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Abstract

Peer data management systems (PDMSs) for XML data allow the user to easily share and query
XML data dispersed over multitudes of sites without the complex and heavy administrative tasks
that characterize traditional distributed database systems. Most of them are based on a common
model, where nodes in the system are connected through sparse point-to-point mappings, and queries
are executed with decentralized versions of GAV and LAV query reformulation algorithms.

The presence of links among peers poses new problems related to the intrinsically dynamic nature
of p2p systems, namely the fact that peers may join and leave the network at any time, as well as
locally and independently change their data and schemas. As a consequence, mappings may suddenly
become corrupted, hence greatly affecting the quality of results retrieved by the system. At this time,
both the detection of problems in the current set of mappings and the maintenance of these mappings
are performed manually by each site owner/user, and systems have no way to automatically warn the
user about emerging issues in the mapping chain.

In this paper we present an automatic technique for identifying corrupted as well as imprecise
links in XML p2p database systems. Our technique, based on static type analysis of XQuery like
queries, employs an enhanced version of the uXQ type system [5], that allows for a precise location
of errors in queries wrt schema definitions.

1 Introduction

The last few years have seen the rapid emerging of two new Internet-related technologies. The first
one, the eXtensible Markup Language (XML), was designed in an effort to make WWW documents
cleaner and machine understandable, and has become the standard format for exchanging data between
different data sources. The second technology, the peer-to-peer (p2p) computational paradigm, started
as a way to easily share files over the Internet, and affirmed as a low-cost, scalable and flexible evolution
of client-server and distributed systems.

In the field of database systems, these technologies combine to form to a new family of data man-
agement systems, sometimes called PDMSs (Peer Data Management Systems), that allow the user to
easily share and query XML data dispersed over multitudes of sites without the complex and heavy ad-
ministrative tasks that characterize traditional distributed database systems. Most current p2p database
systems for XML data [10] [15] [8] [2] are based on a common model, where nodes in the system are
connected through sparse point-to-point mappings, and queries are executed with decentralized versions
of GAV and LAV query reformulation algorithms [17, 18]. PDMSs can be seen as a mixture of data
integration an p2p technologies, hence resulting in adaptation of prior data integration techniques to a
widely distributed and someway unstable environment.

The presence of mappings among peers, while allowing for a more precise and less expensive query
routing than flood-based p2p systems (e.g., Gnutella [1]), poses new problems related to the intrinsically
dynamic nature of p2p systems, namely the fact that peers may join and leave the network at any time,
as well as locally and independently change their data and schemas: for instance, when a peer changes the
structure of the data it is sharing, its mappings with other peers may become corrupted. The introduction
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of corrupted mappings in the system greatly affects the quality and the quantity of the results that can
be retrieved in response to a query. Indeed, queries are usually evaluated by traversing a chain of peers
and by exploiting their mappings in the query reformulation process: as a consequence, the presence of
a corrupted or imprecise mapping from peer p; to peer p;11 may make peer p;y; unreachable, and may
influence the reachability of other peers.

At this time, both the detection of problems in the current set of mappings and the maintenance of
these mappings are performed manually by each site owner/user, and systems have no way to automati-
cally warn the user about emerging issues in the mapping chain.

Our Contribution In this paper we present an automatic technique for identifying corrupted as well
as imprecise schema mappings in XML p2p database systems. Our technique, based on the typechecking
of XQuery queries, employs an enhanced version of the XQuery type system [5], that allows for a precise
location of errors in queries wrt schema definitions. By relying on this technique, the p2p system can
promptly warn the user about errors in mapping definitions and give her hints about the location of the
errors in the mapping chain, as well as about the schema fragments whose mappings should be improved.
The approach we are proposing can be used for maintaining existing links among peers, as well as for
assisting the site owners in the design of new mappings.

The proposed technique can be safely combined with traditional query processing algorithms based
on the repeated applications of GAV and LAV algorithms over the transitive closure of schema mappings.

Paper Outline The paper is organized as follows. Section 2 shows the scenario for this work and, in
particular, introduces the formalism we use for modeling XML p2p database systems. Section 3, then,
sketches the type system we are using and its differences wrt the standard type system of XQuery. Section
4, then, describes the main properties of the type system. Section 5, next, shows how the typechecking
algorithm of the type system can be used to locate, if any, errors in the mapping chain. In Sections 6
and 7, finally, we discuss some related work and draw our conclusions.

2 Motivating Scenario

We describe our technique by referring to a sample XML p2p database system inspired by Piazza [10].
The system is composed of a dynamic set of peers, capable of executing queries on XML data, and
connected through sparse point-to-point schema mappings.

The state of the system is modeled as a dynamic set {p;}; of peers, where each peer is represented as
shown by Definition 2.1.

Definition 2.1 A peer is a tuple p; = (id, db, T,V,{pij};), where:
e id is the unique identity of p;;
e db are the data published by p;;
e 7 is the schema of the data of p;;
e V is the world view of p;, i.e., the view against which p; queries are posed;

e and {p;j}; is a set of bidirectional point-to-point mappings from p; view to the views of other peers.

As pointed out by the definition, each peer publishes some XML data (db), that are described according
to the data model shown below; as it can be seen, published data may be empty, in which case the peer
only submits queries to the system.

froa= 01t ff
t = b | If]

Each peer has two distinct schema descriptions. The first one, 7 (the peer schema), describes how
local data are organized; these data may be empty, as it happens in most p2p file sharing systems, in
which case 7 is just the empty type. The second one, V (the peer view), is a view over 7, and has a
twofold role. First, it works as input interface for the peer, so that queries sent to peer p; should respect
p; view of the world; this allows a peer to limit the fraction of its local data accessible from the outer
world (e.g., the peer may make visible only unclassified data), and to export computed or aggregated data
not really present in the database (i.e., the number of author of a given paper instead of their names).
Second, it describes the peer view of the world, i.e., the virtual view against which queries are posed. V
can be seen as the schema that the peer assumes to be adopted by the rest of the world; so, each peer
poses queries against its peer view, since it assumes that the outer world adopts this schema.
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Figure 1: Bibliographic p2p network.

PisaBib = bib[(Articolo)*]

Articolo = articolo[Autorex,Titolo,Anno]
Autore = autore[String]

Titolo = titolo[String]

Anno = anno[Integer]

Figure 2: Pisa view.

The peer schema and the peer view are connected through a schema mapping, that shows how to
translate a query expressed on the peer view into a query against the peer schema (in the following we will
use the “schema mapping” to denote any mapping between types). The mapping can be defined according
to the Global As View approach, or to the Local As View approach. In the first case, the view is defined
in terms of the schema, so that any query posed against the view can be executed by just composing
it with the view definition (query unfolding); on the contrary, in the latter case the schema is defined
in terms of the view, so that query execution requires the system to perform complex rewritings on the
query. The pros and cons of the GAV and LAV approach are extensively discussed in the literature; our
distributed typechecking algorithm is independent from the view definition approach, so we can abstract
from the specific view definition policy.

