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Abstract. A retrieval algorithm that uses a statistical strat-
egy based on dimension reduction is proposed. The method-
ology and details of the implementation of the new algorithm
are presented and discussed. The algorithm has been applied
to high resolution spectra measured by the Infrared Atmo-
spheric Sounding Interferometer instrument to retrieve atmo-
spheric profiles of temperature, water vapour and ozone. The
performance of the inversion strategy has been assessed by
comparing the retrieved profiles to the ones obtained by co-
locating in space and time profiles from the European Centre
for Medium-Range Weather Forecasts analysis.

1 Introduction

The development of satellite high-spectral resolution infrared
spectrometers is expected to improve quality and density
of retrieval of atmospheric parameters. Both Numerical
Weather Prediction and Earth’s monitoring are expected to
benefit from these new modern sensors.

The pioneer of this new generation of instruments has
been the Interferometric Monitor for Greenhouse (IMG)
gases sensor (Kobayashi et al., 1999), that flew on the AD-
vanced Earth Observing Satellite (ADEOS) platform from
August 1996 to June 1997. At present, high-resolution in-
frared sensors on operational meteorological polar orbiters
include the Atmospheric Infrared Sounder (AIRS) on the sec-
ond Earth Observing System (EOS) polar orbiting platform,
EOS-Aqua, launched in April 2002 (Aumann and Pagano,
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1994), and the Tropospheric Emission Spectrometer (TES)
on the AURA satellite launched in 2004 (Beer et al., 2001).
In March 2002, the European Space Agency launched En-
visat, an advanced polar-orbiting Earth observation satel-
lite which provides measurements of the atmosphere, ocean,
land, and ice. It is equipped with the Michelson Interfer-
ometer for Passive Atmospheric Sounding (MIPAS), that is a
Fourier transform spectrometer for the measurement of high-
resolution gaseous emission spectra at the Earth’s limb and
operates in the near to mid infrared (Fischer et al, 1996,
2000).

The new arrived in the family of high resolution infrared
sensors is the Infrared Atmospheric Sounding Interferometer
(IASI) (EUMETSAT, 1998) on the first European Meteoro-
logical Operational Satellite (METOP/1) launched in 19 Oc-
tober 2006. IASI is a Fourier Transform Spectrometer based
on a Michelson Interferometer coupled to an integrated imag-
ing system that observes and measures infrared radiation
emitted from the Earth in the spectral range 3.62–15.5 µm
(645–2760 cm−1), covering the peak of the thermal infrared
and particularly the intense CO2 band around 666 cm−1, with
an apodized resolution of 0.5 cm−1 and a spectral sampling
of 0.25 cm−1. IASI characteristics have been specified to get
observations, which are compatible in terms of sampling, res-
olution, accuracy and overall performances with the mission
objectives of providing improved information on tempera-
ture, water vapour, ozone, cloud top pressure and tempera-
ture, cloud cover and cloud optical properties.

The large amount of observed data needs algorithms for
the radiative transfer equation and its inversion specifically
designed for IASI. In this paper we describe a statistical
regression methodology for temperature, water vapour and
ozone, (T , q, o), which exploits IASI observations. The
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methodology is based on a suitable statistical dimension re-
duction technique, FSIR (Functional Sliced Inverse Regres-
sions. FSIR (Amato et al., 2006) generalizes the well known
Principal Component Analysis (PCA) (Jolliffe, 2002, e.g.) or
Empirical Orthogonal Function (EOF) approach (see the re-
cent review on EOF regression methods bySerio et al., 2009)
and allows one to deal with functional models. Functional
data analysis is about the analysis of information on curves
or functions, and the radiance spectrum is a curve evaluated
at fixed points that depend on the design of the interferome-
ter.

FSIR needs to be trained on a suitable set of pairs:
radiances, profiles. We have selected the profiles from
the well known ECMWF (European Centre for Medium-
range Weather Forecasts) Chevallier data base (Cheval-
lier, 2001). The Chevallier data base documentation
can be downloaded from the EUropean Organisation for
the Exploitation of METeorological SATellites (EUMET-
SAT) Satellite Application Facilities (SAF) Scientific Report
web page: http://www.eumetsat.int/groups/pps/documents/
document/002197.pdf; also proper documentation and the
data-base as well can be obtained directly by F. Chevallier at
f.chevallier@ecmwf.int. IASI synthetic radiances have been
computed using the radiative transfer codeσ -IASI (Amato et
al., 2002).

