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On Some Applications of a Symbolic Representation of
Non Centered Lévy Processes

E. DI NARDO! AND 1. OLIVA?

'Department Mathematics and Computer Science,
Universita della Basilicata, Potenza, Italy
2Department of Mathematics, Universita di Bologna, Bologna, Italy

By using a symbolic technique known in the literature as the classical umbral
calculus, we characterize two classes of polynomials related to Lévy processes: the
Kailath-Segall and the time-space harmonic polynomials. We provide the Kailath-
Segall formula in terms of cumulants and we recover simple closed-forms for
several families of polynomials with respect to not centered Lévy processes, such
as the Hermite polynomials with Brownian motion, Poisson-Charlier polynomials
with Poisson processes, actuarial polynomials with Gamma processes, first kind
Meixner polynomials with Pascal processes, and Bernoulli, Euler, and Krawtchuk
polynomials with suitable random walks.

Keywords Cumulant; Kailath-Segall polynomial; Lévy process; Time-space
harmonic polynomial; Umbral calculus.

1. Introduction

The umbral calculus is a symbolic method, known in the literature since the XIX
century, consisting in a set of mathematical tricks, dealing with number sequences,
whose subscripts were treated as they were powers. No formal setting for this
theory was given until 1964, when Gian-Carlo Rota disclosed the “umbral magic
art” of lowering and raising exponents, bringing to the light the underlying linear
functional (Rota, 1964). From 1964 on, the umbral calculus was deeply developed.
In particular, in 1994, Rota and Taylor (Rota and Taylor, 1994) provided a simple
presentation of the umbral calculus in a framework very similar to the theory of
random variables and, in 2001, Di Nardo and Senato (Di Nardo and Senato, 2001)
gave a complete formalization of the matter.

Here, we refer to the classical umbral calculus as a syntax consisting in
an alphabet o1 = {«, ,7,...} of symbols, called umbrae, and a suitable linear
functional E, called evaluation, which resembles the expectation operator in
probability theory. Therefore, umbrae look like the framework of random variables,
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with no reference to any probability space. The key point of the theory is the idea
of associating a unital number sequence 1, a,, a,, ... to a sequence 1, a, o2, ... of
powers of o by means of the evaluation functional.

In this framework, the notion of summation of umbrae can be extended to the
case of a non integer number of addends, thus leading us to a symbolic version of
the infinite divisibility property and therefore of Lévy processes (Sato, 1999).

In 1997, together with Wallstrom (Rota and Wallstrom, 1997), Rota conceived
a combinatorial definition of stochastic integration in the setting of random
measures. The starting point is the Kailath-Segall formula (Kailath and Segall, 1976)
interpreted in combinatorial terms and applied to derive recursion relations for some
classes of orthogonal polynomials. The Kailath-Segall formula links the variations
{X,(")},ZO of a Lévy process

x'=x,, x”=[x.X],, X"=3(AX,)", n=3, (1.1)

s>t

to its iterated stochastic integrals
t
PO=1, PV =X, PM=[ Prldx, nz2 (1.2)
0

by using suitable polynomials, named the Kailath-Segall polynomials. In this article,
we give an umbral expression of this class of polynomials highlighting the role
played by their cumulants. We show that the Kailath-Segall formula is a suitable
generalization of the well-known formulae giving elementary symmetric polynomials
in terms of power sum symmetric polynomials.

Cumulants play the same role in the umbral expression of time-space harmonic
polynomials with respect to not necessarily centered Lévy processes. A family of
polynomials {P(x, t)},., is said to be time-space harmonic with respect to a Lévy
process {X,} -, if E[P(X,,?)|F,] = P(X,,v), for all v <t, where 7, = ¢(X, : T < v)
is the natural filtration associated with {X,};=0- A Lévy process is not necessarily
a martingale. Therefore, to find polynomials such that it is a martingale the
stochastic process obtained by replacing the indeterminate x with the Lévy process
{X,},~0, becomes fundamental, especially for applications in mathematical finance
Cuchiero et al. (2008). In Solé and Utzet (2008), to get a characterization of time-
space harmonic polynomials, the authors used the Teugels martingale and refer to
centered Lévy processes for which the martingale property holds. In this article,
we focus our attention on non-centered Lévy processes, which do not share the
martingale property and we show how the classical umbral calculus allows us
to get more general results without taking advantage of the martingale property.
Moreover, the umbral expression of these polynomials relies on a very simple closed-
form of the corresponding coefficients which can be easily implemented in any
symbolic software; see Di Nardo and Oliva (2009) as an example.