Since V plays the role of view of the world too, it can be loosely connected to 7: in particular, when
T is empty, V is fully independent from 7:

The presence of two distinct schema descriptions has been introduced in the GLAV data integration
approach [9], and it allows one to use both the LAV and GAV query rewriting approaches. 7 and V
are systems of type equations conforming to the type system we will describe in the next Section. The
following Example shows the views used in a sample p2p database.

Example 2.2 Consider a bibliographic data sharing system, where each node publishes its bibliographic
references encoded as XML data, and accesses the references of other nodes. Assume that the system is
composed of five nodes as shown in Figure 1.

As suggested in Figure 1, the peer in Pisa is directly connected with peers in Paris and in New York,
and interacts with other peers by means of the view shown in Figure 2.

This view tells that users in Pisa see the p2p database as formed by elements tagged Articolo, each
one containing the most relevant information about an article. Moreover, this view acts as an access
controller to Pisa data, since, as shown by the Pisa schema of Figure 3, it blocks the access to authors
addresses. New York view, shown in Figure 4, differs from that of Pisa since New York users can access
not only articles, as Pisa users, but also books in the database.

]

PisaBib = bib[(Articolo)*]

Articolo = articolo[Autorex,Titolo,Anno]
Autore = autore[Nome,Indirizzo]

Nome = nome [String]

Indirizzo = indirizzo[String]

Titolo = titolo[String]

Anno = anno[Integer]

Figure 3: Pisa view.



NYBib = bib[(Article|Book)*]

Article = article[Author*,Title,Year, RefCodel
Author = author[String]

Title = title[String]

Year = year[Integer]

Book = book[Author*,Title,Year,Publisher, RefCode]
Publisher = publisher[String]

RefCode = refCode[String]

Figure 4: New York view.

In addition to (possibly empty) data and schema information, each peer contains a set, possibly
a singleton, of peer mappings {pi;};. A peer mapping p;; from peer p; to peer p; is a pair of type
correspondences (V; < qi;,V; < ¢o;) that map the view of p; (V;) into the view of p; (V;), and vice
versa. More precisely, the mapping shows how to transform the extension of V; into the extension of
V;, the transformation being expressed through queries. These queries are then used to reformulate user
queries against V; into queries over V;.

Queries are expressed in the same query language used for posing general queries, as shown in Figure 5
and in Table 2.1. These mappings link peers together, and form a sparse graph; queries are then executed
by exploring the transitive closure of such mappings.!

For the sake of simplicity, we use bidirectional mappings, while real systems use mostly unidirectional
mappings, the reverse mapping being obtained at run-time by applying LAV processing techniques, as
described in [16].

Queries are expressed in an XQuery-like language, called uXQ, that is roughly equivalent to the
FLWR core of XQuery, with two exceptions: first, we forbid the navigation of the result of a nested
query by the outer query; second, we restrict the predicate language to the conjunction, disjunction, or
negation of variable comparisons. These restrictions allow for a better handling of errors at the price of
a modest decrease in the expressive power of the language: indeed, most nested queries are used without
any further navigation of their results; moreover, a comparison between a variable and a constant can be
simulated by binding the constant to a let variable in the binding section of the query.

The following Example illustrates the basic concepts of uXQ 2

Example 2.3 Consider the following query @) posed against the Pisa view.

nuovaBib[
for $aut in $bib//autore
let $pap := for $a in $bib/articolo
let $a_list := $a/autore
where $aut isin $a_list
return lavoro[$a/titolo, $a/annol
return item[$aut, $papl]

Note that, even though uXQ does not feature an isin predicate, the above query can be coded in
uXQ by simply expanding the fragment ‘where $aut isin $a_list’, as shown below:

let $aut_list := for $aa in $a_list
let $aa_text := $aa/text(),
$aut_text := $aut/text()
where $aut_text = $aa_text
return $aa
where not empty($aut_list)

The query @ returns the list of authors in the database, together with the basic information about the
papers they wrote. The clause for $aut ... autore iterates over the set of autore elements and binds
the $aut variable to each autore node, hence returning a set of variable-to-node bindings. The let clause
evaluates a nested query, whose result is a sequence of XML nodes, and binds the whole sequence to the
$pap variable, hence producing a single variable binding. The nested query contains a where clause that
checks whether the node bound to $aut in the outer query is in the set returned by the evaluation of the
path expression $a/autore. ]

I'We assume that p;g specifies how to map the peer schema of p; into its peer view, and vice versa.
2For the sake of simplicity, in the rest of he paper we will use / and // in place of child :: and dos ::, respectively.



Q = 0101 UQ | QQ | T4
| T child:: NodeTest | T dos :: NodeTest
| for T in Q return Q
| let 2 := @ return Q
| for T in Q where P return )
| let z := @ where P return )

NodeTest = 1 |node() | text()

P ;= true | x 0 x |empty(x)| Por P |not P | (P)
X = T |z

6 = = | <

Figure 5: puXQ grammar

Table 2.1. uXQ@Q semantics
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NYBibliography <-

Q1($input): for $ed in $input/editore
return publisher[$ed/text ()]

@2($input): for $an in $input/anno
return year[$an/data()]

@3 ($input): for $t in $input/titolo
return title[$t/text()]

Q4($input): for $aut in $input/autore
return author[$aut/text()]

@5 ($input): for $art in $input/articolo
return article[Q4($art), Qs($art),Q2($art),Qs($art)]

Q¢ ($input) : refCode[‘xxx-Pisa-xxx’]

Q7 ($input): for $bib in /pisaBib
return bib[Q5($bib)]

Figure 6: Pisa — New York mapping.

PisaBib <-

@1 ($input): for $ed in $input/editore
return editore[$ed/text ()]

Q2 ($input): for $an in $input/anno
return anno[$an/data()]

@3 ($input): for $t in $input/titolo
return titolo[$t/text ()]

Q4($input): for $aut in $input/autore
let $nome := $aut/nome
return autore[$nome/text ()]

@5 ($input): for $art in $input/articolo
return articolo[Q4($art), Qs($art),Q2($art)]

Q¢ ($input): for $bib in /pisaBib
return bib[Q5($bib)]

Figure 7: Mapping from the Pisa schema into the Pisa view.