The codeσ -IASI has been extensively validated with the
use of the NAST-I instrument (Cousins and Gazarick, 1999,
e.g.). NAST-I is the National Polar-orbiting Operational En-
vironmental Satellite System (NPOESS) Airborne Sounder
Testbed Fourier Transform spectrometer, flying onboard the
NASA aircrafts, ER-2 and Proteus. An extensive retrieval
exercise withσ -IASI has been performed for the CAMEX/3
experiment (Convection and Moisture Experiment 3) (Caris-
simo et al., 2005, 2006, e.g.). More recently,σ -IASI has
also been used within the EAQUATE campaign (European
AQUA Thermodynamic Experiment), for analysis of NAST-
I spectra (Proteus Flight) recoded over the Mediterranean Sea
(Taylor et al., 2008; Grieco et al., 2007). The forward module
σ -IASI has been also validated with the use of AIRS (Atmo-
spheric Infrared Radiometer Sounder) data, flying onboard
the Aqua satellite (Saunders et al., 2007).

The application of FSIR to IASI data has been exempli-
fied through a series of IASI soundings recorded over the
tropical basin. These observations have been FSIR-regressed
for (T , q, o). To simplify the comparison of retrieval prod-
ucts withtruth data, only clear-sky, sea-surface IASI sound-
ings have been analyzed in this work. Truth data have been
derived from the ECMWF analysis for the same date and
location as the IASI soundings. The difference (retrieval-
ECMWF) for temperature, water vapour and ozone has been
evaluated, which has allowed us to assess the retrieval perfor-
mance of FSIR. The paper also provides a comparison with a
conventional EOF or PCA regression scheme (see alsoSerio
et al., 2009).

The paper is organized as follows. Section2 will deal with
the mathematical aspects of FSIR. Application of FSIR to
IASI data will be described and discussed in Sect.4. Finally
conclusions will be drawn in Sect.5.

2 The regression model

Functional Sliced Inverse Regression (FSIR) (Amato et al.,
2006) is a statistical tool to reduce the dimensionality based
on the Sliced Inverse Regression (SIR) (Li , 1991), that per-
mits to deal with functional models. It generalizes the Prin-
cipal Component Analysis (PCA) using inverse regression.

In functional regression problems, one predicts a response
variableY from a set of variablesR1, . . . , Rd that are dis-
cretizations of a same curveR at pointsν1, . . . , νd , that is
Rj =R(νj ), j =1, . . . , d, where the discretization pointsνj

lie in some interval. In our caseY is the geophysical variable
to be retrieved (surface temperature, temperature or gas con-
centration in a fixed layer) andR1, . . . , Rd are the measure-
ments, i.e., the radiances at wavenumbersν1, . . . , νd . Let us
consider the model

Y = m (〈β1, R〉, . . . , 〈βK , R〉)+ ε , (1)

wherem is a smooth link function of theK-dimensional Eu-
clidean space,EK , into the one-dimensional space or real
axisE1, that indicates what kind of relation exists between
the geophysical variable to retrieve and the radiance and is
assumed to be linear;ε is noise assumed independent of the
curveR(ν); {βi(ν), i=1, . . . , K} areK orthonormal func-
tions with respect to the usual inner product defined in the
spaceL2([νmin, νmax]) and denoted with the symbol< ·, · >.

Let 6R be the covariance operator ofR(ν) and6e the co-
variance operator of the conditional expected value,E(R|Y ),
of the radiance given the geophysical variable to retrieve.

Provided thatK<d, with d denoting the number of points
in which the radiance curve is known, Eq. (1) says that the
regression function depends onR(ν) only throughK linear
functionals of the explanatory processR(ν). Hence, to ex-
plain the dependent variableY , the space ofd explanatory
variables can be reduced to a space with a smaller dimen-
sion K. The dimension reduction methods aim at finding
the dimensionK of the reduction space and a basis defining
this space. The functionsβi , i=1, . . . , K, are called effec-
tive dimension reduction (edr)-directions and the space they
generate is the edr-space.

