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Abstract
A key feature of XQuery is its type system. Any language expres-
sion is statically typed and its type is used during program type-
checking.

In XQuery, types of input data and functions are defined in terms
of regular expression types, but it is quite easy to write queries
that generate non-regular languages. As a consequence, any type
system for XQuery has to rely on a type inference process that
approximates the (possibly non-regular) output type of a query
with a regular type. This approximation process, while mandatory
and unavoidable, may significantly decrease the precision of the
inferred types.

In this paper we will analyze the precision and the complexity of
the W3C type inference algorithm. By defining an abstract model
for the core of XQuery and for its type language (miniXQuery),
we will identify the critical issues in the inference process and the
sources of precision loss. We will also propose an alternative type
inference system, used in the µXQ+ language, and show that in
most cases it is more precise without any performance penalties.
Finally, we will identify relevant classes of input types for which
inference precision can be dramatically improved.

Categories and Subject Descriptors H.2.3 [Information Sys-
tems]: DATABASE MANAGEMENT—languages

General Terms Languages, Theory

Keywords XML, XQuery, Type Inference

1. Introduction
XML is a formalism for representing any kind of data, ranging
from rigid and structured sources to loose semistructured data.
XML diffusion is now ubiquitous and most applications leverage
on XML to represent their data and to exchange them with other
applications.

Many technologies for processing and manipulating XML data
have been developed in the recent years. In particular, the World
Wide Web Consortium (W3C) has designed a standard query lan-
guage for XML data called XQuery [2]. XQuery is a functional,
Turing-complete, strongly typed language that allows the program-
mer to navigate through an XML document (or a set of documents),
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to select relevant fragments of the document, and to combine them
to return new documents.

A key feature of XQuery is its type system. In XQuery any
language expression is statically typed and its type is used during
program type-checking, even though the programmer can disable
this feature.

In XQuery, types of input data and functions are defined in terms
of regular expression types, but it is quite easy to write queries
that generate non-regular languages. As a consequence, any type
system for XQuery has to rely on a type inference process that
approximates the (possibly non-regular) output type of a query
with a regular type. This approximation process, while mandatory
and unavoidable, may significantly decrease the precision of the
inferred types. This is the case of the W3C proposed type system,
which relies on some over-approximating rules for expressions
widely used in practice (e.g., for-iterations). Another source of
undesired over-approximation is given by rules to type horizontal
and upward XPath axes, for which the type any is always inferred.

It is a common folklore that W3C has sacrificed precision in
favor of better complexity, and that the W3C typing algorithm
runs in polynomial time. An alternative and more precise approach
for typing XQuery has been proposed in [6] and used as a basis
for other proposals [1, 5]. This type system, used in the µXQ+
language, has a more precise type inference, at the price of a
potential exponential explosion of the query output type.

Though the two above mentioned approaches are relatively well
known today by the database and programming language commu-
nities, a formal, rigorous, and complete analysis showing in which
cases the two proposals differ in terms of precision and complex-
ity for type inference, is still missing. Such formal analysis could
have a practical relevance as well, since it would provide important
information to implementation designers.

In this paper we fill this gap by providing a first comparative
analysis. Besides providing a clean and simple formalization of
the main typing mechanisms of both approaches, we will formally
study their complexity, show in which cases the W3C excessively
over-approximates inferred types, identify cases for which infer-
ence precision can be dramatically improved, and propose new type
rules to better handle these cases. We will also show that, contrary
to the common belief, the W3C type system may itself infer types
of exponential size wrt the query and the input size.

Paper Outline The rest of the paper is organized as follows. In
Section 2 we motivate our work by showing some example of
precision loss. In Section 3 we define the type language being
used, while in Sections 4, 5, and 6 we present the core language
miniXQuery, the W3C type system, and the µXQ+ type system.
In Sections 7 and 8, then, we analyze the precision properties
of the two type inference systems being studied, as well as their
computational complexity. In Section 9 we discuss some related
work and Section 10 concludes.



2. Motivation
Our work on the precision and the complexity of XQuery inference
systems originates from the key observation that, while the type
language of XQuery is based on regular expression types, it is
quite easy to write queries that generate non-regular languages.
This introduces approximation phenomena that may harm the result
of static analysis.

Consider, for instance, the following query, where $db has type
a∗ (we use in this section a simple notation inspired by XDuce
[11]):

<b> { for $x in $db return $x}
{ <c> </c> }
{ for $x in $db return $x}

</b>

This query contains two nested queries of the form for $x in
$db return $x, which iterate over a sequence of n a-element and
returns each element read. The outer query returns a b-element with
the following structure: b[an, c, an]. The language generated by
the query is obviously non-regular, and is typed by the XQuery
type system with b[a∗, c, a∗]. As it can be noted, this type loses the
constraint between the first and the second sequence of a-elements.

While this kind of approximation phenomena cannot be avoided,
as they depend on the nature of the type language, there are still
other sources of approximation.

A significant example of approximation in the inference process
is represented by the typing of descendant-or-self operations.
These operations are used to recursively traverse a whole XML tree
and pick all the nodes satisfying a given condition. Consider the
following query, where $db has type b, c, b∗:

for $x in $db::descendant-or-self::node()
return $x

This simple query inspects the input sequence and returns all
the nodes inside the sequence. By applying the inference rules
described in the W3C recommendation, we get the following type:
(b|c)∗. This type is a gross over-approximation of the real output
type, as its semantics contains, for instance, c. In this case, a more
precise output type would be b, c, b∗.

Another significant source of approximation is given by the
typing of for iterations. A for clause iterates over a sequence of
nodes, and binds its variable to each node in the sequence. Consider
the following query:

for $x in (<b> </b> , <c> </c> , <b> </b>)
return $x

This query just iterates over a sequence of three elements and
returns each node in the sequence. By applying the inference rules
described in the W3C specification we derive the following type:
(b | c)+. In this case, the W3C inference rule for iterations over-
approximates the exact output type, i.e., b, c, b, which can be de-
rived by applying the more expensive inference rules of µXQ+.
This approximation is justified by the need to keep time complex-
ity low, hence sacrificing precision in favor of a better complexity.

The previous examples show that type inference may introduce
significant approximations that may impact the development pro-
cess, forcing the developer to alter correct queries, as shown by the
following example.

Example 2.1 Consider the previous queries and assume they are
used to populate a view with the following schema: b+, c, b∗. When
the queries are typechecked against the view schema, the compiler
raises a type error in both cases, as (b | c)∗ and (b | c)+ are not

Types T ::= () empty sequence
| B base type
| l[T ] element type
| T, T sequence type
| T | T union type
| T∗ repetition type
| T+ mandatory

repetition type
| T? optional type
| X type variable

Base Type B ::= String

Figure 1. Type language.

subtypes of b+, c, b∗. However, the queries are perfectly legal and
the error is caused by the over-approximation introduced by the
inference process.

The previous examples, while very simple, are representative of
common practical scenarios, as we will see next (Section 7), and
highlight the following facts:

• low precision in type inference may be problematic;
• precision has a price to pay in terms of complexity.

