
Toward Real Time Fractal Image Compression
Using Graphics Hardware

Ugo Erra

ISISLab - Dipartimento di Informatica ed Appl. “R.M. Capocelli”,
Università degli Studi di Salerno, 84081 Baronissi, Italy

ugoerr@dia.unisa.it

Abstract. In this paper, we present a parallel fractal image compres-
sion using the programmable graphics hardware. The main problem of
fractal compression is the very high computing time needed to encode
images. Our implementation exploits SIMD architecture and inherent
parallelism of recently graphic boards to speed-up baseline approach of
fractal encoding. The results we present are achieved on cheap and widely
available graphics boards.

1 Introduction

Fractal compression is a lossy compression method introduced by Barnsley and
Sloan [1] for compactly encoding images. The main idea of fractal compression is
to exploit local self-similarity in images. This permits a self-referential descrip-
tion of image data to be yielded.

The general approach is firstly to subdivide the image using a fixed parti-
tion in simple case or adaptive partition in an advanced approach, and then
to find the best matching image portion for each part. This searching phase is
known to be the most time consuming part and numerous strategies have been
presented to speed-up encoding. On the other hand, fractal image compression
offers interesting features like fast decoding, independent-resolution and good
image quality at low bit-rates which is useful for off-line applications.

Today’s GPUs (graphics processing units) have high-bandwidth memories
and more floating-point units. One of the most recently presented GPUs, the
NVIDIA 7800, has peak performance of 165 Gflops and memory bandwidth
of 38.4 GB/sec. Recently, all this computational power has become cheap and
widely available. As side effects, several researches has began to exploit GPUs for
general purpose applications such as scientific computation, database operations,
matrix multiplications and many more as shows in [2].

This paper presents a novel approach to perform fractal compression on pro-
grammable graphics hardware; to our knowledge, this is the first application that
uses the GPU for image compression. Using programmable capabilities of the
GPUs, we exploit the large amount of inherent parallelism and memory band-
width to perform fast pairing search between portions of the image. As a result,
we show that GPUs are effective co-processors for fractal compression.

G. Bebis et al. (Eds.): ISVC 2005, LNCS 3804, pp. 723–728, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

724 U. Erra

2 Fractal Compression

The basic idea of fractal compression is to find similarities between larger and
smaller portions of an image. This is accomplished partitioning the original im-
age into blocks of fixed size, called range and creating a shape codebook from the
original image of double size of the range, called domain. Range blocks partition
the image so that every pixel is included while the domain blocks can be over-
lapped and/or to not contain every pixel. We give below the baseline approch,
the mathematical theory about these principles can be found on [3].

Given a range block R we must find a domain D from codebook such that
R ≈ sD + o1 where s and o are called scaling and offset respectively. These
values define the optimal transformation by which we can encode an image
portion using another part. The encoder must scan all the codebook to find
optimal D, s, and o. The domain block must be shrunk by pixel averaging to
match the size of range block.

Given the twoblocks R and D with n pixel intensities, r1, . . . , rn and d1, . . . , dn,
the quantity to minimize is

∑n
i=1 (s · di + o − ri)

2 where coefficients s and o are
given by

s =
n (

∑n
i=1 diri) − (

∑n
i=1 di) (

∑n
i=1 ri)

n
∑n

i=1 d2
i − (

∑n
i=1 di)

2 o =
1
n

(
n∑

i=1

ri − s

n∑

i=1

di

)

(1)

The values s, o, and the position of domain block D are the encoded values
for range R. The steps of the baseline encoder with fixed block are the following:

1. Range blocks Ri. Given a fixed size (4 × 4, 8 × 8, and so on) create a set of
range blocks overlapping the entire image.

2. Shape codebook Di. The shape codebook is created in two steps:
(a) Using a step size of l pixel horizontally and vertically create a set of

domain blocks which are double the range size.
(b) Shrink the domain blocks by averaging four pixel to match range size.

3. The search. For each range block R an optimal approximation R ≈ sD + o1
is computed in the following steps:
(a) For each domain block Di compute R ≈ sDi + o1 using formulas (1).
(b) Among all codebook Di output the code for current range [k, s, o] such

that the error R ≈ sDk + o1 is minimum.

Related works. Fractal compression allows fast decompression but has long en-
coding times. The most time consuming part is the domain blocks searching
from each range. In [4] Beaumont adopts a search strategy using an outward
spiral starting from the coordinate of range and halts when a necessary condi-
tion has been reached. This strategy reduces encoding time but image quality
could suffer due to the overlook of some possible optimal pairing. Categorized
search proposed by Boss, Fisher and Jacobs [5, 6] and features vector methods
proposed by Saupe [7] are efficient classification techniques. They reduce the

Toward Real Time Fractal Image Compression Using Graphics Hardware 725

encoding complexity using a classification of the domain codebook block in such
way that for each range the search is essentially more efficient.