This article is structured as follows. Section 2 is provided for readers unaware of
the classical umbral calculus. We have chosen to recall terminology, notation, and
the basic definitions strictly necessary to deal with the object of this article. We skip
any proof. The reader interested in is referred to Di Nardo and Senato (2001, 2006).
Section 3 gives the umbral expression of Lévy processess and analyses the classes
of Kailath-Segall and time-space harmonic polynomials. In Sec. 4, we give umbral
expressions of many classical families of polynomials as time-space harmonic with
respect to suitable Lévy processes.
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2. Background on the Classical Umbral Calculus
The classical umbral calculus is a syntax consisting of the following data:

(1) aset f = {a, f, 7y, ...} of objects, called umbrae;
(i1) an evaluation linear functional E : R[x][#/{] — IR[x], where R is the field of
real numbers, such that E[1] = 1 and the uncorrelation property holds

E[x"o iy -] = x"E[o'|E[f/1E[Y*] - - -

for all a, 8,7, --- € £ and for all non negative integers n, i, j, k, , ...

(iil) the augmentation umbra € € 3, with E[€"] = ¢, ,, for all non negative integers
n, where §,, is the Kronecker symbol, that is, J;, is equal to 1 if n =0 and 0
otherwise;

(iv) the unity umbra u € 3, with E[u"] = 1, for all non negative integers n.

A sequence a, =1, a,, a,, ... € R[x] is umbrally represented by an umbra o
if E[o"] =a,, for all n > 0. The element a, is the n-th moment of the umbra o.
An umbra is said to be scalar (respectively, polynomial) if its moments are in
R (respectively, in R[x]). A polynomial in R[s{] is an umbral polynomial. The
generating function of an umbra « € s/ is the formal power series f(«,z) =1+
> o1 a,2"/n!, for which we do not take into account any question of convergence
(Stanley, 1997).

Special umbrae are the singleton umbra y € 4, with f(y, z) = 1 + z; the boolean
unity u € $4, with f(i, z) = 1/(1 — z); the Bell umbra f§ € si, with f(f, z) = exp(e* —
1) and moments the Bell numbers; the Bernoulli umbra 1, with f(1,z) = z/(e* — 1)
and moments the Bernoulli numbers; the Euler umbra n, with f(i, z) = 2¢°/(1 + &%)
and moments the Euler numbers.

The alphabet ¢ can be extended with new symbols arising from operations
among umbrae. These new umbrae are called auxiliary umbrae and the resulting
umbral calculus is said to be saturated (Rota and Taylor, 1994). Some useful
auxiliary umbrae are recalled in the following.

Disjoint sum and difference. Given o,y e s, their disjoint sum oty
(respectively, disjoint difference a-7) is such that f(a+y,z) = f(a, z) + f(y,2) — 1
(respectively, f(a=y,z) = flo, 2) — f(7,2) + 1)

Dot-product. First, let us observe that there are infinitely many and distinct
umbrae representing the same sequence of moments. More precisely, the umbrae
o and vy are said to be similar if E[o"] = E[y"] for all non negative integers n, in
symbols o« = 7. Now let us consider n uncorrelated umbrae o/, o, ..., «” similar to
o and their summation: the resulting umbra o + o” + ---+ «” is denoted by the
symbol n.o. The umbra n.a is called the dot-product of the integer n and the umbra
a. Its generating function is f(n.o, z) = (f(«, z))" and the moments are E[(n.2)'] =
Z;:](n)jBi,j(al, ..»a;_j1), where (n); is the lower factorial and B, ; are the partial
exponential Bell polynomials (Di Nardo and Senato, 2006). The integer n can be
replaced by any ¢ € R so that

E[(t.0)] = i(t)jBi’j(al, ces @) (2.1
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In particular, we have
t.(a+7) =to+ty. (2.2)

Set + = —1. The umbra —1.x is called the inverse of «. We have —l.a+a =e.
In (2.1), we can replace ¢ by any umbra y € s/, for more details see Di Nardo
and Senato (2006). If (y); =7(y—1)---(y—j+ 1) denotes the lower factorial
polynomial, then we have E[(y.«)'] = >°'_, E[(7);]B; ;(a;, ..., @;_;;1). The umbra y.a
is called the dot-product of the umbrae o and 7. Special dot-product umbrae are y.o
and f.a. The umbra y.o is denoted by the symbol x, and called the a-cumulant umbra
(Di Nardo et al., 2008), since f(x,, z) = 1 + log(f(«, z)). The umbra f.x is called the
o-partition umbra. In particular, we have « = .k, and f.y = x. = u. Later on, we
will often use the following properties for the cumulant umbra and the partition
umbra:

2-(+9) = gotypy, B(oaty) = o+ By (2.3)

We also recall the distributive property of the summation with respect to the dot-
product, that is (o + 7).7 = a.¥ + y.9.