In the remaining part of the paper we formally analyze features
of the W3C and µXQ+ type systems that are behind the issues
highlighted by previous examples. The analysis is then used to
show that there is still space for improving the precision of current
approaches, while keeping type inference time polynomial.

3. Type Language
The language we want to type describes forests of unranked, node-
labeled trees and is generated by the following grammar:

f ::= () | b | l[f ] | f, f

where () is the empty forest; b identifies atomic values (e.g., strings
and integers); l[f ] represents an element labeled by a label l belong-
ing to a finite set of labels L, and having nodes in f as its children;
the term f, f denotes the ordered concatenation of forests. In the
following t will denote an XML tree, which can be either a base
value b or an element l[f ]

Our type language, shown in Figure 1, is based on XDuce
[11] regular expression types. The language lacks full horizontal
recursion and features the Kleene star ∗ operator. This restriction
is canonical, and makes the type language as expressive as regular
tree languages [9, 15], hence expressive enough to capture the main
type mechanisms of DTD and XML Schema [3, 15, 17, 18].

To support vertical recursion, we use type environments and type
variables. A type environment associates to each type variable a
type definition; the set of variables defined by a type environment
is returned by the function def(E) = {X | X = T ∈ E}. The
type definition associated to a given type variable can be inspected
through the function E(·), where E(X) = T ⇐⇒ X = T ∈ E.

Definition 3.1 (E ⊢Def T ) A type T is well-formed in E if each
variable referenced in T is defined in E.

We restrict ourselves to element-guarded type environments,
which are environments where only element-guarded vertical re-
cursion is allowed (Definition 3.2). For example, we forbid equa-
tions such as X = X | () and X = X,Y , but allow equations
such as X = l[X | ()].



Label-Star-Variable Chains
e ::= ϵ

| l.e
| ∗.e
| X.e

(e.e′).e′′ = e.(e′.e′′)

e.ϵ = ϵ.e = e

E-reachability
l[T ]→E

l T T∗ →E
∗ T

U, T →E
ϵ T U, T →E

ϵ U
U | T →E

ϵ U U | T →E
ϵ T

(X = T ∈ E)⇒ X →E
X T

(T →E
e A ∧ A→E

e′ U)⇒ T →E
e.e′ U

Figure 2. Label-Star-Variable Chains “e” and the E-reachability
relation “T →E

e U”.

To enforce this restriction, we require every definition of a
variable X to be connected to every use of the same variable
by a ‘chain’ of operators, one of which has to be an element
type constructor l[ ], where l is a label in the label set L. This is
formalized by means of the relation T →E

e U defined in Figure
2. For example, if E is X = (m[U ])∗, V , then l[X] →E

l.X.∗.m U
holds, which means that we can reach U from l[X] by crossing l,
expanding X , and crossing ∗ and m (observe that (T, U) | V →E

ϵ

U : we do not track sequencing and union).

Definition 3.2 (Element-guarded Environments) E is element-
guarded if for each X = T ∈E we have E ⊢Def T , and for each
chain e we have:

X →E
e X ⇒ ∃ l ∈ L, e′, e′′ : e = e′.l.e′′

The rules of the type systems being presented in this paper
unfold recursive types until a tree type is met, hence element-
guardedness of environments is essential to guarantee termination
of these rules.

As usual, the semantics of types is defined as the minimal
function that satisfies the following set of monotone equations (the
function is well-defined by the Knaster-Tarski Theorem):

J()KE △
= {()}JBKE △
= {b | b is a base value}Jl[T ]KE △
= {l[f ] | f ∈JT KE}JT1 | T2KE △
= JT1KE ∪ JT2KEJT1, T2KE △
= {f1, f2 | fi∈JTiKE}JXKE △
= JX(E)KEJT?KE △
= JT | ()KEJT+KE △
= JT K+EJT∗KE △
= JT K∗E

Subtyping is defined via type semantics, as shown below.

Definition 3.3 (Semantic subtyping) Given two types T and U , T
is a subtype of U if and only if the semantics of T is contained into
the semantics of U :

T 6 U ⇐⇒ JT KE ⊆ JUKE
4. miniXQuery
The language miniXQuery is a minimal language modeling the
FLWR core of XQuery. It contains for, let, where, and return
clauses, and enables the user to specify both the child and the
descendants-or-self axes. The predicate language is quite simple

Q ::= () | b | l[Q] | Q,Q
| x child :: NodeTest | x dos :: NodeTest
| for x in Q return Q
| for x in Q where P return Q

| let x ::= Q return Q
| let x ::= Q where P return Q

NodeTest ::= l | node() | text()

P ::= true | χ δ χ | empty(χ) | P or P | not P | (P )

χ ::= x | x
δ ::= = | <

Figure 3. The grammar of miniXQuery.

true(ρ)
△
= true

(χ δ χ′)(ρ)
△
= ∃t ∈ trees(ρ(χ)), t′ ∈ trees(ρ(χ′)). t δ t′

(P1 or P2)(ρ)
△
= P1(ρ) OR P2(ρ)

empty((χ))(ρ)
△
= if ρ(χ) = () then true else false

(not P )(ρ)
△
= NOT P (ρ)

Figure 6. Predicate evaluation.

and comprises variable comparisons only. We distinguish between
for-variables, e.g, x, which are bound by for iterations, and let-
variables, e.g., x, that are instead bound by let clauses. The syntax
of miniXQuery is shown in Figure 3.

The semantics of the language and the required auxiliary func-
tions are shown in Figures 4 and 5, where ρ is a substitution assign-
ing a forest to each free variable in the query. We make the assump-
tion that each ρ is well-formed, meaning that it always associates
a tree t to a for-variable x it defines; also, dos is a shortcut for
descendant-or-self. The semantics of for queries is defined via the
operator

∏
t1,...,tn

A(ti), where each ti is an XML tree, yielding
the forest A(t1), . . . , A(tn). In Figure 4 the notation P (ρ) indi-
cates the truth value obtained by evaluating the predicate P under a
variable assignment environment ρ, as indicated in Figure 6. In this
figure trees(f) is the set of all top-level trees of f :

trees(f) = {t | f = f ′, t, f ′′}

All the rest is self explicative.

5. W3C Type System
In this Section we will describe a core version of the W3C XQuery
type system. This type system is implemented in many W3C-
compliant XQuery implementations and plays a key role in the
static analysis of XQuery programs.

5.1 Auxiliary definitions
The W3C inference technique relies on the notion of prime types.
A prime type obeys the following grammar:

P ::= B base type
| l[T ] element type
| P | P union type

A prime type, hence, is a non-empty disjunction of base and
element types.

Given a type T and a type environment E, we can extract a
prime type from T by using the PrimeE(T ) function.