Systems conforming to this architecture rely on schema mappings to process and execute queries; in
particular, the cost of query execution, together with the quality of the results returned by the system,
are deeply connected to the quality of schema mappings. Unfortunately, the evolution of the system,
namely the connection of new nodes and the disconnection of existing nodes, as well as the changes
in peer data and schemas, can dramatically affect the quality of schema mappings. In particular, the
dynamicity of both the topology and the schema/content of nodes can lead to the corruption of existing
mappings, which can significantly affect the quality of results returned by the system. Furthermore,
existing optimization techniques for p2p systems, such as the mapping composition approach described
in [16], can be vanished by mapping changes; this, in turn, reflects on the result quality as well as on the
query processing cost (as shown in [16] and [14], mapping composition algorithms have unbounded space
complexity).

As a consequence , the ability to detect corrupted mappings between alive nodes as soon as possible
becomes very important, as shown in the following Example.

Example 2.4 Consider the bibliographic data sharing system shown in Example 2.2, and suppose that
Pisa uses the query of Figure 6 to map its view into the view of New York. Pisa also uses the query of
Figure 7 to map its view into its schema.

Consider now the query shown in Figure 8. This query, submitted by a user in Pisa, asks for all
articles written by Mary F. Fernandez. The query is first executed locally in Pisa; since it expressed in
terms of the Pisa view, the system rewrites the query by using the mapping of Figure 7, so to obtain a
query posed against the Pisa schema. In particular, as the mapping of Figure 7 describes the Pisa view
in terms of the Pisa schema, the system has to invert this mapping, so to obtain a mapping from the
view into the schema, and then to compose the newly obtained mapping with the query. This rewriting
is performed by relying on standard algorithms for rewriting query over views [14, 16].

Once the query is locally executed, the system reformulates the query so to match New York view; this
reformulation is performed by directly composing the query with the mapping from Pisa to New York,
relying again on standard algorithms for query unfolding [14, 16]. To illustrate how these algorithms work,
consider the first for clause of the query; the clause searches for articolo elements nested into elements



articoli_Fernandez[
for $a in $bib/articolo,
$aut in $a/autore
let $mf := ‘‘Mary F. Fernandez’’
where $aut() = $mf
return $a]

Figure 8: Pisa user query.

articoli_Fernandez[
for $a in $bib/article,
$aut in $a/author
let $mf := ‘‘Mary F. Fernandez’’
where $aut() = $mf
return $a]

Figure 9: Transformed Pisa user query.

bound to $b:b. To reformulate this clause, the system matches the path with the mapping definition,
hence discovering that the path is mapped by query @s. By looking into the chosen mapping fragment,
the system knows that the path must be rewritten as $bib/article, and that the remaining paths must
be reformulated by using queries 4, Q3, Q2, and Qg.

At the end of the reformulation process, the reformulated query, shown in Figure 9, is then sent to
the New York site; when this query arrives at New York, it is successfully executed since it is compatible
with New York peer view.

Assume now that New York slightly changes the way author names are represented, and that this
schema change reflects on the peer view; instead of a simple author element, detailed information about au-
thor’s first name and second name are represented: Author = author[first[String],second[String]].

Now, when the Pisa user runs again her query, she is not obtaining results from New York, since the
rewritten query does not match the new view of New York. Unfortunately, New York site just returns
an empty sequence as result of the query, so Pisa has no way to distinguish between the error and an
unsatisfied predicate. By typechecking the transformed query against the new view, the system would
inform Pisa that an error is present in the query, which implies that the mapping is corrupted. [

3 Type System

The central point in the proposed approach is the use of a type system capable of capturing incoherences
between the schema specification and both the twigs and the predicates contained in a query. By relying
on this feature, our technique can identify discrepancies between the transformed query and the target
peer view, and provide detailed information about them.

Our type system is capable of precisely identifying type-wrong fragments of a query produced by
mappings. Hence, mappings involved in the production of that wrong part (corrupted mappings) can
easily be identified, as, starting from a sub-query, it is possible to retrieve the mapping that has produced
that part. Also, we provide type information about the part of the database that cannot be matched by
the wrong query fragment. Starting from this type information, it is possible to find an alternative and
correct definition of the identified corrupted mapping.

The type system is an extension of the one presented in [5]. For reason of space, here we formalize
input/output and the main properties of the type system, and explain the role these properties play in
the detection of p2p corrupted mappings (some main definitions of the type system are in Appendix A).

The proposed type system is designed to statically detect the presence of two kinds of errors: sub-
query emptiness and wrong comparisons in the where clause. It differs from that of [5] in two key points:
unlike [5], we extend the check for correctness to the where clause and introduce a proper treatment of
conditions; moreover, error messages returned by the type system contain not only the wrong sub-query,
as in [5], but also the types of the schema involved in the error. We provide this detailed information
since it can be very useful during mapping maintenance or debugging.

Detecting sub-query emptiness means discovering, at static time, the presence of sub-queries that, at
run time, will evaluate to the empty sequence, in each valid evaluation of the query (a query evaluation
is valid if it is done wrt a variable substitution which is valid wrt types of variables in the substitution).
Essentially, these sub-queries consist of path expressions that never match the input data, and, therefore,



are not correct wrt to the types of input data. Detecting wrong where-comparisons, instead, means to
discover, at static time, the presence of comparisons between values of different types

Discovering the presence of such errors is crucial to discover incompatibilities between the query
structural requirements and input data structural specifications (input types). While type rules of the
type system are omitted in this paper, these errors are characterized quite rigorously in terms of query
semantics. This characterization is then used to measure the accuracy of the type analysis.

3.1 Query Correctness

The notion of correctness we propose is an extension of the notion of FE-correctness proposed in [5, 4]
(where FE stands for For each - Exists).

As already stated, we adopt a notion of correctness which is existential, in the sense that it deems
a query as correct if for each part of the query there exists a valid evaluation under which that part
behaves well. Essentially, a sub-query behaves well if the action it specifies is coherent with respect to
the type of the operand of that sub-query. For instance, a sub-query for T in y return )’ is correct if
the type environment allows y to be assigned to a not empty sequence in at least one evaluation (there
is something to iterate on), as well as T child :: [, which is an instance of T child :: NodeTest, is correct
if the type environment is such that T can be assigned to a node with at least a child labeled as I, again,
in at least one evaluation. In both cases, the sub-queries yield a not empty sequence for at least one
evaluation. For this reason we call Not-Empty correctness this kind of correctness, briefly NE-correctness.

Our notion of correctness involves where comparisons as well. A comparison z = y is correct if the
type environment allows both variables to be assigned to two base values. We call WHERE-correctness
this kind of correctness.

As an example of NE-correct query, consider the following query:

$x/phone, $x/mobile

where $x is of type (data[phone[B] | mobile[B]])x. This query is considered as correct, as each sub-
query has a match for at least one instance of $x. Observe that queries like this are quite common in
practice, and they would be discarded by a standard, universal notion of correctness (typical of traditional
programming languages), according to which an expression is correct if each part of it behaves well under
each possible evaluation. Indeed, here, the sub-query $x/phone is always empty in the case the database
only contains numbers of mobile phones, and for this reason the whole query would be considered as
incorrect under universal correctness.