Composition umbra. The composition umbra of o« and y is denoted by the
symbol y.f.a, where f§ is the Bell umbra. Its generating function is the composition
of f(a,z) and f(y,z), that is f(y.f.a, z) = f(y, f(«, z) — 1). The moments are (Di
Nardo and Senato, 2006):

(o)) = Y ELIB a4y 1), 2.4)

j=1

As example of composition umbra, the compositional inverse umbra o<"'> of an
umbra « is such that «=~'>.f.0 = y = a.f.0="'>. In particular, we have f(a="1>, z) =
f<"">(a, z), where f<~'> denotes the compositional inverse of f(a,z) (Stanley,
1997).

3. Lévy Processes

Now we focus our attention on the family of auxiliary umbrae {r.«},.,. If the
moments of « are all finite, this family is the symbolic counterpart of a stochastic
process {X,},-o such that E[X}] = E[(t.0)], given in (2.1), for all non negative
integers k. This stochastic process is a Lévy process.

Theorem 3.1. Let {X,},. be a Lévy process and let o be the umbra such that f(«, z) =
E[e**1]. The Lévy process {X,}o is umbrally represented by the family of auxiliary
umbrae {t.0},.

Proof. Recall that a Lévy process {X,},., is a stochastic process which starts at 0,
with independent and stationary increments. If we denote by ¢(z, t) the moment
generating function of the increment X,,; — X, and by ¢(z) the moment generating
function of X,, then ¢(z, 1) = (¢(2))’, due to the infinite divisibility property (Sato,
1999). The result follows by observing that we also have f(z.«, z) = [f(2, 2)]". O
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A fundamental result of the classical umbral calculus is that any umbra is a
partition umbra. In particular, if x, is the a-cumulant umbra, then o = f.x, (Di
Nardo and Senato, 2006). Referring to Lévy processes, this means that f(z.«, z) =
f(t..x,, z) = exp{t[f(x,, z) — 1]} which is very similar to the Lévy-Khintchine
formula (Schoutens, 2000), provided that we specify the expression of f(x,, z).
Indeed, if we denote by E[e*'] = (¢(z))’ the moment generating function of a Lévy
process {X,},, then the Lévy-Khintchine formula is

$(2) = exp {zm + %szz2 + /111 (€ =1 —zxlyyy) d(v(x))} . (3.1

The tern (m, 52, v) is called Lévy triplet and v is the Lévy measure. If v is a measure
admitting all moments and if we set ¢, =m + f{ | X d(v(x)), then the Lévy-
Khintchine formula (3.1) becomes

[x[=1

$(z) = exp {coz + %szzz} exp { /}R (e —1—zx) d(v(x))} . (3.2)

The following theorem gives an umbral version of a Lévy process, according to the
Lévy-Khintchine formula (3.2).

Theorem 3.2. A Lévy process {X,},.o is wumbrally represented by the family
{t.ﬁ.[co}(—i—s&i—y]},zo, where 7y is the umbra associated to the Lévy measure, that is
f(r.2) =1+ [ (e —1—zx)d(v(x)), and & is an umbra with f(9,z) =1+ 2%/2.

Proof. We have  f(t.p.[cox+50+7], 2) = exp{t[f(cox+50+7,2) — 1]}.  Since
fleox+50+7,2) = fleox, 2) + f(s9, 2) + f(7, 2) — 2, where f(cox. 2) = 1+ ¢z, we
have f(cox +s6+7,z) — 1 =log ¢(z), with ¢(z) given in (3.2). O

Remark 3.1. As introduced in Di Nardo and Oliva (2009), the Gaussian umbra is
the umbra m + f.(s0), where m € R, s > 0 and ¢ is the umbra given in Theorem
3.2. Recalling that m = f.y.m = B.(my), we have m + .(s6) = B.(my+sd), due to
the latter of (2.3). Thanks to Theorem 3.2 and the latter of (2.3), a Lévy process
{X,},-0 is umbrally represented by the family r.B.[cox+s0+y] = t.B.[cox+s0] +
t.f.y. By recalling that the auxiliary umbra ¢.f.« is the umbral counterpart
of a compound Poisson process Sy =Y, +---+ Yy, with {¥;} independent and
identically distributed random variables and N a Poisson random variable of
parameter ¢, then a Lévy process is the summation of two compound Poisson
processes: in the first, the random variables Y, are Gaussian with ¢, mean and
variance s*, in the second the random variables Y, correspond to the umbra y
associated to the Lévy measure.