JbKρ △
= bJ()Kρ △
= ()JxKρ △
= ρ(x)JxKρ △
= ρ(x)JQ1, Q2Kρ △
= JQ1Kρ, JQ2KρJl[Q]Kρ △
= l[JQKρ]Jx child :: NodeTestKρ △
= childr(JxKρ) :: NodeTestJx dos :: NodeTestKρ △
= dos(JxKρ) :: NodeTestJlet x ::= Q1 return Q2Kρ △

= JQ2Kρ,x7→JQ1KρJfor x in Q1 return Q2Kρ △
=

∏
t1,...,tn

JQ2Kρ,x7→ti if JQ1Kρ = t1, . . . , tnJfor x in Q1 return Q2Kρ △
= () if JQ1Kρ = ()Jlet x ::= Q1 where P return Q2Kρ △

= if P (ρ, x 7→JQ1Kρ) then JQ2Kρ,x7→JQ1Kρ else ()Jfor x in Q1 where P return Q2Kρ △
=

∏
t1,...,tn

(if P (ρ, x 7→ ti) then JQ2Kρ,x7→ti else ()) if JQ1Kρ = t1, . . . , tnJfor x in Q1 where P return Q2Kρ △
= () if JQ1Kρ = ()

Figure 4. miniXQuery semantics.

childr(b) △
= () childr(l[f ]) △

= f

dos(b) △
= b dos(l[f ]) △

= l[f ], dos(f)
dos(()) △

= () dos(f, f ′)
△
= dos(f), dos(f ′)

() :: l
△
= () b :: l

△
= ()

l[f ] :: l
△
= l[f ] m[f ] :: l

△
= () m ̸= l

(f, f ′) :: l
△
= f :: l, f ′ :: l f :: node()

△
= f

() :: text()
△
= () b :: text()

△
= b

m[f ] :: text()
△
= () (f, f ′) :: text()

△
= f :: text(), f ′ :: text()

Figure 5. Auxiliary functions.

Definition 5.1 PrimeE(T ) is inductively defined as follows:

PrimeE(()) = ()
PrimeE(B) = B
PrimeE(T1, T2) = PrimeE(T1) | PrimeE(T2)
PrimeE(l[T ]) = l[T ]
PrimeE(T1 | T2) = PrimeE(T1) | PrimeE(T2)
PrimeE(T∗) = PrimeE(T )
PrimeE(T+) = PrimeE(T )
PrimeE(T?) = PrimeE(T )
PrimeE(X) = PrimeE(E(X))

Observe that, when no prime type can be extracted, this function
just returns ().

Another important auxiliary function QuantE(T ) returns a
symbol in {1,+, ?, ∗} denoting the cardinality of the type sequence
of the outermost level of T .

Definition 5.2 (QuantE(T )) QuantE(T ) is inductively defined
as follows:

QuantE(()) = ?
QuantE(B) = 1
QuantE(T1, T2) = QuantE(T1), QuantE(T2)
QuantE(l[T ]) = 1
QuantE(T1 | T2) = QuantE(T1) | QuantE(T2)
QuantE(T∗) = QuantE(T ).∗
QuantE(T+) = QuantE(T ).+
QuantE(T?) = QuantE(T ).?
QuantE(X) = QuantE(E(X))

, 1 ? + *
1 + + + +
? + * + *
+ + + + +
* + * + *

| 1 ? + *
1 1 ? + +
? ? ? * *
+ + * + *
* * * * *

. 1 ? + *
1 1 ? + *
? ? ? * *
+ + * + *
* * * * *

Figure 7. Quantifier composition.

Quantifiers can be composed by using three operators: ‘,’, ‘|’,
and ‘.’. Quantifier composition obeys the rules described in Figure
7.

A quantifier and a type can be combined by the . operator as
shown below.

T.1 = T T.? = T?
T.+ = T+ T.∗ = T∗

It will be clear from the context when . is used to combine two
quantifiers together or a type and a quantifier.

It should be observed that T 6 PrimeE(T ).QuantE(T ) for
any type T and any well-formed environment E.



The function content() is the last auxiliary function we present
here; it just extracts the content model of a given element type and
it can be trivially lifted to base and union types, as shown by the
following definition.

Definition 5.3 (content()) The function content() is defined as
follows:

content(())
△
= ()

content(B)
△
= ()

content(l[T ])
△
= T

content(T1 | . . . | Tn)
△
= content(T1) | . . . | content(Tn)

5.2 Judgments and variable environments
The type inference system is able to prove judgments of the form
E; Γ ⊢m Q : T , where Q is a query, Γ is an environment providing
type information about the free variables of Q, and T is an upper
bound for all possible values returned by Q1. In particular, E, Γ,
and Q are intended to be the input arguments of the type inference
process, while T is the output type to be inferred.

Definition 5.4 (Variable environment) A variable environment Γ
is a list of pairs χ : T , where χ is a for-variable or a let-
variable, and T is a type. Variable environments meet the following
grammar:

Variable Environments Γ ::= () | x : T,Γ | x : T,Γ

Definition 5.5 (Variable environment variable set) Given a vari-
able environment Γ, we indicate with ΓV ar(Γ) the set of all vari-
ables defined in Γ: ΓV ar(Γ) = {x | x : T ∈ Γ} ∪ {x | x : T ∈
Γ}.

A variable environment Γ is well-formed if no variable is de-
fined twice, and if every for-variable x (i.e., a variable bound by
a for clause) is associated to a union of tree types (l[T ′] or B).
Moreover, in the following each time we consider a variable envi-
ronment Γ for a query Q, we will assume that Γ provides defini-
tions for all free-variables of Q. WF(E; Γ ⊢m Q : U) means that
the judgement E; Γ ⊢m Q : U is well-formed, that is: in Γ no vari-
able occurs twice, and each free-variable in Q occurs (is defined)
in Γ.

Beyond E; Γ ⊢m Q : T , two auxiliary judgments are employed
in our type rules. These judgments serve the purpose of keeping
rules relatively simple, while allowing for a good level of precision
of type inference.

The judgment E ⊢m S 6 T is used to test whether S is
a subtype of T . The judgment E ⊢m T ′ →NodeTest U is used to
restrict the content type T ′ to tree types with structure satisfying
NodeTest. Rules to prove judgments E ⊢m T ′ →NodeTest U are
shown in Figure 8, and their meaning is stated in the following
lemma.

Lemma 5.6 (Type Filtering Checking) For any T :

E ⊢m T →NodeTest U ⇔ JUKE = {f :: NodeTest | f ∈ JT KE}
5.3 Type rules
The type rules for the W3C type system are shown in Figures 9 and
10. Rules in Figure 9 are shared with the µXQ+ type system, while
the rules in Figure 10 are specific to the W3C type system. For
reasons of space, we describe here only the most important ones.

1 The m subscript in the judgments distinguishes the miniXQuery W3C
type rules from those specific of µXQ+, which are labeled by µ.

(MATCHANYFILT)

E ⊢m T →node() T

(MATCHTEXTFILT)

E ⊢m B →text() B

(MATCHLABFILT)

E ⊢m l[T ]→l l[T ]

(NOMATCHLABFILT)
T = B ∨ T = n[T ′]

E ⊢m T →l ()

(FORESTFILT)
E ⊢m T →NodeTest T

′ E ⊢m U →l U
′

E ⊢m T,U →NodeTest T
′, U ′

(STARFILT)
E ⊢m T →NodeTest U

E ⊢m T∗ →NodeTest U∗
(PLUSFILT)

E ⊢m T →NodeTest U

E ⊢m T+→NodeTest U+

(OPTFILT)
E ⊢m T →NodeTest U

E ⊢m T?→NodeTest U?