For WHERE-correctness, we adopt an existential approach as well. Before seeing a motivating exam-
ple, recall that, in standard programming languages, a binary comparison involved in a logical condition
is correct if the two involved arguments have the same type. Here we have to relax this notion, thus
resorting to an existential notion of correctness, as otherwise common queries like the following one would
be discarded.

for $a in $bib/article

let $n := $a/author/text ()

let $m := $a/author/second/text()

where $n = ‘Fernandez’ or $m = ‘Fernandez’
return $a/title

with $bib of type

NYBib = bib[(Article|Book)*]

Article = article[Author*,Title,Year, RefCodel

Author = author[String | first[String],second[String]]
Title = title[String]

Note that author content may be a simple string or a complex value composed of two elements.
Above, if in the query input all author names are complex values, the first where condition compares two
incompatible values, and similarly for the second condition when all names are simple strings. However,
when both kinds of author name appear, both comparisons make sense.

In our system a comparison is correct if there is at least one evaluation under which two compatible
values are compared, as in the case above. This corresponds to consider a comparison as correct if the
types of the two arguments are both super type of the base type, according to the standard notion of
XML subtyping [11].

To characterize and to check correctness we have to formally assign an identifier to each query sub-
expression. To this end, we will need the operation (Q) 3, which, for any query @ and location 3, locates
the corresponding sub-query. The location 3 is just a path of 0’s and 1’s, and the function (Q)z follows



0 in a walk down the syntax tree of @), without considering possible where clauses. As we will see, this
in this way we will be also able to precisely locate where conditions.

Definition 3.1 ((Q)|3) (Q)|g denotes the sub-term of the query Q located by the location (3, which is a
sequence of 0’s and 17s:

Q)le
e ])\Oﬁ
Qo,Q1)i.3

(

(

( i)|g iE{O,l}
(for T in Qy return Ql)‘z 8
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(

(

(@

\
)

i)\[j iE{O,l}
let x ::= Qo return Q1));3 g 1€{0,1}
for T in Qo where P return Q1) 5 g 1€{0,1}
g 1€{0,1}

1 otherwise

let x == Qo where P return 1)}, 3

)i

We also define Locs(Q) = {8 | (Q)p #L}.
In order to define NE-correctness, we first define the set CriticalLocs(Q) of the locations of @@ where
we will look for pieces of wrong paths.

[ T T ST
A

CriticalLocs(Q) = {8 | ((Q))p = (T child :: NodeTest) V (Q) g = (T dos :: NodeTest))} U
{8.0 | (Q))p =for T in Qo return @}

CriticalLocs(Q) does not coincide with Locs(Q) because, at least, all locations that reach a sub-query
that is () must not be tested for non-emptiness. But we can also observe that a let sub-query evaluates to
() if and only if the return sub-query does, hence, once we have indicated that the return sub-query has
a problem, the same information about the whole let sub-query is redundant. A similar consideration
holds for a @, @1 sub-query: once the sub-queries Q¢ and @1 have been checked, any information about
the fact that the whole Qg, Q1 evaluates to () is redundant. After a complete analysis, one realizes that
only errors located in sub-queries from which the programmer explicitly started a child/dos navigation
or a for iteration should be considered.

To formalize our notion of correctness, we define Ezt(p, @, 3) as the set of all valid substitutions
that will be used to evaluate the sub-query (Q)‘ g when @ is evaluated under p. These substitutions
correspond to p extended with the bindings introduced by each traversed let or for. Ezxt(p, @, ) is not
just a singleton since each sub-query in the scope of a for T in () is evaluated once for each tree in the
forest f returned by Qo under p. As f may be the empty forest, Ext(p, Q, ) may be empty as well.

In calculating Ext(p, Q, §) we abstract away from where conditions, since we want a notion of cor-
rectness that only involves structural type information about input and actions specified by sub-queries.
We do not consider as incorrect an expression which always evaluates to () because of a where condition
which is always false, as in

for $x in a[] where Condition return $x

This query is always empty if and only if the expression Condition is always false. Hence, we have an
NE-error iff Condition is always false.

The problem of detecting the presence of conditions that are always false is, in general, strictly
connected to a particular content of the database, and in general out of the scope of a type system. Here,
our aim is to inform the user of a p2p system only about conformance between the structural requirements
of the query and the type structure of the query inputs.

As our notion of NE-correctness is up-to the filtering imposed by the where clause, we will use
{Ql}, to denote the semantics of @ up to the where clause; {Q[}, can be defined as [drop-where(Q)],,
where drop-where(Q) is the query obtained from @ by just dropping all its where sub-expressions; as
a consequence, {|Q[}, always contains, in some sense, [Q],. Over { - [}, we can define a query result
containment relation, based on the following structural containment relation among forests.

Definition 3.2 (Forest containment) Owver forests, we define the containment relation < as follows

b <b

O<f

<t = < ff
<t = fLf<ff
< f = f'T < Uf"]
ff<fAfsf" = [ffxf”



Moreover, we extend < to substitutions p in the obvious way:

p<Lp & (xmfep = x—=fepnf<f)
Proposition 3.3 (Query result containment) If p < p’ then [Q], < {Ql},
Definition 3.4 (Substitution Extension)

Eit(p, Q,¢) = {p}
Ezt(p, let z := Qo return Q1, 1.09)

= Eat((p,2—{Qoltp), Q1. B)
Ext(p, for T in Qo return @1, 1.05)

2 Usetrees(1qo i) E2t(p,T—1), Q1, B)
Ezt(p, let © ::= Qo where P return Qq, 1.0)

2 Ext((p,x—~{Qoltp), Q1, B)
Ezt(p, for T in Qo where P return @y, 1.5)

= Usetrees(gopp) Ext(p, T 1), Q1, B)
otherwise: (Q); # L = Ext(p, Q, i.53) 2 Ext(p, (Q)yir B)

NE-correctness can be formally captured in terms of substitution extension. A non-() sub-query
(Q) is correct if there exist p € R and p' € Ext(3, Q, p) such that {|(Q)g}p" # (). Indeed, if such a

substitution cannot be found, (Q)s is useless to the whole query, and is hence incorrect.
We can now formalize query correctness. We first define NE-correctness and then WHERE-correctness.

Definition 3.5 (NE-correctness of @ w.r.t. R) Let R be a set of substitutions for the free variables
of a query Q. Q is correct w.r.t. R iff:

VB e CriticalLocs(Q).  IpeR. I/ € Bat(p, Q. H). {(@)jale’ #
Dually, Q has a NE error at path € CriticalLocs(Q) w.r.t. R iff:
VpeR. o' € But(p, Q, B). J(@slh’ = O
(Observe that Ext(p, Q, 8) = 0 implies that Q has an error at (3.)