A centered Lévy process is such that E[X,] = 0 for all # > 0. This is equivalent
to choose ¢, = 0 in equivalence (3.2).

Corollary 3.1. A centered Lévy process is umbrally represented by {t.ﬁ.(sé—i—y)},zo.

The Lévy process corresponding to (3.2) is a martingale if and only if ¢, = 0,
see Theorem 5.2.1 in Applebaum (2004). This means that the singleton umbra y
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plays a central role in the martingale property of a Lévy process. Indeed, if ¢, =
0, no contribution is given by the singleton umbra which indeed does not admit a
probabilistic counterpart.

3.1. The Kailath-Segall Formula

Let {X,},.o be a centered Lévy process with moments of all orders and let {X,(")},Zo
be the variations (1.1) of the process. The iterated stochastic integrals (1.2) are
related to the variations {X,(")},zo by the Kailath-Segall formula (Kailath and Segall,
1976)

n 1 n— n— n
P = = (PUXD = PUIXP 4 (<) POX) (3.3)

Then, P = P, (X,(l), L X") is a polynomial in xV x@ . x™, called the
n-th Kailath-Segall polynomial. Let us introduce the family of umbrae {7T,}., such
that E[T"] = nlE LP}”] and {c,},_, such that E[¢"] = E[X"], for all non negative
integers n. The following theorem states the umbral Kailath-Segall formula and its
inversion.

Theorem 3.3. We have T, = f.[(y.y)0,] and (x.x)o, = x.T..
Proof. Assume VY, = (y.y)a, where E[(x.7)"] = (=1)""'(n—1)! (Di Nardo and

Senato, 2006). The recurrence relation (3.3) is equivalent to E[T)'] = E[y,(T, +
W,)"1], for all n > 1. Indeed, by definition of umbrae , and T,, we have

E[T”

t

L) E[TEW] | E[T]E[Y] E[y;]
]_”!Z{ u—Dl " w2t Ut

= (") e e = En )

By using the first equivalence of Theorem 3.1 in Di Nardo and Oliva (2009),
we have ¥, = (x.x)o, = x.T, (inversion of the Kailath-Segall formula). The second
equivalence follows by observing that yy, = y.T, & ., = f.x.T, and f.y=u. O

By recalling that the moments of f.o are the (exponential) complete Bell
polynomials (Comtet, 1974) in the moments of «, see Di Nardo and Senato (2001)
formula (29), then the Kailath-Segall polynomials are the complete Bell exponential
polynomials in {(—1)""!(n — 1)!E[X,(") ]}. From the inversion of the Kailath-Segall
formula and equivalence (2.4), the following corollary follows.

Corollary 3.2. [fc, =iE [P,(i)] fori=1,...,n, then

E[X"] = iﬂB (¢, ¢ ¢ )
t - n,j\&1> &2 =+ 05 by—jy1)-
j=1 (I’l - l)n—j ! 7

The inversion of the Kailath-Segall formula in Theorem 3.3 is a generalization
of formula (3.2) in Di Nardo et al. (2008) which gives the elementary symmetric
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polynomials in terms of power sum symmetric polynomials. That is, if we replace
the jumps {AX,} in X" with suitable indeterminates {x,}, then the Kailath-Segall
polynomials reduce to the polynomials given in Avram and Taqqu (1986).

3.2. Umbral Time-space Harmonic Polynomials

Let us recall the definition of conditional evaluation given in Di Nardo and Oliva
(2011). Denote by % the set % = {a}.

Definition 3.1. The linear operator E(- | «) : R[x][/{] — IR[%¥] such that

() E(1]a) =1

(i) E(x™o"y'd/ -+ |a) = x"a"E[y']E[6’] - - - for uncorrelated umbrae «, y, J, ... and
for non negative integers m, n, i, j, ...

is called conditional evaluation with respect to o.

In other words, Definition 3.1 says that the conditional evaluation with respect
to o handles the umbra o as it was an indeterminate.

Definition 3.2. Let {P(x, )} € R[x] be a family of polynomials indexed by ¢ > 0.
P(x, 1) is said to be a time-space harmonic polynomial with respect to the family of
auxiliary umbrae {¢()},-, if and only if E[P(q(1), 1) | q(s)] = P(q(s), s) for all 0 <
N

Theorem 3.4. The family of polynomials {Q(x,1)},=o € R[x], where Q(x,?) =
E[(x — t.0)*] for all non negative integers k, is time-space harmonic with respect to

{t.o},=0.