(UNIONFILT)
E ⊢m T →NodeTest T

′ E ⊢m U →NodeTest U
′

E ⊢m T | U →NodeTest T
′ | U ′

(VARFILT)
E ⊢m E(X)→NodeTest U

E ⊢m X →NodeTest U

(EMPTYFILT)

E ⊢m ()→NodeTest ()

Figure 8. Filtering rules.

Rule (TYPEFOR) describes the behaviour of the type inference
system when a for-iteration is visited. The output type is computed
as follows. The rule first computes the inferred type for Q1; from
this type a prime type is extracted by the function PrimeE(T1),
which returns the union of the uppermost base or tree types in T1

and it can be computed in linear space and time. PrimeE(T1)
is, then, bound to x in the variable environment and used to infer
the output type T2, which is further refined by the application of a
quantifier in {1, ?,+, ∗} (T2 . QuantE(T1)).

Rule (TYPEDOS) applies to dos selectors and infers a type for
a x dos :: NodeTest filter. The rule essentially traverses the parse
tree of T and, at each step, collects the prime types it encounters.
The premise E ⊢m PrimeE(Tn+1) 6 PrimeE(T1) | . . . |
PrimeE(Tn) is just a formal way to express the termination of the
search in the parse tree and it does not involve any real subtyping
operation. The rule returns a type consisting of the star-guarded
union of the types collected during the exploration.

It should be observed that, while not algorithmic, these rules are
deterministic. Hence, for any well-formed query Q, type environ-
ment E, and variable environment Γ, the system can infer only one
type T such that E; Γ ⊢m Q : T .

6. µXQ+ Type System
The µXQ+ specific type rules are shown in Figures 11 and 12.



(TYPEFOR)
E; Γ ⊢m Q1 : T1

E; Γ, x : PrimeE(T1) ⊢m Q2 : T2

E; Γ ⊢m for x in Q1 return Q2 : T2.QuantE(T1)

(TYPEFORWHERE)
E; Γ ⊢m Q1 : T1

E; Γ, x : PrimeE(T1) ⊢m Q2 : T2

E; Γ ⊢m for x in Q1 where P return Q2 : (T2.QuantE(T1))?

Figure 10. miniXQuery specific type rules.

The µXQ+ type system differs from the W3C one for the
handling of for-iterations and descendant-or-self selectors.
Given a query for x in Q1 return Q2, Rule (XTYPEFOR) first
infers a type T1 for Q1. Unlike the W3C type system, where T1 is
transformed in prime form and then bound to x, in the µXQ+ type
system T1 is decomposed in its basic components, and Q2 is ana-
lyzed separately for each component of T1. This different approach
is illustrated in the following example.

Example 6.1 Consider the following basic query:

for x in l[b],m[b]
return x

Rule (TYPEFOR) first infers a type T1 = l[B],m[B] for
l[b],m[b]. The variable environment is, then, enriched with the
binding between x and PrimeE(T1) = l[B] | m[B]. As Q2 = x,
the output type is just (l[B] | m[B])+, where + is introduced by
QuantE(T1).

In the µXQ+ type system the inference process is different.
Once T1 has been inferred, Rule (TYPEINCONC) is used to infer
a type for Q2; this rule iterates over T1 = l[B],m[B] and returns
T2 = l[B],m[B], without any additional + or ∗ quantifier.

7. Precision Analysis
In this section we will compare the W3C type system and that
of µXQ+ in terms of precision of the inferred types. First, we
will show that the type system of µXQ+ is more precise, as it
always generates a subtype of the type inferred by the W3C one.
Then, we will identify some restrictions that make the two type
systems equivalent in terms of precision. Finally, we will see that,
if some properties are satisfied by the input type, precision can be
dramatically improved.

7.1 Precision
In Example 6.1 we found that, for a very basic query iterating
on a sequence of element types, the type systems being studied
here behave quite differently. In particular, the W3C type system
returned a type of the form (A1 | . . . | An)+, where Ai is an
element type in the input sequence, while the µXQ+ type system
inferred A1, . . . , An. It is straightforward to see that the latter type
is a subtype of the former type.

This situation is not an exception. Indeed, the type inferred by
µXQ+ for a query Q is always a subtype of the type inferred by the
W3C system for the same query, as stated by the following theorem.

Theorem 7.1 For each well formed (Γ, E,Q):

E; Γ ⊢m Q : Tw3c ∧ E; Γ ⊢µ Q : Tµ ⇒ Tµ 6 Tw3c

This result tells us that the µXQ+ type system is a good and safe
choice for improving the precision of inferred types, since its types
are at least as precise as those returned by the W3C system.

Of course, there are several situations where the two type sys-
tems infer exactly the same type. These cases depend on both the
structure of the query and the properties of the input type environ-
ment. In particular, we can identify three properties that must be
satisfied to ensure the equality of the inferred types.

Definition 7.2 (Tagged-path queries) A query Q is tagged-path if
Q only uses XPath steps of the form x child :: NodeTest or
x dos :: NodeTest with NodeTest ̸= node().

A tagged-path query, hence, cannot use the self axis nor it can
exploit the node() node test. For instance, the query of Example
6.1 is not tagged-path, as it uses the self axis.

Definition 7.3 (One-type environments) Let (Γ, E) be well-formed.
Then, (Γ, E) is one-type if, for each χ : T ∈ Γ and for each label
m, there exists a type T ′ such that:

{m[U ] | T →E
e m[U ]} ⊆ {m[T ′]}

In other words, in a one-type environment no type can contain
multiple element types with the same label and different content.
This property is enjoyed by DTDs, and reflects a very common
scenario.

The final restriction is inspired by the notion of conflict-free
types described in [8].

Definition 7.4 (Conflict-free regular expression) A regular ex-
pression r is conflict-free if for each subexpression (s | t) or (s, t):
S(s)∩S(t) = ∅, where S(p) is the set of all symbols appearing in
a regular expression p.

Definition 7.5 (RegExpE(T ))
RegExpE(()) = ()
RegExpE(B) = B

RegExpE(l[T ]) = l
RegExpE(T∗) = RegExpE(T )∗
RegExpE(T+) = RegExpE(T )+

RegExpE(T?) = RegExpE(T )?

RegExpE(X) = RegExpE(E(X))

RegExpE(T1, T2) = RegExpE(T1), RegExpE(T2)

RegExpE(T1 | T2) = RegExpE(T1) | RegExpE(T2)

Definition 7.6 (Conflict-free environment) Let (Γ, E) be well-
formed. Then, (Γ, E) is conflict-free if for each X = U ∈ E we
have that U = l[T ] and RegExpE(T ) is conflict-free.

We can now state a theorem that sheds light on a case of equality
of type inference.