The machinery we have introduced to characterize NE-correctness can be used to define WHERE-
correctness as well. To this end, we only need a couple of (quite intuitive) definitions, and to observe that,
if (Q)|g = for T in Qu where P return @ | let z ::= () where P return @1, then the set of possible
substitutions, up-to where filtering, under which each condition of P is evaluated, is Ezt(p, Q, §.1), the
same set of substitutions for Q.

Definition 3.6 Given a query Q containing a condition x1 § x2 or empty(x), we say that the condition
s a B-condition in Q if B is such that

(Q)W = for 7 in Qg where P return () or
(Q)jp = 1let x = Qo where P return (;

with P containing the condition x1 § X2, or empty(x).

Definition 3.7 (WHERE-correctness of Q w.r.t. R) Let R be a set of substitutions for the free
variables of a query Q. @Q is WHERE-correct w.r.t. R iff for all 3:

V3-condition x1 0 x2. IpER. Ip' € Eatlp, Q, B.1). (P (x1) =b1 A p'(x2) = b2)
V3-condition empty(x). 3JpeR. 3p' € Ext(p, Q, B.1). (p'(x) #b)

Dually, w.r.t. R , the query Q has a WHERE-error
e in the B-condition x1 d X2

VpeR. Vp' € Ext(p, Q, B.1).  Abi,ba.(p'(x1) =b1 A p'(x2) = b2)

10



e in the [3-condition empty(x):
VpeR. Vp' € Ext(p, Q. B.1). (p'(x) =)

The last case says that, w.r.t. R , it is never the case that the actual value for x in the B-comparison
empty(x) is a list, hence that condition is an error.

The notion of NE-correctness provided here perfectly coincides with the notion of FE-correctness
given in [5], while the notion of WHERE-correctness is completely new, as in [5] where clauses were not
considered.

As testified by our motivating scenario, the proposed notions of correctness play a crucial role in
characterizing correctness of p2p mappings, as correctness ensures that there exists a strong adherence
between structural specifications in the mapped query and the peer view or schema.

3.2 Type Environments and Types
We adopt, essentially, XDuce’s type language [12]. Types and type environments are defined as follows:

Types T == () empty forest type

| B base type Base Types B := String
| T,T product type
| T|T union type
| 1T] element type
| Tx repetition type
| X type variable

Environments E := ()
| X=T, E

An element type with empty content [[()] will always be abbreviated as I[]. A type environment FE is
a sequence of type definitions of the form X = T, where no type variable is bound to two distinct types;
E(X) denotes the type bound to X by E.

We restrict to [[]-guarded type environments, that are environments where only {[]-guarded vertical
recursion is allowed, as in X = [[X | ()], for instance; we forbid equations like X = X | () and X = X, Y.
The lack of horizontal recursion is counterbalanced by the presence of the Kleene star operator *. This
restriction is canonical, and makes the type language as expressive as regular tree languages [13, 6].

Type semantics is standard: [_]g is the minimal function from types to sets of forests that satisfies
the following monotone equations (the function is well-defined by Knaster-Tarski theorem):

[0l = {0} [B]e = (b}

Llle = {Uf) | FelT]s} [X]e £ [EX)]s
7.7 = {f.f' | felTls, f'€lT]} [T = [TleulT]e
[T+]e 2 {0, fisoosfn [ n20, fi€[T]8}

An environment E is well-formed only if it is [[]-guarded and defines type with non-empty semantics,
i.e. empty-type definitions like X = I[X] are not allowed. A type T is well-formed in an environment F
if every variable in T is defined in FE.

The type assignments for the free variables of a query are defined by means of variable environments
I of the form:

Variable Environments I = ()| z:7,I' | T:T.,T

A variable environment I' is well-formed, w.r.t. an environment F, if no variable is defined twice, if
every type is well-formed in F, and if every for-variable T is associated to a tree type (I[T'] or B).
Our type rules prove judgments of the form :

Judgments J:= E;T'Fg Q:(T; S; W)
In E; Tkg Q: (T; S; W), the type T is the result type of @, and defines an upper bound for the
actual set of values for Q.
In order to compute NE-errors, our typing judgments also return an error set S, which contains a set

of pairs (8.«, T), where 7 is a set of types, such that:

e the sub-query of @ at « is not NE-correct;

11



e types that have failed to match the sub-query at a are in 7.

Therefore, we aim at signaling both positions of wrong sub-queries and parts of the schema to which
a wrong sub-query has failed to match. In this way, the programmer knows what part of the query is
wrong and why, as she also has type information pertinent to the wrong sub query, thus allowing faster
and more accurate query correction. Of course, to give meaning to type components in 7, the global
type environment F is needed.

Similar considerations hold for the error-set W in F; I'Fg Q : (T; S; W). It is a set containing two
kinds of pairs:

e (B.a,((x1,71)d(x2,72))), each meaning that in the query there is an a-condition that is a WHERE-
error, because of y; and 2 assuming values in incompatible types in 77 and 73;

e (B.a,(x,T)), each meaning that in the query there is an a-condition empty(x) that is a WHERE-
error, because of y assuming values in types in 7, which does not contain any type with sequence
values (recall that empty is only defined over sequences).

4 Property of the Type System

The first property enjoyed by our the type system is soundness, this is expressed in terms of valid
substitutions:

Definition 4.1 (R(E,T)) For any well-formed type environment E and T’ well-formed in E, we define
the set of valid substitutions as

RET)={p | x—fepesx:TelNfe[l]e)}
Theorem 4.2 (Soundness of Error-Checking) For each query Q, and I well-formed in E:

E; Tk Q: (5 ;W) =
(B.a,T)€S = Q has an FE error at o w.r.t. R(E,T)

(B.a, (x1,71)0(x2,T2)) €W = Q has a where error at the a-condition x1 § x2 w.r.t. R(E,T)
(B.a,(x,T)) € W = Q has a where error at the «-condition empty(x) w.r.t. R(E,T)

Completeness does not hold in general. For NE-errors, it holds when we restrict to type environments
E which are x-guarded [5, 4]. These are defined as environments in which recursion is guarded by a * type
constructor. Hence, a *-guarded type environment does not allow definitions like Y = [[Y] | m[Y] | (),
while it allows *-guarded definitions like Y = (I[Y] | m[Y])* | (). We have no space here to explain why
completeness does not hold in general, and why it holds under this restriction (to this regard, a clear
treatment can be found in [5, 4], while a shorter explanation is in the Appendix).

The restriction to *-guarded type environments captures most cases, hence is a mild restriction. By
analyzing repositories over the web, indeed, we realized that in practice most DTDs and XML Schema
definitions are x-guarded, including all the schemas reported in the W3C document “XML Query Use
Cases” [3].