The proof of Theorem 3.4 is in Di Nardo and Oliva (2011).

Remark 3.2. Every linear combination of {Q,(x, f)},., is a time-space harmonic
polynomial with respect to {r.a},-.

Theorem 3.4 guarantees that the polynomial
Oy (x, 1) = E[(x — 1.B.[cox+s0+7])], (3.4)

of degree k in the variable x and depending on the parameter ¢, is time-space
harmonic with respect to the family of auxiliary umbrae {z.5.[coz+s0+7]},o, that
is with respect to a Lévy process, thanks to Theorem 3.2. The following theorem
generalizes Corollary 2(a) in Solé and Utzet (2008).

Proposition 3.1. We have Q,(x,t) = Y, (x — tcy, —t(s*> + m,), —tms, ..., —tm,), for
all non negative integers k > 1, where Y, are the complete Bell polynomials and m; =

E[y], foralli=2,..., k.

Proof. As proved in Di Nardo and Senato (2006), if a, = E[e*] and b, =
E[xi], for i=1,...,k then a, = Y, (b, b,, ..., b;), where Y, are the complete Bell
polynomials.
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By definition of cumulant umbra and by virtue of (3.4), we have

Lo x + E{y.(=1).B.lcoy+s6+y]}, ifk=1
Bl Ce= e Bleorts0RaDIy =3 g Zp) pleagisots)t), itk > 1.

Therefore, since E{y.(—t).B.[cox+s6+7]} = —tcy, E{(x.(=1).B.[coy+s0+7])?} =
—t(s> +m,) and E{(y.(=1).B.[cox+s6+7])*} = —tm,, for k > 3, the result follows.
Indeed we have proved that the cumulant umbra of x — £.8.[cyy+sd+7] has the first
k moments given by x — tc,, —t(s*> + m,), ..., —tm,. O

We observe that the polynomial umbra x — t.B.[c,z+sd-+7] is an Appell umbra
with respect to the indeterminate x (Di Nardo et al, 2010). Therefore the
moments {Q,(x, #)};cn in (3.4) are Appell polynomials such that 6Q,(x, )/0x =
kQ, ,(x, t). With respect to ¢, the polynomial umbra x — t..[cyy+s5-+y] is a Sheffer
umbra (Di Nardo et al., 2010), so that the Sheffer identity holds Q,(x, 7+ v) =
Yo (%) Pj(v)Q_;(x, 1), where Q, ;(x, t) are given in (3.4) and P;(v) = Q;(0, v), for
all non negative integers j.

4. Examples
4.1. Sum of Two Independent Lévy Processes

Let us consider two independent Lévy processes W = {W,}., and Z = {Z}.,,
umbrally represented by {r.a},., and {.y},.,, respectively. Due to the distributive
property (2.2), the process X = W + Z is umbrally represented by z.(a 4+ y) = t.o +
t.y. If we replace IRR[x] with R[x, w, z] (Di Nardo et al., 2008), and denote by
{0 (x, Dhiens {03 (x, D} ey and {Q](x, 1) },cy the time-space harmonic polynomials
with respect to {X,},.0, (W} and {Z}.,, respectively, we have Q,(x,1) =
Zfzo (’;)ij(w, N0/ (z, 1), if x =w+z.

4.2. Brownian Motion

The Brownian motion {B,},., is a Lévy process whose increments are Gaussian
random variables with zero mean, variance s> and zero Lévy measure. Hence, thanks
to Theorem 3.2, the symbolic counterpart of {B,},., is given by the family of umbrae
{t.B.(s6)},=9- The standard Brownian motion is recovered by setting s = 1.

From Theorem 3.4, for all non negative integers k, the polynomials Q,(x, f) =
E[(x — t.p.(s6))¥] are time-space harmonic with respect to the Brownian motion

{Br}tz()'
Proposition 4.1. For all non negative integers k > 1, we have Q,(x, t) = H,E‘YZ') (x).