(TYPEEMPTY)
WF(E; Γ ⊢m () : ())

E; Γ ⊢m () : ()

(TYPEATOMIC)
WF(E; Γ ⊢m b : B)

E; Γ ⊢m b : B

(TYPEVARLET)
x : T ∈ Γ WF(E; Γ ⊢m x : T )

E; Γ ⊢m x : T

(TYPEVARFOR)
x : T ∈ Γ WF(E; Γ ⊢m x : T )

E; Γ ⊢m x : T

(TYPEELEM)
E; Γ ⊢m Q : T

E; Γ ⊢m l[Q] : l[T ]

(TYPEFOREST)
E; Γ ⊢m Q1 : T1 E; Γ ⊢m Q2 : T2

E; Γ ⊢m Q1, Q2 : T1, T2

(TYPELET)
E; Γ ⊢m Q1 : T1

E; Γ, x : T1 ⊢m Q2 : U

E; Γ ⊢m let x := Q1 return Q2 : U

(TYPELETWHERE)
E; Γ ⊢m Q1 : T1

E; Γ, x : T1 ⊢m Q2 : U

E; Γ ⊢m let x ::= Q1 where P return Q2 : U?

(TYPECHILDNODETEST)
WF(E; Γ ⊢m x child :: NodeTest : U)
x : T ∈ Γ
(T = T ′

1 | . . . | T ′
n) ∧ (T ′

i = mi[T
′′
i ] ∨ T ′

i = B ∨ T ′
i = ())

E ⊢m content(T )→NodeTest U

E; Γ ⊢m x child :: NodeTest : U
(TYPEDOS)

WF(E; Γ ⊢m x dos :: NodeTest : U)
x : T ∈ Γ
(T = T ′

1 | . . . | T ′
n) ∧ (T ′

i = mi[T
′′
i ] ∨ T ′

i = B ∨ T ′
i = ())

E; Γ ⊢m x child : T1

E; Γ, x : PrimeE(T1) ⊢m x child : T2

E; Γ, x : PrimeE(T2) ⊢m x child : T3

...
E; Γ, x : PrimeE(Tn) ⊢m x child : Tn+1

E ⊢m PrimeE(Tn+1) 6 PrimeE(T1) | . . . | PrimeE(Tn)
U ′ = (PrimeE(T ) | PrimeE(T1) | . . . | PrimeE(Tn))∗
E ⊢m U ′ →NodeTest U

E; Γ ⊢m x dos :: NodeTest : U

Figure 9. Common type rules.

(TYPEINEMPTY)
WF(E; Γ ⊢µ x in ( ) → Q : ( ))

E; Γ ⊢µ x in ( ) → Q : ( )

(TYPEINATOMIC)
E; Γ, x : B ⊢µ Q : U

E; Γ ⊢µ x in B → Q : U

(TYPEINEL)
E; Γ, x : m[T ] ⊢µ Q : U

E; Γ ⊢µ x inm[T ] → Q : U

(TYPEINCONC)
E; Γ ⊢µ x in T1 → Q : T ′

1

E; Γ ⊢µ x in T2 → Q : T ′
2

E; Γ ⊢µ x in T1, T2 → Q : T ′
1, T

′
2

(TYPEINSTAR)
E; Γ ⊢µ x in T → Q : U

E; Γ ⊢µ x in T∗ → Q : U∗

(TYPEINPLUS)
E; Γ ⊢µ x in T → Q : U

E; Γ ⊢µ x in T+ → Q : U+

(TYPEINOPT)
E; Γ ⊢µ x in T → Q : U

E; Γ ⊢µ x in T? → Q : U?

(TYPEINVAR)
E(X) = T E; Γ ⊢µ x in T → Q : U

E; Γ ⊢µ x inX → Q : U

(TYPEINUNION)
E; Γ ⊢µ x in T1 → Q : T ′

1

E; Γ ⊢µ x in T2 → Q : T ′
2

E; Γ ⊢µ x in T1 | T2 → Q : T ′
1 | T ′

2

Figure 11. Case analysis type rules.

(XTYPEFOR)
E; Γ ⊢µ Q1 : T1 E; Γ ⊢µ x in T1 → Q2 : T2

E; Γ ⊢µ for x in Q1 return Q2 : T2

(XTYPEFORWHERE)
E; Γ ⊢µ Q1 : T1 E; Γ ⊢µ x in T1 → Q2 : T2

E; Γ ⊢µ for x in Q1 where P return Q2 : (T2)?

Figure 12. µXQ+ specific type rules.



Theorem 7.7 (Equality) If (Γ, E) is one-type and conflict-free,
and Q is tagged-path, then E; Γ ⊢m Q : T and E; Γ ⊢µ Q : T ′,
where JT KE = JT ′KE .

It is interesting to observe that all these conditions are necessary
to guarantee the equality of the inferred types.

Example 7.8 Consider the following query, where db has type
T = m[B] | m[l[B], n[B], l[B]].

for x in db child :: l
return x

This query is tagged-path; however, the environments are not
one-type and conflict-free. Rule (TYPECHILDNODETEST) com-
putes content(T ) = B | (l[B], n[B], l[B]). content(T ) is then
filtered by using the rules of Figure 8, and T1 = () | l[B], l[B] =
(l[B], l[B])? is returned as type for the navigational step.

Rule (TYPEFOR) binds PrimeE(T1) = l[B] to x and returns
Tw3c = (l[B]?+) = l[B]∗ as result type.

Rule (XTYPEFOR), instead, navigates over (l[B], l[B])? and
returns Tµ = (l[B], l[B])? as result type.

As expected, JTw3cKE ̸= JTµKE .

Example 7.9 Consider the query of the previous example and as-
sume that db has type T = m[l[B], n[B], l[B]].

In this case, the type environments are one-type, but they fail to
meet the conflict-freedom restriction.

Rule (TYPECHILDNODETEST) computes content(T ) = l[B],
n[B], l[B]. content(T ) is then filtered by using the rules of Figure
8, and T1 = l[B], l[B] is returned as type for the navigational step.

Rule (TYPEFOR) binds PrimeE(T1) = l[B] to x and returns
Tw3c = l[B]+ as result type.

Rule (XTYPEFOR), instead, navigates over l[B], l[B] and re-
turns Tµ = l[B], l[B] as result type.

As expected, the inferred types have different semantics.

Example 7.10 Consider now the query of the examples above,
where db has type T = m[l[B], n[B]]. Unlike the previous ex-
amples, T is conflict-free, so we expect that the two type systems
return the same type.

In this case, Rule (TYPECHILDNODETEST) returns T1 = l[B].
Hence, Rule (TYPEFOR) returns Tw3c = l[B] as result type, since
QuantE(T1) = 1.

Rule (XTYPEFOR), instead, navigates over l[B] and returns
Tµ = l[B] as result type, as we expected.

As shown in the following example, situations similar to those
described in the previous examples are common in real-world sce-
narios.

Example 7.11 Consider the following query on the well known
XMark DTD [16], returning a region element for each region,
containing the name and the number of items of the region; we
assume that x is bound to the root element of an XMark instance;
we use the XQuery function name() returning the tag name of
an XML element, and the XQuery counting function count(); we
assume both functions returning values of type B.

for y in x child :: regions
return for z in y child :: node()

return region[
name[name(z)]
total[count(z child :: item)]]

In the XMark DTD, the content type of regions is the sequence
type (africa, asia, australia, europe, namerica, samerica).
As a consequence, the W3C type system infers the following type:
(region[name[B], total[B]])+.