Theorem 4.3 (Completeness of NE-Error-Checking) For each query Q, *-guarded E, and T' x-
guarded and well-formed in E:

E;Tkg Q: (5 ;W) =
((B.a,T)eS < Q has a NE-error at o w.r.t. R(E,T"))

Although we state completeness in the context of I' x-guarded variable environments, this is not a
limitation, since, when F is *-guarded, it is possible to split any well-formed I into an equivalent set of
x-guarded I';’s, and to type-check queries w.r.t. this set of environments.

We have not yet proved completeness result with respect to where-errors, nor we have proved formal
properties regarding the type components in error sets. However, all the counter-examples to completeness
of our standard algorithm are correctly analyzed by the complete system; since the kind of case analysis
over which is based our complete algorithm is quite powerful, and is a guarantee of strong adherence
between static and dynamic semantics, we are quite confident that completeness extends to WHERE-
errors as well.

We want to outline that, despite the heavy use of case analysis, our algorithm runs efficiently in most
practical cases (see [5, 4] for a discussion about this).
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Also, several applications of the type systems to some use cases revealed that type information in
error sets are quite precise and useful in discovering and adjusting corrupted peer mappings.

Regarding our completeness result, it is worth observing that, in order to detect corrupted mappings
between peers, completeness of the type system is crucial. Indeed we have that if @) is NE-correct with
respect to R(E,T") and a type change transforms ((E,T)) into ((E’,T”)) such that @ now contains a
NE error at 8 with respect to R(E’,T”), then the type system will detect the presence of such error, by
also providing quite precise information about that type variation entailing the error. As testified by our
motivating example, this is crucial to fix corrupted mappings.

5 Distributed Typechecking Algorithm

The approach we are proposing is based on the idea of typechecking queries at each involved peer.
Consider a query @ originated at peer p;, and assume that the query traverses peers ps, ..., py, hence
being rewritten by the mapping chain {p1,...,pn—1} (p; is the mapping from p; to p;11); the sequence
of peers to be traversed can be precomputed on the basis of a crawling process, or it can be determined
at run-time (the proposed approach is orthogonal to the algorithms used for finding the mapping chain
corresponding to a given query (). Let w be the function transforming queries according to a given
mapping. When wplo___opjfl(Q) arrives at peer p;, p; type-checks it against its peer view in order to
verify that the query requirements are compatible with its view; if the type checker raises an error, then
the system knows for sure that an error is present in the mapping p;_1 (the mapping from p;_1 to p;),
so it can warn p;_; and p; about the problem.

Thus, we assume that queries, once transformed, are type-checked by any peer they reach before
executing them; since the query execution cost is dominated by the communication costs, the adoption
of this strategy should not affect the whole execution cost.

The distributed type-checking algorithm is shown in Algorithm 1. At this time, the algorithm is not
able to locate the portion of the mapping containing errors, even though we believe that this extension
should not be too complex.

Algorithm 1 Distributed type-checking algorithm
Main Algorithm (at peer p = (id,db,T,V,{pi;};))
type-check locally @ against p view (V)
if error then
send user a warning (Q,S, W, E)
stop

else
find a mapping chain for @
chain = < PisDi =i
Q1 =%, (Q)
send(p2,@Q1, typecheck, chain)
wait for errors

end if

TypeCheckReceive(peer, Q’, typecheck, chain)
typecheck locally Q" against peer view
if error then

send(sender, “error”, (Q,S, W, E))

stop

else
pi = nextMapping(chain)
Q" =, (Q)

send(p;+1,Q", typecheck, chain)
wait for errors
end if

As shown by the algorithm, the identification of errors in the mapping chain can benefit the query
processing algorithm, since it allows the system to dynamically bypass potentially dangerous mappings.
This is performed by backtracking to peer p;_1 (if an error was found in the mapping from p;_1 to p;),
and by recomputing the remaining part of the mapping chain. By doing so, the system could avoid global
problems coming from the propagation of errors in the mapping chain.

To illustrate the effectiveness of the proposed approach, we can consider again the scenario described
in Example 2.4, and see what happens when the transformed query arrives at New York. When the
New York peer receives the transformed query @', it starts type-checking )’ against its peer view. The
local type-checking algorithm stops during the control for the correctness of the where clause (Rule
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CoMPWRONG of Appendix A), since the query tries to compare a complex element with a base type
value. The system, hence, notifies to Pisa and New York that an error in the sub-query where $aut = $mf
wrt the type Author has occurred; by using this information, Pisa can update its mapping to New York
and/or change the routing for the query. More in details, the 8 returned by the type-checker, pointing to
the error where $aut = $mf and sent to Pisa, tells Pisa how to directly pick up the corrupted mapping
(its easy to find which mapping is involved in the production of a § sub-query). While the not matched
type Author tells Pisa how to modify the corrupted mapping.

More formally, we can say that if a peer p is notified of an error message (@, S, W, E), with, say,
(B.a, ((x1,71)0(x2,72))) € W, then p can rely on a systematic technique that uses information in
(Q,S,W, E) in order to

e retrieve a quite precise set of candidate corrupted mappings which contains effective corrupted
mappings;

e suggest, by using the type information in S, W, and F, a set of updated mappings, fixing the issues
in the previous mappings.

This sheds light about the different roles of error-positions and not-matched types, both computed by
our type-checker; the formal definition of the above mentioned systematic approach for retrieval-correction
of corrupted mappings is the core of our current efforts in continuing this work, and also represents the
formal connection between our type analysis technique and the p2p infrastructure.

6 Related Works

We are not aware of studies related to the use of the static analysis for discovering corrupted mappings in
p2p systems. The advantages of our type analysis with respect to current version of W3C XQuery type
system [7] has already been discussed in [5]. In a nutshell, our type system ensures complete type inference
and error checking in most cases, while ensuring good performance at the same time. Being the definition
of W3C XQuery type system still a work in progress, no results are known about the complexity of the
whole system, and the system does not ensure completeness of path error-checking (see [5]). Moreover,
for the moment, W3C type system does not contain mechanisms able to precisely locate the position of
wrong sub-queries. We believe that this problem is not difficult to solve for an implementor of the W3C
type system; however, from the experience we gained in our previous investigations, we understood that
the problem is definitively not obvious.

We conclude by observing that, in order to have a powerful type-checking algorithm, in our setting
we can benefit from the absence of many features that complicate typing in a full XQuery language, but
are often unnecessary in p2p systems.

7 Conclusions

This paper presented a technique for automatically discovering corrupted mappings in peer data man-
agement systems. This technique is based on the use of a distributed type-checking algorithm that
type-checks a query at any involved peer; by matching a (transformed) query against the peer view of a
given peer, the algorithm can find inconsistencies in the mapping used for transforming the query, and,
then, warn the user about problems in the mapping.