Proof. Recall that the generalized Hermite polynomials {H,fxz)(x)}t20 have
generating function

N k 2.2
> HO 0 = e fxe - ).

k>0
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In Di Nardo and Oliva (2011), we have proved that H*” (x) = E{[x — 1.8.(s0)]*}. In
2

particular, we have H,Es ) (x) = E[(x — 1.B.(\/156))*]. The result follows by observing

that —1.8.(v/1s6) = —t.B.56. O

4.3. Poisson Process

The Poisson process {N,},-, is a pure jump Lévy process, whose increments follow
a Poisson distribution with parameter 1 > 0. The moment generating function
is (¢(2))" = (exp{i(e’ — 1)})’, so the Poisson process of intensity parameter A is
umbrally represented by the family of umbrae {r.4.f},.,. Thanks to Theorem 3.4,
the polynomials Q, (x, At) = E[(x — t.4.p)¥] are time-space harmonic with respect to
the Poisson process {N,},..

Proposition 4.2 states that also the Poisson-Charlier polynomials {E’k(x, At)} are
time-space harmonic with respect to the Poisson process {N,},.

Proposition 4.2. We have Ek(x, At) = Zle s(k, ))Q;(x, At), where s(k, j) are the
Stirling numbers of the first kind.

Proof. Recall that the Poisson-Charlier polynomials z‘k(x, /t) have generating
function

k
> Cule )y = (142"
k>0 :

SO Ek(x, At) = E[(x.y — t.A.u)]. Since x.y —t.Au= (x —t.J.f).y and by recalling
that E[(e.y)*] = E[(2),]; see Di Nardo and Senato (2006), we have

k

Co(x, 2) = E[(x — t.2.B)] = 3 sk, E[(x — t.2.B)"]. -
j=0

4.4. Gamma Process

The Gamma process {G,(4, b)},., with scale parameter 4 > 0 and shape parameter
b>0 is a Lévy process with stationary, independent and Gamma-distributed
increments. If we set b = 1, the moment generating function of the Gamma process
is (¢(2))"' = [(1 —z)7*]". Thus, the umbral representation of the Gamma process
{G,(4, 1)}~ is given by the family of umbrae {(i?).u}, o, where i is the boolean
unity.

There are two families of polynomials time-space harmonic with respect to
Gamma processes, according to the value of the scale parameter A: the Laguerre
polynomials {<7*(x)} and the actuarial polynomials {g,(x, it)}.

As regards the former, we have

(DL (x) = E[(x + t.(=)'], k=0,1,2,... 4.1)

since the Laguerre polynomials {Z!™*(x)} have generating function Y ,_o(—1)*
Lllt:k(x)zk — (1 _ Z)tezx.
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Theorem 4.1. The Laguerre polynomials {£*(x)},., are time-space harmonic with
respect to the Gamma process {G (1, 1)},.

Proof. Theorem 3.4 implies that the polynomials Q,(x, ) = E[(x — t.u)*] are time-
space harmonic with respect to the Gamma process {G,(1,1)}.,. Moreover, we
have —1.u = —y, so —t.u =t.(—y) and x — t.u = x + t.(—y). Then, thanks to (4.1),
we have Q,(x, 1) = k!(—1)*Z7*(x). O

For the latter, Roman (1984) defines the class of actuarial polynomials as the
sequence of polynomials with generating function

> g lx, /lt)% = exp{iiz + x(1 — €)}. 4.2)

k>0

To get the symbolic expression of g,(x, A7) we use the umbral Lévy-Sheffer systems.
Recall that a Lévy-Sheffer system (Di Nardo and Oliva, 2011) is a sequence of
polynomials {R,(x, )} such that

k
Y R(x, )7 = (F2))" explru(2)), (43)
k=0 :

where f(z) and u(z) are analytic in the neighborhood of z = 0, u(0) =0, f(0) =1,
u'(0) # 0 and 1/f(t(z)) is an infinitely divisible moment generating function, with
7(z) such that t(u(z)) = z. If f(z) = f(2, z) and u(z) = f(y,z) — 1, then R (x, ) =
E[(t.o + x.B.7)¥], for all non negative integers k. By comparing (4.3) with (4.2), we
obtain « = (A).u and 7y = (y.(—y))<"">, where (3.(—%))<"'> is the compositional
inverse of the umbra y.(—y). This leads to the umbral version of the actuarial
polynomials, that is, for all non negative integers &,

g (x, ) = E {[it + x.ﬁ.(x.(—x))<’1>]k] . (4.4)

Theorem 4.2. The actuarial polynomials {g,(x, A1)}, are time-space harmonic with
respect to the Gamma process {G,(/, 1)}