The use of general purpose high performance architecture has been used
to accelerate the encoding phase without a decrease of image quality. Related
work has been done concerning the encoding phase on SIMD architecture. In [8]
massively parallel processing approach has been used on an APE100/Quadrics
SIMD machine. For testing, they used 512 floating point processors, offering a
peak power of 25.6 GFLOPS. They are able to compress a gray level image of
512 × 512 using a scalar quantization techniques in about 2 seconds.

3 Programmable Graphics Hardware

Today, GPUs are fundamentally programmable stream processors [9]. In this
computational model stream are collections of data requiring similar computa-
tion. Every object in the stream is processed by the some function called kernel.
GPUs has a screen-space stream engine called fragment processor. The fragment
processor supports a fully orthogonal instruction set optimized for 4-component
vector processing. Furthermore, as stream architecture, the fragment processor
exploits spatial parallelism; it runs the same fragment program for each pixel.

This processor presents limits and advantages. For each incoming pixel the
fragment program is invoked at a specific location and returns the final value in
the same location as output. That is not possible to write in a different location
or to do scattering. Instead the kernel can do gathering using textures as lookup
table to read precomputed values.

The textures can be used as lookup tables during computation though access
to them is restricted to write-only or read-only. Floating-point texture vectors
can be of two, three of four components. Each fragment can fetch a component
vector as input from one or more textures and returns a vector components.
This feature and the fact that fragment processor has enormous throughput
make fragment engine well suited to fractal compression.

4 Mapping Fractal Compression on the GPU

In order to exploit the specialized nature of the GPU and its restricted program-
ming model we must map the fractal compression as a streaming computation.
The goal is to perform pairings test between range and domain exploiting parallel
architecture of the GPU and high bandwidth access to pixels. The entire process
uses a gray level image as input data and returns the textures TPOS with the posi-
tion of optimal domain blocks and TSO with scaling/offset coefficients as outputs.

The underlying idea is to use a producer/consumer scheme. The producer
gathers from the domain pool a block which is broadcasted to all consumers
that are the ranges. Each range stores the current domain as soon as it appears
as the best pairing block. The entire process continues until all domain blocks
have been consumed. In this scenario, a pixel appears as a single floating-point
processor responsible for only one range. Then, the GPU mimics a computational

726 U. Erra

grid rendering a sized-range rectangular upon which performs parallel pairing
test among all the ranges for a given domain.

4.1 Data Structures Organization

Fractal compression is implemented as fragments programs. These programs are
executed via multi-pass rendering of a screen-sized rectangle where each pixel is
an encoding range. Notice that during encoding the same range will be paired
among all other domains and from another point of view the same domain will
be paired among all ranges. Then, for each range block and for each domain
block we precompute all the related quantities that remain constant during the
entire encoding. These constant values are the summations of the scaling and
offset formulas in 1 and will be stored in the lookup textures TR and TD using
one 32-bit component for TR and two 16-bit component for TD.

In order to exploit SIMD parallelism and efficient bandwidth, during the en-
coding, the source image is stored compactly into texture. An RGBAtexture which
uses 32-bit per component is capable to store up to 256 bit per pixel. Usually, for a
gray level image, 8-bit per pixel are necessary. Thanks to the specialized instruc-
tion pack we are able to store up to 16 pixels into a single RGBA pixel’s texture.
Using this representationof the image it is possible to read 16 pixels simultaneously
in a single texture access followed by a unpack instruction.

4.2 Fractal Compression Kernels

The entire flow diagram for the streaming fractal compression is illustrated in
Figure 1. The following sections detail the implementation of each kernel and
the read/write textures access. In the following, the kernels always take as input
the compact version of source image.

Ranges summation. This kernel precomputes the range summation using the
technique described in the previous section. It takes the original image as input
and returns a texture TR as output. This buffer is a previously declared one 32-
bit color component texture. The size of this buffer is 1/4 of the input image if
we choose a range block size of 4×4, or 1/8 for a range block of 8×8, and so on.

Domains summation. The kernel precomputes the domains summations. It
takes the original image as input and returns the texture TD as output. This
buffer is a previously declared two 16-bit color components texture.

Stream range generator. This is the only party performed in the CPU and it
is not a computational stage. It serves as a start-up routine to generate a stream
of fragment programs. It draws a texture of size TR to force the “Pairing Test”
fragment program execution for each range. Furthermore, it passes to the next
stage the position of the current domain and the entire group of pixels belongs
to the current domain as parameters. This permits to store an entire domain
into registers of fragment processor avoiding continuous texture fetches.