The distributed type-checking algorithm exploits a local type-checking algorithm, based on a type
system extending the one of [5]; this new type system is able to capture errors in the query paths as well
as errors in the where clause, and returns detailed information about the errors found in the query; in
particular, the type-checker specifies the sub-query containing errors as well as the fragment of peer view
against which the query failed.

As a future work, we plan to further extend the type system so to precisely identify the fragment of
mapping containing errors, as well as to develop techniques for suggesting updated mappings: with this
supplementary information, the site owner can easily and quickly fix the corrupted mapping. Furthermore,
we plan to extend the fragment of XQuery covered by the type system as well as to shift to an XQuery-like
type system.
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A Type Rules and Auxiliary Definitions

In this appendix, we give the main definitions about the type system on which our distributed type
analysis for p2p systems is based. Namely, we provide the definitions of all the operators used in the
type rules, the main properties characterizing these operators, and the type rules. Moreover, relying on
our work [5], we give some intuitions about the technique we use to ensure completeness of NE error
checking.

Our type rules prove judgments of the form :

Judgments J:= E; kg Q:(T; S; W)
E;Ttz 2inT — Q: (T; S; W)
E;TFg TinT — Q where P: (T; S; W)
E;THs P:(W)

In E; Tkg Q:(T; S; W), the type T is the result type of @, and defines an upper bound for the
actual set of values for @Q; the role of 8, § and W will be discussed shortly.

A judgment J is well-formed (written WE(J)) if the involved types and environments are well-formed,
and if all free variables in ) are defined in I". The judgment E; I'tg TinT — Q where P: (T; S; W)
is used to type-check for-iterations, as explained below.

To analyze for T in 1 where P return (Q2, we compute a type 77 for Q1 and use the judgment
E; Tkt TinTy — Q2 where P : (Tz; _; _) to check P and to compute the type of Q2, through
a case-analysis on the type 77 (rules (TYPEIN...)). The analysis of for T in )1 return )2 is made
similarly, by proving E; I'Fg TinTh — Q2 : (T2; -; ), with T3 the type of Q1.

The use of case analysis is crucial to have quite precise type inference (see [5] for a formal estimation
of precision), which in turn is crucial to have a sound and complete error-checking algorithm.

Type checking of conditions in P is made by proving a judgment E; I'' k5 P : (W), typically when
case-analysis stops, that is when a tree type I[T] or B is met; [[]-guardedness of E implies that recursive
type-variables do not make case-analysis loop forever.

Rule (TYPEINELSPLITTING) and Rule (TYPELETSPLITTING) use the function Splity(T), to be dis-
cussed later. For now, we simply define Splitg(T) = {T'}.

More in details, Rule (TYPEFOR) starts the case-analysis, as described above, propagates the error
sets S; and Wi, and adds an error (.0 if the type of Q; only contains the empty forest (5 is a current-
location parameter propagated and updated by the rules). It uses the auxiliary judgment T ~g (), which
checks whether [T]z = [()] e, and is defined below.?

Rules (TYPEINUNION) and (TYPEINCONC) perform the case analysis, and only put in the error sets
those locations that are wrong in both branches.

Rule (TYPEINELSPLITTING) stops the case-analysis, inserts the assumption Z : m[T] in T', starts
the analysis of the where condition P, and falls back to standard type-checking (recall that we assumed
Split(T) = {T}).

Rule (TYPECHILD) requires the type of T to be a tree type m[T’], uses E - T’ :: NodeTest = U
(defined below) to restrict the content type T” to the tree types with structure satisfying NodeTest, and
puts an error location § in S iff the restricted type U is equivalent to the type () (which is an easy test).

Rule (TYPEDOS) is similar, but, instead of using the content type 7", it extracts all the node types
{U,...,U,} that are reachable from T', using the function Treesg(T") defined below, and defines a new
type U' = (Uy | ... | Uyn)*. U’ is the type of any forest that only contains nodes whose type is one of
the U,;’s, hence is an appropriate type for the forest of all descendants of a tree of type T. The type of
T dos :: NodeTest is obtained by restricting U’ to the tree types with structure satisfying NodeTest.

Rule (TYPELETSPLITTING) is standard, since we are assuming that Split,(T) = {T'}. We will later
relax this assumption.

Rules to check WHERE conditions P are quite standard. In Rule (ComMPOK), E + B <T'(x;) means
that B is a subtype of I'(x;) (subtyping for regular tree types is the standard XDuce subtyping, so we
avoid here to present the sub typing definition and algorithm; type equality is derived from subtyping in
the obvious way).

As said before, in order to compute NE errors, our typing judgments return an error set S, which
contains a set of pairs (8.«,7), where 7 is a set of types, such that:

e the sub-query of @ at « is not NE-correct;

e types that have failed to match the sub-query at a are in 7.

Over sets S we define two operations U and M in the following way:

3Recall that, the type () is not the empty type. It is a singleton type, which only contains the empty forest.
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S1uUS: = {(8,7)]3e{1,2}.(8,7T) € Si}U
{(577—1 U7—2) | (ﬁ771) € 817(ﬁ771) € 82}
S1NS: = {(B,T1UT2)| (B, 7)€ S1,(8,T1) €S2}

Typically, M is used in case analysis over union types. For instance, assume that we want to analyze
a query for T in y return T/label in an environment assigning y to the type T | U. In this case, as
explained before, the type analysis of the query is split in two different analysis, the first one over the
type T and the second one over the type U, resulting, respectively, in the error sets Sy and Syr. Due to
the existential nature of NE correctness, the location « relative to T/label is an error only if it is an error
for both cases T and U. This is why the final error set for for T in y return z/label is Sy M Sy (see
rule (TYPEINUNION)).

Union U is used, in particular, for queries @1, Q2 (rule (TYPEFOREST)). Indeed, if for Q1 and Q2 we
have inferred the two error sets Sg, and Sq,, then the error set of 1, Q)2 is the union of errors Sg, USq, .

Over sets W, U and M are defined as follows:

WiuWe = {(B,((x1,T1)d(x2, 72))) | Fhi € {1,2}.(8, ((x1,71)d(x2, T2))) € WitU
{3, (1, (LU T))d(x2, (]2 U TF))) | (B, ((x1,71)d(x2, T2)) € W, (B, ((x1, T/)d(x2, T3))) € W2IU
{08, (x. (7)) | i € {1,2}.(8, (x, (7))) € Wi}U
{8, (x, (U T2))) | (B, (x;T1)) € W, (B, (x,T2)) € Wa}

WilWe = {6, ((x1, (L UT))d(x2, (12U T))) | (B, ((x1,T1)d(x2,T2)) € Wi, (B,((x1,T{)6(x2,T3))) € W2}U
{8, (x, (U T2))) | (B, (x;Ta)) € W, (B, (x,T2)) € Wa}

In the type rules, U and I are used over sets W exactly as they are used over sets S.

