3.3. The following equalities hold

c := c1 = c2 = c3.

Remark 3.4. By point 3 of Lemma 3.2 and Remark 3.1, we argue that if u ∈ M
is such that I(u) = c, then (u, φu) is a ground state solution of (1).

3.1 Proof of Theorem 1.1

Let (un)n ⊂M such that
lim
n
I(un) = c. (5)

We define the functional J : H1(R3)→ R as:

J(u) =

∫
R3

p− 2

2p− 1
|∇u|2 +

p− 1

2p− 1
u2 +

p− 2

2(2p− 1)
φuu

2.

Observe that for any u ∈M, by ii of Lemma 2.1 we have I(u) = J(u) > 0.
By (5), we deduce that (un)n is bounded in H1(R3), so there exists ū ∈
H1(R3) such that, up to a subsequence,

un ⇀ ū weakly in H1(R3), (6)
un → ū in Ls(B),with B ⊂ R3, bounded, and 1 6 s < 6.
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To prove Theorem 1.1, we need some compactness on the sequence (un)n.
To this end, we use a concentration-compactness argument on the positive
measures so defined: for every un ∈ H1(R3),

νn(Ω) =

∫
Ω

p− 2

2p− 1
|∇un|2 +

p− 1

2p− 1
u2
n +

p− 2

2(2p− 1)
φunu

2
n. (7)

By (5) we have
νn(R3) = J(un)→ c

and then, by P.L. Lions [6], there are three possibilities:

vanishing : for all r > 0

lim
n

sup
ξ∈R3

∫
Br(ξ)

dνn = 0;

dichotomy : there exist a constant c̃ ∈ (0, c), two sequences (ξn)n and (rn)n,
with rn → +∞ and two nonnegative measures ν1

n and ν2
n such that

0 6 ν1
n + ν2

n 6 νn, ν1
n(R3)→ c̃, ν2

n(R3)→ c− c̃,
supp(ν1

n) ⊂ Brn(ξn), supp(ν2
n) ⊂ R3 \B2rn(ξn);

compactness : there exists a sequence (ξn)n in R3 with the following prop-
erty: for any δ > 0, there exists r = r(δ) > 0 such that∫

Br(ξn)

dνn > c− δ.

In [1], we proved the following

Lemma 3.5. Compactness holds for the sequence of measures (νn)n, defined in
(7).

Now we are able to yield the following

Proof of Theorem 1.1 Let (un)n be a sequence inM such that (5) holds.
We define the measures (νn)n as in (7); by Lemma 3.5 there exists a se-
quence (ξn)n in RN with the following property: for any δ > 0, there exists
r = r(δ) > 0 such that∫

Bcr(ξn)

p− 2

2p− 1
|∇un|2 +

p− 1

2p− 1
u2
n +

p− 2

2(2p− 1)
φunu

2
n < δ. (8)
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We define the new sequence of functions vn := un(· − ξn) ∈ H1(R3). It is
easy to see that φvn = φun(· − ξn), and hence vn ∈M. Moreover, by (8), we
have that for any δ > 0, there exists r = r(δ) > 0 such that

‖vn‖H1(Bcr) < δ uniformly for n > 1. (9)

Since, by (6), (vn)n is bounded in H1(R3), certainly there exist a subse-
quence (likewise labelled) and v̄ ∈ H1(R3) such that

vn ⇀ v̄ weakly in H1(R3), (10)
vn → v̄ in Ls(B),with B ⊂ R3, bounded, and 1 6 s < 6. (11)

By (9), (10) and (11), we have that, taken s ∈ [2, 6[, for any δ > 0 there exists
r > 0 such that, for any n > 1 large enough

‖vn − v̄‖Ls(R3) 6 ‖vn − v̄‖Ls(Br) + ‖vn − v̄‖Ls(Bcr)

6 δ + C
(
‖vn‖H1(Bcr) + ‖v̄‖H1(Bcr)

)
6 (1 + 2C)δ,

where C > 0 is the constant of the embedding H1(Bc
r) ↪→ Ls(Bc

r). We
deduce that

vn → v̄ in Ls(R3), for any s ∈ [2, 6[. (12)

Since φ is continuous from L12/5(R3) to D1,2(R3), from (12) we deduce that

φvn → φv̄ in D1,2(R3), as n→∞,∫
R3

φvnv
2
n →

∫
R3

φv̄v̄
2, as n→∞. (13)

Since (vn)n is inM, by 2 of Lemma 3.2 (‖vn‖p+1)n is bounded below by a
positive constant. As a consequence, (12) implies that v̄ 6= 0. Proceeding
as in [9, Theorem 3.2, Step 4], by (12) and (13) we can show that vn → v̄ in
H1(R3) so that v̄ ∈ M and I(v̄) = c. By Remark 3.4, we have that (v̄, φv̄) is
a ground state solution of (1). �

4 The non-constant potential case

In this section we suppose that the potential V satisfies (V1-3) and that
p ∈]3, 5[.