FSIR is able to work with this model, indeed it yieldsd di-
rectionsβ̂i and corresponding (eigen-)valuesλ̂i which allow
one to rank the importance ofβ̂i , whereβ̂i andλ̂i denote the
estimated values. Obviously theβi(ν) are determined in the
valuesνj , j=1, . . . , d. The technique takes advantage of the
method of inverse regression. Here the aim is not to estimate
E[Y |R=r] but the reverseE[R|Y=y], a one-dimensional
regression problem that avoidsthe curse of dimensionality.
This curse means that high-dimensional spaces have too few
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data for local averaging, that is the risk or expected squared
error of estimation of a nonparametric regression estimator
increases rapidly with the dimensionp and to maintain a
given degree of accuracy of an estimator, the sample size
must increase exponentially with the dimension p. This does
not happen with parametric techniques, i.e. least squares re-
gression, whose risk will decay to zero at a rate ofn−1, where
n is the number of observations. With inverse regression in-
stead of having oned-dimensional regression problem we
haved one-dimensional regression problems which do not
suffer from that curse. The key of FSIR is the connection
between the edr-space and the inverse regression curve given
by the covariance operator of the inverse regression curve
6e. Indeed it is possible to prove under some mild assump-
tions (Amato et al., 2006) that the eigenvalue-eigenvector de-
composition of the operator6−1

R 6e permits to identify a ba-
sis for the edr-space. Unfortunately the inverse of6R is not
bounded, therefore we consider6

−1/2
R 6e6

−1/2
R ; in particu-

lar, we use the fact that6−1/2
R 6e6

−1/2
R has the same eigen-

vectors as61/2
R 6+e 6

1/2
R , where6+e is the Moore-Penrose

generalized inverse operator (Groetsch, 1974).
Let us now consider a dataset ofN radiance spectra mea-

sured at wavenumbersνj , j=1, . . . , d, and corresponding
profiles YN , that is (Rn, Yn), n=1, . . . , N , with Rn being
vectors of dimensiond×1. Then after centering the data,
6R can be estimated by

6̂R,N =
1

N

N∑
n=1

RnR
t
n . (2)

For the estimate of6e we may proceed in the follow-
ing way. LetMY (ν)=E(R|Y ) and M̂Y (ν) be the wavelet
smoothing ofR(ν) with design points theYn’s, n=1, . . . , N ,
obtained through the BINWAV estimator (Antoniadis and
Pham, 1998). Then we consider the following estimate for
6e:

6̂e,N =
1

N

N∑
n=1

M̂YnM̂
t

Yn
, (3)

with M̂Yn=(M̂Yn(νj ))j=1...,d=(E(Rj |Y=Yn))j=1...,d a vec-
tor of dimensiond×1 for eachn=1, . . . , N .

Convergence in probability of botĥ6R,N and6̂e,N to 6R

and6e can be found in (Amato et al., 2006). To estimate
them accurately, we improve the conditioning of6̂e,N ap-
plying a projector method before performing the spectral de-
composition: let̂πkN

denote the orthogonal projector into the
space spanned by thekN eigenvectors of̂6e,N corresponding
to thekN largest eigenvalues; we let6̂

kN

e,N= π̂kN
6̂e,N π̂kN

.
Estimation of the EDR space is derived from the spectral de-
composition of

6̂
1/2
R,N

(
6̂

kN

e,N

)+
6̂

1/2
R,N , (4)

where
(
6̂

kN

e,N

)+
is the pseudoinverse matrix defined through

the Singular Value Decomposition (SVD) (Golub and Van
Loan, 1983; Golub, 1970). Let (αi)i=1,...,K be the smallest
eigenvalues of (4) andηi the corresponding eigenfunctions,
then

β̂
N

i =
1

αi

(
6̂

kN

e,N

)+
6̂

1/2
R,Nηi . (5)

Summarizing the procedure for computing an esti-

mate β̂
N

i =(β̂i(ν1), . . . , β̂i(νd))t of the EDR directionsβi ,
i=1, . . . , K, goes through the following steps:

Algorithm

1. calculateM̂Y (ν), the wavelet smoothing ofR(ν) with
design pointsY1, . . . , YN , using the BINWAV estimator
and evaluate it inν1, . . . , νd ;

2. estimate6̂R,N by Eq. (2) and6̂e,N by Eq. (3);

3. evaluate the spectral decomposition of6̂e,N and its pro-

jection6̂
kN

e,N ;

4. evaluate the spectral decomposition of

6̂
1/2
R,N

(
6̂

kN

e,N

)+
6̂

1/2
R,N and estimate the EDR directions

by Eq. (5).