However, the exact type for for this query is region[C],
region[C], region[C], region[C], region[C], region[C], with
C = name[B], total[B]. Actually this type is inferred by the
µXQ+ type system, thanks to the type case analysis performed on
for-iterations.

In the light of the analysis made up to now, and inspired by
Theorem 7.7, we can design a new type system which mixes up
advantages of the two systems being compared here. We write
E; Γ ⊢H Q : T to indicate that the type T has been inferred
from Q, Γ and E in the hybrid system. The rules of the hybrid
systems are essentially those of the µXQ+ type system, with the
only difference that for-iterations are typed by the following rules
(for-where queries are typed in a similar way).

(TYPEFORHYBRID1)
Q1 is tagged-path ∧ Q2 is tagged-path
(E,Γ) is one-type and conflict-free
E; Γ ⊢H Q1 : T1

E; Γ, x : PrimeE(T1) ⊢H Q2 : T2

E; Γ ⊢H for x in Q1 return Q2 : T2.QuantE(T1)

(TYPEFORHYBRID2)
Q1 is not tagged-path ∨ Q2 is not tagged-path ∨
(E,Γ) is not one-type and conflict-free
E; Γ ⊢H Q1 : T1

E; Γ ⊢H x in T1 → Q2 : T2

E; Γ ⊢H for x in Q1 return Q2 : T2

The resulting hybrid system has the same precision of the µXQ+
type system, but lower time consumption since the costly µXQ+
case analysis is invoked only if strictly necessary

Theorem 7.12 (Precision of the Hybrid system) For each well
formed (Γ, E,Q), if E; Γ ⊢µ Q : Tµ and E; Γ ⊢H Q : TH

then JTµKE = JTHKE .

7.2 Extensions
We found in the previous section that, under some specific circum-
stances, the two type systems return the same type for a given query.

In this section we will see that some restrictions on the type en-
vironment allow for an improvement of inference precision without
any significant performance penalty.

7.2.1 Non-recursive Types
When the input type contains no recursive type, we can signifi-
cantly improve the precision of the inferred type for descendant
-or-self steps without affecting the computational complexity.

Indeed, given a non-recursive type T , we can define type infer-
ence for the descendant-or-self axis through the following rule:

(TYPEDOSNOREC)
x : T ∈ Γ ∧ (T = l1[T

′
1] | l2[T ′

2] | . . . | ln[T ′
n] ∨ T = B)

E ⊢m dosE(Γ(x))→NodeTest U

E; Γ ⊢m x dos :: NodeTest : U

where the auxiliary function dosE() mimic dos semantics, and is
defined as follows.



Definition 7.13
dosE(()) = ()
dosE(B) = B

dosE(l[T ]) = l[T ], dosE(T )
dosE(T?) = dosE(T )?
dosE(T∗) = dosE(T )∗
dosE(T+) = dosE(T )+
dosE(T,U) = dosE(T ), dosE(U)
dosE(T | U) = dosE(T ) | dosE(U)

dosE(X) = dosE(E(X))

Example 7.14 Consider the following query, where db has type
a[b[], c[()]+]:

for x in db dos :: b
return $x

By applying Rule (TYPEDOS), the system infers the type b[()]∗
for the navigational step; by Rule (TYPEFOR), hence, the result
type is just b[()]∗.

Instead, if we apply the dosE() function to the type of db, we
have that dosE(a[b[()], c[()]+]) =

a[b[()], c[()]+], dosE(b[()], c[()]+)

= a[b[()], c[()]+], dosE(b[()]), dosE(c[()]+)

= a[b[()], c[()]+], b[()], (), (c[()], ())+

Then, by using Rule (TYPEDOSNOREC), the navigational step
db dos :: b is typed with b[()] and the result type is b[()].1 = b[()],
which is a much more precise type.

The following theorem states the correctness of this approach.

Theorem 7.15 For any non-recursive type T defined in E:

dosE(T ) = U ⇒ ∀f ∈ JT KE . dos(f) ∈ JUKE
Proof. Trivial.

It is quite easy to see that Rule (TYPEDOSNOREC) always
infers a subtype of that inferred by Rule (TYPEDOS).

As it can be noted from Example 7.14, dosE() satisfies the
following property.

Property 7.16 If dosE(T ) = U and U contains a ∗ type at its top
level, then there exists f ∈ JT KE such that dos(f) = (), and for
each natural k there exists f ∈ JT KE such that |dos(f)| > k.

This property is crucial, as it states that dosE() does not intro-
duce unnecessary ∗ type operators. Hence, unlike the general rule
of the W3C system, this rule does not introduce unnecessary ap-
proximations.

It is easy to see that the following theorem holds.

Theorem 7.17 dosE(T ) can be evaluated in time O((|T ||E|)2).

8. Complexity Analysis
In this section we will analyze the complexity of the XQuery type
inference in both the W3C and the µXQ+ type systems. We will
prove two main results here. First, we will show that the W3C type
inference algorithm may return exponentially larger output types
when let clauses are nested in a particular way, and that it resorts
to polynomial time complexity when no let clauses are present.
Then, we will see that µXQ+ type inference system is subject
to combinatorial explosion even in presence of for clauses only,
hence leading to a worst case exponential time complexity.

8.1 Assumptions
To analyze the complexity of the type inference algorithms, we
need a few assumptions about the complexity model and the basic
data structures being used.

To study the complexity of our algorithms we base our analysis
on the RAM (Random Access Machine) model. As usual, we as-
sume that read/write operations on the RAM memory and on the
input/output device are performed in unit time, as well as compar-
isons and arithmetic operations. Under these hypotheses, the type
inference algorithms can be simulated by RAM programs with the
same asymptotic complexity.

We assume here to represent E and Γ through arrays. As E is
not altered by the inference process, it can be created and initialized
at schema creation time, without any significant impact on the
complexity of type inference. Γ, instead, is a dynamic structure
that can be created and initialized at query parsing time with a
O(|ΓV ar(Γ)|) extra cost.

We restrict our analysis to non-recursive queries, where one
cannot navigate or output the result of a nested query, e.g., we
exclude queries like

for x in db child :: a return

for y in { for z in db dos :: c
where x = z
return w[z] } return

for u in y child :: d return h[u]

This restriction is met by many queries used in practice and is
also enforced in data integration systems using XQuery as language
for expressing queries and transformations (see [10]).

8.2 Preliminary definitions
In the following we will use the terms query size and type size to
denote the size of the corresponding abstract syntax tree, as shown
in the following definitions.