Proof. By virtue of Theorem 3.4, Q,(x,?) = E[(x — (At).k)*] are time-space
harmonic polynomials for all & > 0 with respect to the Gamma process {G,(4, 1)},-,.
On the other hand, Ar + x.8.(;.(=) <" = (x + (41).(=)).B.-(x.(=2))="">. Then,
by virtue of (4.4) and (2.4), we have

k
gu(x, 20) = T E[(x + (20).(= ) 1Br j(mys - oo my_ i),
=1
where m; = E[(x.(—x))<"'>)]. Observe that # = —1.(—%), thus
k k
& (x, A1) = Y E[(x — (n).) 1By j(my, oo my_yy) = D0 Qu(x, 0By j(mys ooy my ).
=1 j=1

The result follows from Remark 3.2. O
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4.5. Pascal Process

Let {Pa(t, p)},=o be a Pascal process, that is, a Lévy process whose increments have
Pascal distribution with mean td, where d = p/q and p + g = 1. As the moment
generating function of the Pascal process is (¢(z2))" = [¢/(1 — pe®)]’, with some
calculations we obtain that a Pascal process is umbrally represented by the family
of umbrae {t.i.d.f},.y, where u is the boolean unity. By virtue of Theorem 3.4,
the time-space harmonic polynomials with respect to the Pascal process are the
0,(x, 1) = E[(x — t.u.d.p)*] are for all non negative integers k.

Consider the family of Meixner polynomials of the first kind {M,(x, ¢, p)}
(Schoutens, 2000) such that

Y (=DM (0) M (x, 1, p)% = <1 + %) (I+z2)7" (4.5)

k=0

From (4.5), the symbolic version of the Meixner polynomials of the first kind is

¥ k
(=DM (x,t,p) = E { |:x. (—l.;{ + ;) — t/:| } . (4.6)

Theorem 4.3. The Meixner polynomials of the first kind are time-space harmonic with
respect to the Pascal process {Pa(p, t)},-.

Proof. The Meixner polynomials of the first kind is a Lévy-Sheffer system, so
they are represented by the polynomial umbra x.8.(x.(—=1.x + %/p)) + t.(=1.x), with
E[(=1.x+ x/p)] # 0. This hypothesis guarantees that the compositional inverse
umbra exists, so

x. (-1.1 + i) ity = (x+ 1.(=1.p).poid.f).p. <x- (—l-x + %)) .

Thus, by (2.4) and (4.6), the Meixner polynomials of first kind can be written in the
following way

(=D ()M, (x, 1, p) = Y E[(x — t.ia.d By 1B, ;(my, ..., m_; ;)

j=1

k
= Z Qk('x’ t)Bk’j(ml, ey mk—j—l)’

j=1

where m; = E[{y.(—1.y + y/p)}']. The result follows thanks to Remark 3.2. O

4.6. Random Walks

The results in the literature involving the polynomials we are going to introduce
refer to an integer parameter n. In order to highlight their time-space harmonic
property, we consider the discrete version of a Lévy process, that is a random walk
S, =X, +X,+ -+ X,, with {X,} independent and identically distributed random
variables. For the symbolic representation of Lévy processes we have dealt with,
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a random walk is umbrally represented by n.o. The generality of the symbolic
approach shows that if the parameter n is replaced by ¢, that is if the random walk
is replaced by a Lévy process, more general classes of polynomials can be recovered
for which many of the properties here introduced still hold.

Bernoulli polynomials. The Bernoulli polynomials {B,(x, n)} is defined by the
generating function (Roman, 1984)

> B (x, n)i—]: = ( Z_ 1);1 s

k>0 e
Therefore we have B, (x, n) = E[(x + n.1)*] for all non negative integers k.

Theorem 4.4. The Bernoulli polynomials {B(x, n)},-, are time-space harmonic with
respect to the random walk {n.(—=1.1)},-,.

Proof. Let us consider the random walk S,=X,+X,+---+ X, such that
X, X,, ..., X, are n independent and identically distributed random variables with
uniform distribution on the interval [0, 1]. Since X, is umbrally represented by the
umbra —1.1, the random walk S, is umbrally represented by the family of auxiliary
umbrae {n.(—1.1)},.o. Theorem 3.4 ensures that the polynomials Q,(x, 1) = E[(x —
n.(—1.1))*] are time-space harmonic with respect to S,, for all k > 0. On the other
hand n.(—1.1) = —n.1, hence E[(x — n.(=1.1))*] = E[(x + n.1)¥], that is B,(x, n) =
O (x, n). |

Euler polynomials. The Euler polynomials {€,(x,n)} is defined by the
generating function (Roman, 1984)

Zk 2 n N
Z%k(x,n)ﬁz< > e,

k>0 et + 1

Therefore we have €,(x,n) = E[(x+n.[3 (—1.u~|—17)])k] for all non negative
integers k.