FSIR can be seen as a generalization of PCA. Indeed sup-
posing that6R is the identity operator, than FSIR aims at
determining the directions along which to project the data
by the eigenvalues-eigenvectors decomposition of6e, which
takes into account the information about the profiles by
means of a regression on the spectra; on the contrary the PCA
uses only spectral information.

3 Vertical resolution of the retrieval

If the vector,Ŷ=(Ŷ (1), Ŷ (2), . . . , Ŷ (M))t , is made up with
the layer-mean estimated values of a given parameter, in or-
der to form the profile function of the parameter, then the
retrieval covariance matrix can be obtained by

6
Ŷ
= E

(
(Ŷ − Y true)(Ŷ − Y true)

t
)

, (6)

where expectation value has to be taken with respect to train-
ing data set andY true is thetruevalue of the parameter. This
matrix will be denoted by6T , 6H2O and6O3 for tempera-
ture, water vapour and ozone profiles, respectively.

The retrieval covariance matrix, for a given parameter pro-
file, can be used to analyze the spatial vertical resolution of
the parameter itself, according to a methodology which has
been developed bySerio et al.(2008b) and which is summa-
rized for the sake of clarity.

The vector(Y (1), Y (2), . . . , Y (M))t represents the dis-
cretized version of a spatial function (i.e., temperature pro-
file, water vapour mixing ratio profile, ozone mixing ratio
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profile). A strong correlation, that is a relatively high value
of the covariance, between any two of the parameters means
that the two have not been independently resolved by the data
set, and that only some linear combination of the parameters
is resolved. However, a direct examination and interpreta-
tion of the off-diagonal elements (covariances) of a covari-
ance operator is not easy, which makes the definition of some
suitable scalar index highly desirable.

To this end, it has to be considered that the retrieval cor-
relation is determined by the non-null off-diagonal terms in
the covariance operator. For a full independent retrieval (and
therefore for a retrieval, which attains the maximum possible
vertical spatial resolution), the covariance matrix has to be
fully diagonal.

In what follows we will assume that the covariance oper-
ator has been normalized in order to obtain the correlation
matrix,

6
Ŷ
(i, j)←

6
Ŷ
(i, j)√

6
Ŷ
(i, i)6

Ŷ
(j, j)

. (7)

6
Ŷ

may be additively decomposed in its diagonal and off-
diagonal components:

6
Ŷ
= 6

Ŷ ,diag+6
Ŷ ,off . (8)

An index which assesses the dominance of the diagonal
term over the off-diagonal one might be simply defined from
the norms of the matrices in Eq. (8). However, the norm is
not additive. In general, we have

norm(6
Ŷ
) 6= norm(6

Ŷ ,diag)+ norm(6
Ŷ ,off) ; (9)

therefore, an index such as the ratio of the6
Ŷ

, diag-norm to
the6

Ŷ
-norm is not well defined. It could be less or greater

than one depending on the given matrix.
To quantify the relative contribution of the diagonal term

(and off-diagonal term) to the norm of6
Ŷ

, let us consider
the SVD of6

Ŷ
. With the usual notation, we have

6
Ŷ
= 6

Ŷ ,diag+6
Ŷ ,off = US

Ŷ
Vt (10)

whereU andV are unit, orthogonal matrices of sizeM byM;
S is a diagonal matrix whose elements are the eigenvalues,
positive definite and supposed decreasingly ordered, of the
operator6

Ŷ
. From the equation above, we have

Ut6
Ŷ ,diagV + Ut6

Ŷ ,offV = S
Ŷ

(11)

which with the position

B
Ŷ ,diag= Ut6

Ŷ ,diagV
B

Ŷ ,off = Ut6
Ŷ ,offV

(12)

gives

B
Ŷ ,diag+ B

Ŷ ,off = S
Ŷ

(13)

Finally, because of the definition of norm (e.g.Golub and
Van Loan, 1983), we have

norm(6
Ŷ
) = S

Ŷ
(1, 1) = B

Ŷ ,diag(1, 1)+ B
Ŷ ,off(1, 1), (14)

whereX(1, 1) is the element (1,1) of the given matrixX. The
formula above is fully additive and allows us to decompose
the norm of the retrieval covariance matrix in its diagonal
and off-diagonal contribution. Thus, a proper index which
quantifies the degree of diagonalization of6

Ŷ
, that is how

much the matrix is dominated by its diagonal terms, can be
defined by

iD =
B

Ŷ ,diag(1, 1)

S
Ŷ
(1, 1)

. (15)

For a full diagonal matrix, we haveiD=1 and the retrieval
is truly independent, whereas for a highly correlated matrix,
we haveiD=M−1 and we can retrieve only the columnar
amount of a geophysical parameter. As far as IASI is con-
cerned, this is, e.g., the case for trace gases such as carbon
monoxide or methane.