Definition 8.1 (Query size) Given a query Q, |Q| is inductively
defined as follows:

|Q| = 1 |b| = 1
l[Q] = 1 + |Q| |Q1, Q2| = |Q1|+ |Q2|
|x child :: NodeTest| = 3 |x dos :: NodeTest| = 3

|for x in Q1 return Q2| = 2 + |Q1|+ |Q2|
|let x ::= Q1 return Q2| = 2 + |Q1|+ |Q2|
|for x in Q1 where P return Q2| = 2 + |Q1|+ |Q2|+ |P |
|let x ::= Q1 where P return Q2| = 2 + |Q1|+ |Q2|+ |P |
|true| = 1 |false| = 1
|P1 or P2| = 1 + |P1|+ |P2| |not P | = 1 + |P |
|(P )| = |P | |empty(χ)| = 1 + |χ|
|χ1 δ χ2| = |χ1|+ |χ2|+ 1 |χ| = 1

Definition 8.2 (Type size) Given a type T , |T | is inductively de-
fined as follows:

|()| = 1 |B| = 1
|l[T ]| = 1 + |T | |T1, T2| = 1 + |T1|+ |T2|
|T1 | T2| = 1 + |T1|+ |T2| |T?| = 1 + |T |
|T + | = 1 + |T | |T ∗ | = 1 + |T |
|X| = 1

Definition 8.3 (Type environment size) Given a type environment
E = X1 = T1; . . . ;Xn = Tn, |E| = Σn

i=1|Ti| if E ̸= ∅, and
|E| = 1 if E = ∅.

Definition 8.4 (Variable environment size) Given a variable en-
vironment Γ = x1 : T1, . . . , xn : Tn, |Γ| = Σn

i=1|Ti| if Γ ̸= ∅,
and |Γ| = 1 if Γ = ∅.



We will also use the notion of independent variables, which is
defined as follows.

Definition 8.5 Given a query Q, V ar(Q) is the set of all variables
occurring in Q.

Definition 8.6 Given a query Q and a for-variable x ∈ V ar(Q):

depQ(x) = {y | for x in y child :: NodeTest is in Q} ∪
{y | for x in y dos :: NodeTest is in Q} ∪
{χ | for x in χ is in Q}

Definition 8.7 Given a query Q and a let-variable x ∈ V ar(Q):

depQ(x) = {y | let x ::= y child :: NodeTest is in Q} ∪
{y | let x ::= y dos :: NodeTest is in Q} ∪
{χ | let x ::= χ is in Q}

Definition 8.8 Given a query Q and a variable χ ∈ V ar(Q),
dep∗Q(χ) = {χ′ | χ′ ∈ depQ(χ) ∨ ∃χ′′ ∈ depQ(χ).χ

′ ∈
dep∗Q(χ

′′)}.

Definition 8.9 We say that two variables χ1, χ2 are independent
wrt a query Q if and only dep∗Q(χ1) ∩ dep∗Q(χ2) = ∅.

Definition 8.10 Given a query Q, {χ1, . . . , χn} ⊆ V ar(Q) is a
set of independent variables in Q if ∀i, j = 1, . . . , n.dep∗Q(χi) ∩
dep∗Q(χj) = ∅.

8.3 Complexity of auxiliary functions
A preliminary step in the analysis of the complexity of the W3C
type inference system is the analysis of the space and time com-
plexity of auxiliary functions.

Space complexity The following lemmas show the space com-
plexity of the auxiliary functions used in the W3C type system.
Due to the presence of type variables to be unfolded, PrimeE(T )
and type filtering may return types bigger than the input type. As
the proofs are trivial, we omit them.

Lemma 8.11 |PrimeE(T )| ∈ O(|T ||E|).

Lemma 8.12 |QuantT (E)| ∈ O(1).

Lemma 8.13 |content(T )| ∈ O(|T |).

Lemma 8.14 If E ⊢m T →l U , then |U | ∈ O(|E||T |).

Time Complexity Once we identified the space complexity of the
auxiliary functions, we can analyze their time complexity. In the
following, we will use C(f) to denote the cost of evaluating a given
function f according to the RAM complexity model. We omit the
proofs of the lemmas, as they are trivial.

Lemma 8.15 C(content(T )) ∈ O(|T |).

Lemma 8.16 C(E ⊢m T →l U) ∈ O(|E||T |).

Lemma 8.17 C(PrimeE(T )) ∈ O(|E||T |)

Lemma 8.18 C(QuantE(T )) ∈ O(|E||T |)

8.4 Complexity of W3C type rules
To understand the complexity of the W3C type inference system,
we must first analyze a few properties of the navigational operators.

Lemma 8.19 (Complexity of Rule (TYPECHILDNODETEST))
C(E; Γ ⊢m x child :: NodeTest : U) ∈ O(|Γ(x)||E|).

Proof. All operators inside Rule (TYPECHILDNODETEST) have
O(1) complexity, except for E ⊢m content(T )→NodeTest U . This
operation requires the system to compute content(T ) and to filter
its result according to NodeTest. By Lemma 8.15, content(T )
(where T = Γ(x)) can be computed in time O(|Γ(x)|). By Lemma
8.16, hence, Rule (TYPECHILDNODETEST) can be evaluated in
O(|Γ(x)||E|) time.

The following describes the size of the type inferred by Rule
(TYPEDOS).

Lemma 8.20 If E; Γ ⊢m x dos :: NodeTest : U , then |U | ∈
O((|E||Γ(x)|)2).

Proof. As NodeTest = node() is the least selective node test, we
analyze the size of the U when NodeTest = node().

By the element-guardedness of type environment, we know that
each type variable is unfolded only once; as a consequence, the
typing rule must explore a parse tree of size O(|E||Γ(x)|), the
worst case happening when Γ(x) = l1[X1] | . . . | ln[Xn].

Each subtree in the parse tree is added to the result, hence
|U | ∈ O((|E||Γ(x)|)2).

As stated by Lemma 8.20, the typing of descendant-or-self
may quadratically increase the size of the inferred type. This
quadratic increase, however, does not lead to a combinatorial ex-
plosion, as stated by the following lemma.

Lemma 8.21 If E; Γ ⊢m x dos :: NodeTest : U and Γ(x) =
C′[C[T ] | T ], where C[·] and C′[·] are type contexts, then E; Γ, x :
C′[C[T ]] ⊢m x dos :: NodeTest : U .

Proof. Trivial.

The previous lemma states that repeated subtrees give no contri-
bution to the output type of a descendant-or-self selector. By
exploiting this lemma, we can prove the following result.

Lemma 8.22 Let Q be a non-recursive query, let χ0, . . . , χn the
variables bound by Q. If S = {χi0 , . . . , χik} is the set of all the
independent variables in Q, then, for each variable χi, |Γ(χi)| ∈
O((Υ)2), where Υ = max{Γ(χi0), . . . , Γ(χik)}.

This lemma shows that, while a descendant-or-self oper-
ation can quadratically increase the size of the inferred type of a
variable, no exponential explosion is possible.

This result leads to the following corollary.

Corollary 8.23 Let E; Γ ⊢m Q : T . Let Γ′ the variable envi-
ronment obtained from Γ by inferring a type for each variable
χi ∈ V ar(Q) such that (χi : Ti) ̸∈ Γ.Then, |Γ′| 6 Υ2n, where
n = |V ar(Q)|.

This corollary states that, during the type inference process for
Q, the size of the variable environment cannot exceed nΥ2.

Given these results, we can now prove one of the main results
of this section.

Lemma 8.24 (Complexity of Rule (TYPEDOS))
C(E; Γ ⊢m x dos :: NodeTest : U) ∈ O((|Γ(x)||E|)3).