Theorem 4.5. The Euler polynomials {€,(x, n)} are time-space harmonic with respect
to the random walk {n. [ (—=1.n+ u)]},=.

Proof. Let us consider the random walk S, =X, + X, +---+ X, such that
X, X5,...,X, are n independent and identically distributed Bernoulli random
variables with parameter 1/2. The result follows by using arguments similar to the
proof of Theorem 4.4, as X; is umbrally represented by the umbra 1(—1.7 4+ u). O

Krawtchouk polynomials. The Krawtchouk polynomials {%,(x,p,n)} are
defined by the generating function (Roman, 1984)

2 (Z) T(x, p. m)z" = <1 - ;’Q)x (1+2)" (4.7)

k>0
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The umbra with generating function (4.7) is (n —x).y + x.(—y/d) =n.y +
x.(=1.y — x/d), with d = p/q and p + g = 1. Then, for all non negative integers k
we have

(ni—!k)!?fik(x, p.n) =EHn.x+x. (~12- é)]k} (4.8)

Theorem 4.6. The Krawtchouk polynomials are time-space harmonic with respect to

the random walk {n.(—1.10)},~, where —1.u is the umbral counterpart of a Bernoulli
random variable with parameter p.

Proof. Fori=1,...,n, let X; be a random variable with Bernoulli distribution of
parameter p. Let u = —1.y.p.f be the umbra such that f(u, z) = 1/(pe* + (1 — p)),
so the random walk S, = X, + X, + --- + X,, is umbrally represented by the family
of auxiliary umbrae {n.(—1.4)},-o. From Theorem 3.4, the polynomials Q,(x, n) =
E[(x — n.(—=1.1))*] = E[(x + n.u)*] are time-space harmonic with respect to S, for
all non negative integers k. From (4.8), we have

nat (-t 2) = (vem (e (<1a=2)) 7)o (e (<12 2)).

By applying (2.4), the Krawtchouk polynomials are such that

n!

d 1)/
—(n — k)!ii’{k(x, p,n) = EE |:{x + n. [x. (—I.X — %)] ! } :| By j(my,...,my_;.),
4.9)

where m; = E[(3.(—1.y — x/d)']. Via generating functions, it is straightforward
to prove that —1.(3.(=l.x—y/d)<"'> =pu, therefore E[{x+ n.(y.(=1.x—
7/d))~"""}] = E[(x + n.p)’] = Q;(x, n). By replacing this last equality in (4.9), we
have

n! k
m%k(% p.n) = 2; Q;(x, n)By j(my, ..., my_jiy),
=
and the result follows thanks to Remark 3.2. O

Pseudo-Narumi polynomials. The family of pseudo-Narumi polynomials
{N,(x,an)}, a € N, is the sequence of coefficients of the following power series
(Roman, 1984)

Y Ni(x, an)Z* =

k=0

(M> (1 +2)". (4.10)
Z

From (4.10), the pseudo-Narumi polynomials result to be the moments of the umbra
x.7 + (an).u;~'>, where u;~'> is the primitive umbra of the compositional inverse
u="1>. We recall that, given an umbra « € o, the a-primitive umbra o, is such that

f(op, z) = (f(2, z) — 1)/z. For all non negative integers k, we have

k!N, (x, an) = E{[(an).u;™"> + x.z]*}. (4.11)
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Theorem 4.7. The pseudo-Narumi polynomials are time-space harmonic with respect
to the random walk {(an).(—1.1)},,.

Proof. Consider the random walk S, = X, + X, + --- + X,,, where,fori=1,...,n,
X, is a sum of a € N random variables with uniform distribution on the interval
[0, 1]. Therefore, for i=1,...,n, X; is umbrally represented by a.(—1.1) and
S, is umbrally represented by {n.a.(—1.1)},.,. By applying Theorem 3.4, it is
straightforward to prove that the polynomials Q,(x, n) = E[(x — (an).(—1.1))*] are
time-space harmonic with respect to S,. On the other hand, x.y + (an).u; "> = (x +
(an).u;~'>.p).p.u="1>, and then, from (4.11)

k!N (x, an) = iE[(x + (an).u;’b./?)j]Bk,j(ml, ces M),

j=1

where m; = E[(u="'>)']. To prove the result, it is sufficient to show that E[(x +
(an).uy~'>.p)/] fits with the j-th time-space harmonic polynomial Q;(x,n). Via
generating functions, we have u;~'>. = 1, which gives

k
kIN,(x,an) =) Q;(x,n)B; j(my,....m_;.,),
j=1
and the result follows thanks to Remark 3.2. O
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