The index (15) can be easily re-scaled to the range 1 toM

by simply redefining it as

iD = M
B

Ŷ ,diag(1, 1)

S
Ŷ
(1, 1)

. (16)

Then, iD=1 simply means that for the retrieval at hand
it is as if the full atmosphere had been divided just in one
layer, that is only the columnar amount of the parameter has
been resolved. On the opposite edge of theiD scale, we have
iD=M, and the retrieval has been fully resolved on the grid
mesh used to divide the atmosphere. Nearby layers can then,
e.g., be used to form average quantities and, therefore, reduce
the estimation error.

4 Application to IASI data

The retrieval accuracy of FSIR procedure has been assessed
both on the Chevallier dataset and directly on IASI data.
Analysis has focused on clear sky, sea-surface, tropical
soundings. To limit the burden of the computational effort,
only nadir view soundings have been considered.

4.1 Chevallier dataset

The training dataset consists of 377 (T , q, o) tropical profiles
for clear-sky and sea surface extracted from the ECMWF
compilation by Chevallier (Chevallier, 2001).

These profiles are the input to theσ -IASI code (Amato
et al., 2002), which has been used to calculate the related
synthetic IASI spectra at nadir view angle.

The spectral ranges used to train the regression algo-
rithm include the intense CO2 band 645 cm−1–830 cm−1,
the ozone band 1010 cm−1–1070 cm−1, the window
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Fig. 1. Root mean square error of the retrievals as a function of the number of scores, for various atmospheric layers and parameters.

1130 cm−1–1180 cm−1, a portion of theν2 water vapour
band, 1400 cm−1–1700 cm−1, and the C2O/N2O shortwave
absorption band, 2000 cm−1–2230 cm−1, for a total of 3305
channels. Thus, the data space is made up of radiance vectors
of sized=3305.

The parameter space is made up of triplets (Tj , qj , oj ) for
each given atmospheric layer. The number of layers,ML,
is the same as inσ -IASI, namelyML=60. For temperature
we have one more parameter, since we consider the surface
temperature, as well.

The FSIR is implemented according to a single parame-
ter regression algorithm, in which each single element of the
triplet (Tj , qj , oj ) is regressed vs. the EDR components.

Similarly to the EOF methodology, the FSIR approach
also requires that the user specifies the number of EDR com-
ponents,p, (also called scores). To this purpose we define
the root mean square error or estimation error,e(p), of the re-
gression ase(p)=E[(Ŷ−YChev)

2
]
1/2, where, as before,E[·]

means expectation value, againY denotes a generic param-
eter andYChev refers to values from the Chevallier dataset.
Our algorithm is developed in the general context of a signal
plus noise model (see, e.g., Eq.1), therefore the curvee(p)

reaches a sort of plateau or noise floor. A suitable choice for
p is the closest value to the knee of the curve,e(p) (seeSerio
et al., 2009).
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Fig. 2. Temperature root mean square error of the retrievals on the
Chevallier dataset as obtained for FSIR and EOF.

Examples of these curves are shown in Fig.1, which
also provides a comparison with a PCA/EOF regression ap-
proach. Based on these curves the number of scores for
which e(p) reaches a plateau ranges betweenp=5 and
p=20. Also note that FSIR tends to be much more parsi-
monious in terms of the number of selected scores.

Figures2–4 exemplify the expected root mean square er-
ror for temperature, water vapour and ozone, respectively.
The figures also allow us to compare the forecast skill of
FSIR with that of the EOF regression. For the temperature
the two regression schemes are almost equivalent in terms of
expected root mean square error. For water vapour FSIR is
superior to EOF, the same as for ozone.

4.2 iD index

Using the methodology outlined in Sect.3, we can analyze
the degree of interdependency of the retrieval for tempera-
ture, water vapour and ozone, indeed the indexiD says how
many independent linear combinations can be resolved from
the data, and therefore how many independent pieces of in-
formation we have in the retrievals. From a statistical point
of view it gives a measure of the degrees of freedom.