Proof. To prove the thesis it is necessary to rewrite Rule (TYPEDOS)
in a more algorithmic fashion, as shown below.

x : T ∈ Γ ∧ (T = m1[T
′
1] | m2[T

′
2] | . . . | mn[T

′
n] ∨ T = B)

U ′ = BFSPrime(x,Γ, E)
E ⊢m U ′ →NodeTest U

E; Γ ⊢m x dos :: NodeTest : U



BFSPRIME(x,Γ, E)
1 Queue Q← ∅
2 boolean[] expV ar
3 Type result← PrimeE(Γ(x))
4 Q← PrimeE(Γ(x))
5 while Q not empty
6 do Type Z = S.pop()
7 E; Γ, x : Z ⊢m x child :: node() : Z′

8 if Z′ ̸= ()
9 then if Z′ is not a type variable

10 then ADDPRIME(Z′, Q)
11 else if not expV ar[Z′]
12 then expV ar[Z′] = true
13 Q.push(PrimeE(Z

′))
14 result = result | PrimeE(Z

′)
15 return result∗

ADDPRIME(T,Q)
1 if not (genTypes contains T )
2 then Q.push(PrimeE(T ))
3 result = result | PrimeE(T )

Figure 13. DFSPrime procedure.

where BFSPRIME is defined as shown in Figure 8.4.
The BFSPRIME procedure uses several auxiliary data struc-

tures. expV ar is a boolean array that specifies whether a given
type variable has been previously unfolded, and can be initialized
in O(|Def(E)|) time. Q is a queue holding type terms to be vis-
ited.

ADDPRIME is an auxiliary procedure that pushes its argument
into Q and adds it to the result only if its argument has never seen
before (through the genType map).

The algorithm is essentially a variation of the standard breadth
first tree search. The number of iterations of the while loop is
bounded by |E||Γ(x)|, as no type variable is unfolded twice and
no type term is visited more than once.

During each iteration, Rule (TYPECHILDNODETEST) is in-
voked; as proved in Lemma 8.19, this rule can be evaluated in time
O(|Γ(x)||E|). Procedure ADDPRIME can be computed in time
O((|E||Γ(x))2). As a consequence, Rule (TYPEDOS) can be eval-
uated in time O((|E||Γ(x)|)3).

We can now state the main result of this section.

Theorem 8.25 (Complexity of type inference) If Q has no let
clauses, then C(E; Γ ⊢m Q : U) ∈ O(|Q|(|E|A)3), where
A = max(|Q|, |E|).

This theorem cannot be applied to queries with let clauses.
Indeed, consider the following query:

let y1 := x, x return
let y2 := y1, y1 return

. . .
let yn := yn−1, yn−1

return yn

If x has type a[B], then yn will have type (a[B], a[B])n, which
is exponential in the size of the query.

While this is a very uncommon situation, it shows that the W3C
type inference system may degrade to an exponential complexity.

8.5 Complexity of µXQ+ Type Inference
In the previous section we discovered that, according to the W3C
type rules, type inference can be performed in polynomial time and
space when the query being analyzed has no let clauses, and that
type inference may be subject to combinatorial explosion when let
clauses are nested.

The µXQ+ type system differs from the W3C one for the treat-
ment of for clauses. In µXQ+, indeed, the inference algorithm it-
erates over the top level element types of the for-variable, and, for
each element type, infers a distinct type for Q2. As shown in Sec-
tion 7, this iterative inference approach leads to a great precision
improvement over the W3C type system.

In this section we will analyze the complexity of the µXQ+ type
inference. To understand the complexity issues that may arise when
the µXQ+ type inference approach is used, it is worth to analyze the
behaviour of the type system through an example.

Example 8.26 Consider the following query:

for x1 in l1[b], l2[b], l3[b]
return for x2 in l1[b], l2[b], l3[b]

return x1, x2

The type inference algorithm first analyzes the outer for
clause and infers a type for l1[b], l2[b], l3[b]. This type (T1 =
l1[B], l2[B], l3[B]) is not bound to x nor it is transformed in prime
form. Instead, the algorithm invokes Rule (TYPEINCONC), which
analyzes the inner query for three times: one for l1[B], one for
l2[B], and one for l3[B].

The inner query is, then, analyzed exactly in same way, hence
the expression x1, x2 is evaluated nine times.

The inferred output type, hence, is the following:

l1[B], l1[B], l1[B], l2[B], l1[B], l3[B],
l2[B], l1[B], l2[B], l2[B], l2[B], l3[B],
l3[B], l1[B], l3[B], l2[B], l3[B], l3[B]

As it can be easily seen, this type has size in O(|T1|k), where k = 2
is the number of nested for clauses.

This example shows that the size of the inferred type is a poly-
nomial whose exponent is the number of for clauses in the query.
In the worst case scenario k ∈ O(|Q|), which implies that the out-
put type may have exponential size in the size of the query. This
implies that case analysis may require an exponential space to pre-
cisely type a query.

Summarizing, the type inference algorithm of µXQ+ is subject
to exponential explosion phenomena when the query being ana-
lyzed contains nested for and let clauses.

9. Related Works
The problem of type inference for XQuery has been studied in
several recent works.

In [7], where a variant of the µXQ+ type system has been first
proposed, authors deals with the problem of detecting errors wrt
the source type.

In [5], Cheney proposes a new type system able to deal with
XML updates, while in [4] he describes a new type system mixing
a subsumption mechanism and type rules for updates. In both these
papers, Cheney adopts the µXQ+ case analysis technique for typing
queries, but in none of them he compares this approach with that
of the W3C system in term of precision and complexity.

In [14], Dan Suciu et al. focus on the problem of verifying
whether the output of an XML query conforms to a given type
(the so-called XML type-checking problem). Suciu et al. show that
no precise type can be inferred by using regular type languages,



and base their approach on inverse type inference (i.e., the problem
of finding, given a query Q and output type T , an input type
generating T ), which can be performed in a sound and complete
way by relying on k-pebble automata. This solution, however,
has non-elementary complexity, which strongly affects its practical
applicability. Similar approaches have been described in [12, 13].

10. Conclusions
In this paper we analyzed the problem of inferring an output type
for an XQuery query. By comparing two type systems we identi-
fied the main sources of precision loss, namely the generation on
non-regular languages, for-iterations, and descendant-or-self
navigational steps.

We compared these two type systems not only in terms of preci-
sion, but also in terms of complexity, finding that type inference can
be performed in polynomial time in the W3C system if the query
being analyzed has no let clauses, while the µXQ+ system may
require exponential space.

We also showed that the precision of the W3C can be improved
when particular conditions are met, without increasing the compu-
tational complexity.

As a future work, we want to further investigate the relation
between precision and complexity: in particular, we want to un-
derstand how tagged-path, one-type, conflict-freedom restrictions
impact on the complexity of the inference algorithms.

Finally, we want to investigate the use numerical occurrence
indicators to make the inferred types more succinct.
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[17] J. Siméon and P. Wadler. The essence of XML. In POPL, pages 1–13,
2003.

[18] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML
Schema Part 1: Structures Second Edition. Technical report, World
Wide Web Consortium, Oct 2004. W3C Recommendation.