In order to get our result, we will use a very standard device: we will
look for a minimizer of the functional (2) restricted to the Nehari manifold

N =
{
u ∈ H1(R3) \ {0} | G̃(u) = 0

}
,
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where
G̃(u) :=

∫
R3

|∇u|2 + V (x)u2 + φuu
2 − |u|p+1.

The following lemma describes some properties of the Nehari manifoldN :

Lemma 4.1. 1. For any u 6= 0 there exists a unique number t̄ > 0 such that
t̄u ∈ N and

I(t̄u) = max
t>0

I(tu);

2. there exists a positive constant C, such that for all u ∈ N , ‖u‖p+1 > C;

3. N is a C1 manifold.

The Nehari manifold N is a natural constraint for the functional I,
therefore we are allowed to look for critical points of I restricted to N .

In view of this, we assume the following definition

cV := inf
u∈N

I(u),

so that our goal is to find ū ∈ N such that I(ū) = cV , from which we would
deduce that (ū, φū) is a ground state solution of (1).

First we recall some preliminary lemmas which can be obtained by us-
ing the same arguments as in [8].

As a consequence of the Lemma 4.1, we are allowed to define the map
t : H1(R3) \ {0} → R+ such that for any u ∈ H1(R3), u 6= 0 :

I (t(u)u) = max
t>0

I(tu).

Now define

I∞(u) :=
1

2

∫
R3

|∇u|2 + V∞u
2 +

1

4

∫
R3

φuu
2 − 1

p+ 1

∫
R3

|u|p+1,

c∞ := cV∞ .

As in [8], we have

Lemma 4.2. If V satisfies (V1-3), we get cV < c∞.

Proof By Theorem 1.1, there exists (w, φw) ∈ H1(R3)×D1,2(R3) a ground
state solution of the problem{

−∆u+ V∞u+ φu = |u|p−1u in R3,
−∆φ = u2 in R3.
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Let t(w) > 0 be such that t(w)w ∈ N . By (V2), we have

c∞ = I∞(w) > I∞
(
t(w)w

)
= I
(
t(w)w

)
+

∫
RN

(
V∞ − V (x)

)
|t(w)w|2 > cV ,

and then we conclude. �

4.1 Proof of Theorem 1.4

Let (un)n ⊂ N such that
lim
n
I(un) = cV . (14)

We define the functional J : H1(R3)→ R as:

J(u) =

(
1

2
− 1

p+ 1

)∫
R3

|∇u|2 + V (x)u2 +

(
1

4
− 1

p+ 1

)∫
R3

φuu
2.

Observe that for any u ∈ N , we have I(u) = J(u).
By (V3) and (14), we deduce that (un)n is bounded in H1(R3), so there
exists ū ∈ H1(R3) such that, up to a subsequence,

un ⇀ ū weakly in H1(R3), (15)
un → ū in Ls(B),with B ⊂ R3, bounded, and 1 6 s < 6. (16)

To prove Theorem 1.4, we need some compactness on the sequence (un)n.
We denote by νn the measure

νn(Ω) =

(
1

2
− 1

p+ 1

)∫
Ω

|∇un|2 + V (x)u2
n +

(
1

4
− 1

p+ 1

)∫
Ω

φunu
2
n.

Observe that, since there is no lower boundedness condition on the poten-
tial V , the measures νn may be not positive, and then we are not allowed
to use the Lions’ concentration arguments [6, 7] on them. However, in
the following theorem (for the proof see [1]) we are able to show that the
functions uk concentrate in the H1(R3)−norms.

Theorem 4.3. For any δ > 0 there exists R̃ > 0 such that for any n > R̃∫
|x|>R̃

(|∇un|2 + |un|2) < δ.

10



Proof of Theorem 1.4 By Theorem 4.3, for any δ > 0 there exists r > 0
such that

‖un‖H1(Bcr) < δ, uniformly for n > 1. (17)

Hence, arguing as in the constant potential case, we deduce that

un → ū in Ls(R3), for any s ∈ [2, 6[. (18)

Moreover

φun → φū in D1,2(R3), as n→∞,∫
R3

φunu
2
n →

∫
R3

φūū
2, as n→∞, (19)

and for any ψ ∈ C∞0 (R3) ∫
R3

φununψ →
∫

R3

φūūψ. (20)

By (14), we can suppose (see [11]) that (un)n is a Palais-Smale sequence
for I|N and, as a consequence, it is easy to see that (un)n is a Palais-Smale
sequence for I . By (15), (18) and (20), we conclude that I ′(ū) = 0.
Since (un)n is in N , by 3 of Lemma 4.1 (‖un‖p+1)n is bounded below by a
positive constant. As a consequence, (18) implies that ū 6= 0 and so ū ∈ N .
Finally, by (14), (15), (18) and (19) and by (V2-3) we get

cV 6 I(ū) 6 lim inf I(un) = cV ,

so we can conclude that (ū, φū) is a ground state solution of (1). �
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