We give to the term degrees of freedom the usual meaning
which is given to it in statistics. In its discretized form a given
geophysical parameter is represented by a vector,v of size,
saym. Therefore the vectorv lives in a space of dimension
m and we need, at leastm independent equations, hencem

pieces of information, to fully resolve for the geophysical pa-
rameter. However, because of data correlation and uncertain-
ties, we have that the retrieved elements,v̂i can be correlated
each to other, which means that only some linear combina-
tion of the elements ofv has been resolved from the data set.
The indexiD says how many independent linear combina-
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Fig. 3. Water vapour percentage root mean square error of the re-
trievals on the Chevallier dataset as obtained for FSIR and EOF.
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Fig. 4. Ozone percentage root mean square error of the retrievals on
the Chevallier dataset as obtained for FSIR and EOF.

tions can be resolved from the data, and therefore how many
independent pieces of information we have in the retrieved,
v̂.

For temperature the value ofiD is 6.8 for FSIR and 5.6
for EOF. This means that FSIR gains more than one degree
of freedom over the EOF regression. For water vapour and
ozone we have 4.7 and 3.7, respectively, in the case of FSIR
and 4.40 and 2.53 for EOF, respectively. The values for the
index iD were evaluated on the whole training dataset con-
sisting of 377 tropical profiles.

It is interesting to note that the FSIR retrieval is less cor-
related than that produced by the EOF scheme, which means
that FSIR has a better capability to reveal features and struc-
tures along the vertical.
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However, in general the aboveiD values are quite small.
For ozone, they indicate that only two or three pieces of in-
formation are available for the retrieval. For temperature and
water vapour,iD says that only the very coarse features of
the profile can be resolved. This is not a serious shortcom-
ing for temperature, which is typically a smooth function of
the altitude, but could become a serious limitations for water
vapour, whose profile may be characterized by small-scale
vertical structures.

In conclusion, FSIR can resolve important small structures
in water vapour better than EOF. Of course, this does not
mean that FSIR is, in absolute, the best retrieval method, we
can only says that it is superior over EOF.

4.3 IASI retrieval and comparison with ECMWF anal-
ysis

The FSIR approach has been tested using IASI data obtained
during the IASI commissioning phase.

The cloud detection scheme described inGrieco et al.
(2007) was applied to tropical spectra measured over the sea
surface during the 22 July 2007. This yielded a total of 603
clear sky IASI spectra. To simplify the illustration of the re-
sults only nadir view soundings have been considered.

To develop a consistent set of truth data against which
IASI retrieval could be compared, ECMWF atmospheric
analysis fields for temperature, water vapour and ozone were
considered. These fields where co-located in space and time
to the 603 IASI soundings. We used atmospheric analysis
fields at 00:00, 06:00, 12:00 and 18:00 UTC on 22 July 2007.
At that time, the ECMWF model was characterized by a ver-
tical discretization of the atmosphere into 60 pressure levels
and a horizontal truncation of T511. This truncation cor-
responds to a grid spacing of about 40 km or, equivalently,
to a horizontal grid box of 0.351◦×0.351◦. The model has
a hybrid vertical coordinate, with terrain-following coordi-
nates in the lower troposphere and pressure coordinates in
the stratosphere above about 70 hPa. Of the 60 levels in the
vertical, 25 are above 100 hPa and the model top is at 0.1 hPa,
corresponding to about 65 km. The vertical resolution of the
analysis fields gradually decreases from 20 m at the surface
to about 250 m at 1 km altitude, and about 1 km to 3 km in
the stratosphere. The analysis fields were extracted from the
ECMWF archive at the full T511 resolution, interpolated to
a grid of points with a separation of 0.3◦×0.3◦ and then co-
located to the IASI soundings. The statistics of the difference
between global radiosonde observations and ECMWF anal-
ysis in the troposphere show values of the standard deviation
typically between 0.5 and 1 K for temperature and between
0.5 and 1.5 g/kg for water vapour. In addition to fields of
temperature, water vapour and ozone, ECMWF fields of sea-
surface temperature (SST) were also used in the study. It
should be noted that these fields are based on analyses re-
ceived daily from the National Centers for Environmental
Prediction (NCEP), Washington DC, on a 0.5◦×0.5◦ grid.
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Fig. 5. Temperature root mean square difference (IASI retrieval –
ECMWF) for 3 choices of the number of EDR (PC) scores for FSIR
(left plot) and EOF (right plot).
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Fig. 6. Water Vapour root mean square difference (IASI retrieval –
ECMWF) for 3 choices of the number of EDR (PC) scores for FSIR
(left plot) and EOF (right plot).