Pairing test. This kernel performs all possible tests for optimal pairing. At
each rendering pass this kernel has TR as input textures, coordinate of current

Toward Real Time Fractal Image Compression Using Graphics Hardware 727

Ranges
summation

min (E(Ri, D), TE)
Stream ranges

generator Ri

Stream
codebook
generator

TR TD Ecurr

GPU Memory

Until there is a domain D

TPOS TSOEprev

Domains
summations

Fig. 1. A streaming fractal compressor

domain and pixels’ domain from the previous stage. It returns a sized range
texture TPOS with the coordinates of current optimal blocks as output. More
precisely, due to hardware limits which not allow read/write access on the same
texture, pairing tests are not performed for a given range R among all domains
Di. We must invert pairing tests as follows: given a domain D performs pair-
ing tests among all ranges Ri updating minimal errors for each range. This
schema use a double buffer to read previous errors in texture Tprev and to store
current errors in texture Tcurr. Thus, given a domain block D at each ren-
dering pass each fragment program computes and stores the following value:
Tcurr = min (E (Ri, D) , Tprev) . Before the next rendering pass the errors tex-
tures Tcurr and Tprev are swapped and another domain block is passed as input.

Stream codebook generator. The last stage computes and writes into texture
TSO final scaling s and offset o. The kernel has textures TPOS as input and
returns a texture TSO with optimal coefficients. This operation is performed here
in order to avoid useless write operations and therefore optimizes the amount of
memory bandwidth required for texture accesses.

5 Experimental Results

In order to compare the amount of pairing tests that GPU is capable to perform,
we implemented heavy brute force algorithm on GPU as well as on CPU. We
have experimented on a Pentium IV based machine with 3.2GHz processor speed
and 1GB of RAM. The used graphics card was a GeForce FX 6800, with 128MB
of video memory, core speed of 300MHz and memory speed of 800MHz. We used
OpenGL Cg shading language to implement our GPU-based compressor.

The test image has a resolution of 256 × 256 pixels. Choosing a range size of
4 × 4 pixels we obtain 64× 64 ranges. The domain blocks must be twice the size
of range blocks and using a step of one pixel to scan the image, the domain pool
contains (128 − 4 + 1)2 = 15, 625 elements. In total, using a heavy brute force
strategy 4, 096 × 15, 625 = 64, 000, 000 possible pairings require testing.

The CPU version takes about 280 seconds to perform all pairing test whereas
the GPU version takes about 1 second. Then, the amount of paring test that

728 U. Erra

the GPU is capable to perform is about 64 millions per second whereas the
CPU performs about 220 thousands paring test per second. These results arise
considering fractal compression a random-memory-access intensive problem. The
memory bandwidth together arithmetic intensity advantages GPU over CPU.
Moreover, our work shows its advantages when compared to expensive parallel
architecture as for instance in [8] which uses 512 floating-point processors with
performance comparable to our GPU implementation.

6 Conclusions and Further Work

Fractal image compression is well suited for parallel system due to its high com-
putation complexity and regular algorithmic structure. Today, we think that
graphics board offers substantial computational power to take full advantages
of the baseline approach. We are going to investigate two scenarios. The former
is to further exploit the graphics hardware to obtain more efficient compression
schema and taking into account also color image. The latter is to use GPU as an
efficient co-processor. The general purpose architecture of the CPU permits to
excel on arranging data. The GPU could be used as an efficient pairing engine
while the CPU arranges pairings tests.

Today, the consumers for less than $500 can buy an off-the-shelf graphics card
with performances comparable to SIMD parallel machines that cost hundreds of
thousands of dollars several years ago. Furthermore, as the GPU consumes less
power than a high-end CPU, it is evident how using the graphics card can extend
the life-time of an existing computer system. In conclusion, we think that GPUs
offer the great opportunity to take full advantages of the fractal compression on
consumer desktop personal computers.

References

1. Barnsley, M.F., Sloan, A.: Chaotic compression. Computer Graphics World (1987)
2. GPGPU. (Website) http://www.gpgpu.com.
3. Yuval, F.: Fractal Image Compression - Theory and Application. Springer-Verlag,

New York (1994)
4. Beaumont, J.M.: Image data compression using fractal techniques. British Telecom

Technol. Journal 9 (1991) 93–109
5. Jacobs, E.W., Fisher, Y., Boss, R.D.: Image compression: A study of the iterated

transform method. Signal Processing 29 (1992) 251–263
6. Yuval, F.: Fractal image compression. Fractals: Complex Geometry, Patterns, and

Scaling in Nature and Society 2 (1994) 347–361
7. Saupe, D.: Accelerating fractal image compression by multi-dimensional nearest

neighbor search. In Storer, J.A., Cohn, M., eds.: Proceedings DCC’95 Data Com-
pression Conference, IEEE Computer Society Press (1995)

8. Palazzari, P., Coli, M., Lulli, G.: Massively parallel processing approach to fractal
image compression with near-optimal coefficient quantization. J. Syst. Archit. 45
(1999) 765–779

9. Venkatasubramanian, S.: The graphics card as a stream computer. In: SIGMOD-
DIMACS Workshop on Management and Processing of Data Streams. (2003)

http://www.gpgpu.com

	Introduction
	Fractal Compression
	Programmable Graphics Hardware
	Mapping Fractal Compression on the GPU
	Data Structures Organization
	Fractal Compression Kernels

	Experimental Results
	Conclusions and Further Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