These analyses are based on ship, buoy and satellite observa-
tions. In shallow waters, where rapid changes due to the up-
welling radiation can occur close to land, the observed SST
can sometimes differ as much as 5 K from the NCEP analy-
sis.

One important aspect which has been possible to analyze
with the help of the ECMWF analysis is the sensitivity of the
retrieval accuracy to the choice of the number,p, of FSIR
and/or PCA scores. Because of many factors, which include
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Fig. 7. Ozone root mean square difference (IASI retrieval –
ECMWF) for 3 choices of the number of EDR (PC) scores for FSIR
(left plot) and EOF (right plot).
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Fig. 8. (a)– Mean retrieved temperature profile obtained by averag-
ing over the 603 IASI soundings and comparison with the ECMWF
corresponding mean profile.(b) Root mean square difference (IASI
retrieval – ECMWF) as obtained for EOF and FSIR methodologies.

radiative transfer accuracy, noise specifications, cloud con-
tamination, in practice it may happen that theoptimalchoice,
popt, performed based on the training data set may result to
be sub-optimal. Thus, when this value is applied to real data
and real conditions, a misfit may occur, which is much larger
than that expected on the basis of the training data set.

To address this point we have redefined the root mean
square difference,e(p), ase(p)=E[(Ŷ−Yecmwf)

2
]
1/2. For

temperature,e(p) is shown in Fig.5 for three values ofp,
namelypopt, popt+5 andpopt+10. The calculations have
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Fig. 9. (a) – Mean retrieved water vapour profile obtained by
averaging over the 603 IASI soundings and comparison with the
ECMWF corresponding mean profile.(b) Percentage root mean
square difference (IASI retrieval – ECMWF) as obtained for EOF
and FSIR methodologies.
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Fig. 10. (a) – Mean retrieved ozone profile obtained by averag-
ing over the 603 IASI soundings and comparison with the ECMWF
corresponding mean profile.(b) Percentage root mean square dif-
ference (IASI retrieval – ECMWF) as obtained for EOF and FSIR
methodologies.

been performed for FSIR and PCA. It can be seen that, in
comparison to EOF, FSIR is more robust in terms of accu-
racy to variations in the number of scores,p. This is much
more evident for the case of water vapour (Fig.6) and ozone
(Fig. 7).

Apart from some isolated error spikes, evident in the
case of ozone, FSIR also provides a more accurate retrieval,
once compared to EOF. This can be seen in the three next
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Figs.8–10which compare FSIR performance to EOF for the
case of temperature, water vapour and ozone.

Figures8–10 also suggest that FSIR accuracy for temper-
ature is within 1–2 K, which is a bit larger than the 1 K ex-
pected for IASI. However, it is important to consider that
the ECMWF analysis also has an uncertainty, which, as dis-
cussed above, is of the order of 0.5 to 1 K. Thus ine(p) we
also include the uncertainty of the ECMWF analysis.

The same as above can be said for water vapour: including
the ECMWF uncertainty, the performance of FSIR reaches
the expected accuracy of 10% only in the very deepest part
of the atmosphere.

For ozone we get a very smooth retrieval, as it was ex-
pected based on theiD index for this parameter. However,
the result compares fairly well with ECMWF mean profile.

5 Conclusions

A new statistical strategy based on dimension reduction for
the retrieval of atmospheric parameters from IASI radiances
has been presented and discussed. Applications to IASI data
have been considered for the case of tropical soundings. The
new strategy, FSIR, has been also compared to a usual EOF
regression scheme. The comparison shows that, mostly for
gases (we have analyzed water vapour and ozone), FSIR gets
a higher performance with respect to EOF. In general, FSIR
seems to provide a retrieval which is better resolved along the
vertical, which is particularly interesting for water vapour.

For temperature the FSIR scheme provides results quite
close to the expected performance of 1 K in the lower part of
the atmosphere. For water vapour the goal of 10% accuracy
is reached only for the very lower part of the atmosphere.

For ozone it seems that FSIR is capable to provide at least
3 pieces of information.

We think that FSIR can provide a valid initialization
scheme for physical-based inversion strategy, which is now
under investigation.
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