Notation A.1 In the type rules we use the notation 8.A, where A is a set of paths, to indicate the set
{(8.0,0) | a € A}.

We now define the auxiliary function Treesg(T'), the predicate T ~g (), and the auxiliary judgments
Et T: NodeTest=U.

Definition A.2 (Subtrees Type Extraction) For any E well-formed and T such that E -+ T Def, we
define Treesg(T) as follows (well-defined by Knaster-Tarski Theorem):

Treesg(()) £ 0

Treesg(B) £ (B}

Treesp(I[T]) 2 {I[T]}U Treesg(T)
Treesp(T,U) =  Treesp(T) U Treesg(U)
Trees g (T) £ Treesp(T)

Treesp(T |U) =  Treesp(T) U Treesp(U)
Treesg(X) £ Treesp(E(X))

Definition A.3 (Empty-Forest-Type Checking) For any well-formed environment E and type T
well-formed in E, we define T ~g () as the minimal function (assuming false < true) that respects the
following set of equations (well-defined by Knaster-Tarski Theorem):

0 ~e () = true

T)~g () £ false

B ~g () £ false

T.U~g() = T~p()AU~E()
Tx~p() = Trpl)
T|U~p() = Trp()AU~g ()
X ~g () = BE(X)~g()

The correctness of this definition is proved by the following theorem.

Lemma A.4 (Empty-Forest-Type Checking)
For any well-formed environment E and type T well-formed in E:

T~p() < [T]e ={0}
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Table A.1. Query Type Rules

I (TYPEEMPTY) (TYPEATOMIC)
WE(E; THg ():(0; 0; 9)) WHE; Ttg b: (B; §; 0))
B, Thg (0: (05 0; 0) By Thg b (B; 0; 0)
(TYPEVARLET) (TYPEVARFOR)
x: T € T WFE; kg z:(T; 0; 0)) Z:T € I' WFE; kg T:(T; 0))
E; Tlkg z:(T; 0; 0) E;Ttrg z:(T; 0; 0)
(TyPEELEM) (TYPEFOREST)

E; Thao Qu:(Th; Si; Wi)
E; Tha1 Qa: (Th; So; Wa)

E; Thpo Q:(T5 8 W)
S.

By Thp U[Q]: (UTT; S5 W) E; Thg Q1,Q2: (T1,T2; S1US2; Wi UWs)

(TYPELETWHERESPLITTING)
BE; Thgo Qu: (Ti; S; W)
SplitE(Tl) = {Al, ey An}
E;T,x:A; kg P: (W)
E;T,z:A g1 Q2: (Uy; Si; Wi)

E; Tts let x := Q1 where P return Q2 : (Ut | ... |Un | (); SUMiz=1..nSi; WU Mz Wi UMi=1. o Wi)

(TYPEFORWHERE)
E; F }—ng Ql . (T1; 51; Wl)
E;Ttg TinTh — Q2 where P : (Tz; S2; Wh)
S= if Ty ~g () then {(5.0,0)} else 0

E; T'tpg for T in Q1 where P return Q2 : (T2 | (); S1US: US; Wi UWs)

(TYPELETSPLITTING)
E;Thgo Q1: (T1; S; W)
Splity (Th) = {A1,..., An}
E;T,z:A g1 Q2: (Uy; Si; Wi)
E;Ttg let x = Qi return Q2 : (Ui | ... | Un; SUMi=1..2Si; WU Mi=1..2aWi)

(TYPEFOR)
E; F }—ng Ql . (T1; 51; Wl)
E;Ttg TinTh — Q2 where true: (T2; S2; Wh)
S= if Ty ~g () then {(5.0,0)} else 0

E; kg for T in Q1 return Q2 : (Tz; S1 US: US; Wi UW;)
L
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Table A.2. Query Type Rules: Rules for Iteration.

I(TYPEINEMPTY)
WE(E; T'ts Tin () — Q where P : ((); 8.1.CriticalLocs(Q); 0))

E; Tt Tin () — Q where P: ((); B.1.CriticalLocs(Q); ()

(TYPEINELSPLITTING)
Splity,(m[T]) = {A1,...,An}
E;T,T:A; kg P: (W)
E; T, x: A; |‘g,1 Q : (Ui; Si; Wz)

E;Ttrg Tinm[T] — Q where P: (Ui |...| Un; Miz1..nSi; Miz1. Wi UTi=1. o W;)

(TYPEINATOMIC)
E;T,2:Brg1 Q:(U; S; W) E;T,T:BFg P: (W)

E;Tts Tin B — Q where P: (U; S; W UW)

(TypPEINCONC)
E;Ttrs in T — Q where P: (T'; S1; W)
E;Ttrs 2in U — @ where P: (U’; Sa; Wh)
E;Ttg 2in T, U — Q where P: (T',U’; S$1 M S2; Wi MWs)

(TyPEINUNION)
E;Trg 2inTi — Q where P: (T7; S1; Wr)
E;Tks TinTe — Q where P : (Ty; So; Wh)

E;Trg Tin T |Te — Q where P: (T} | Ty; S1 M Sa; Wi T Ws)

(TYPEINVAR) (TYPEINSTAR)

E(X)=T

E;Tts Tin T — Q where P: (U; S; W)

E;Ttg Tin T — @ where P: (U; S; W)

E;Tts Tin X — Q where P: (U; §; W) E;Trg Tin Tx — (@ where P: (Ux; S; W)

Table A.3. Child and Dos Type Rules

I
(TyPEDOS)

(TyPECHILD)

WEF(E; T'tg T dos :: NodeTest : (U; S; 0))
z:Tel A (T=m[T"] V B)
{Ur,...,Upn} = Treesg(T)

WF(E; Tt T child :: NodeTest : (U; S; 0))
z:Tel AN (T=m[T"|VT = B)

T = if T = m[T"] then T"else () U =U|...|Un)*
Et T': NodeTest = U Et+ U’ :: NodeTest = U
S = if U ~g () then {(5,{T})} else 0 S = if U ~g () then {(5,{T})} else 0

E; T'tg T child :: NodeTest : (U; S; 0)

E; T'kg T dos :: NodeTest: (U; S; 0)
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Table A.4. Where Type Rules
I

(TRUE) (ComPOK)
E+B<TI(x1) EFB<T(x2)
E; T'tg true: (0) E;Ttg x16 x2: (D)
(COMPWRONG)

if not(E - B <T(xi) i=1,2) then W= {(3, (x1, {T(x1)d(x2, {L(x2)}))} else W =0
E;Ths x19x2: (W)

(OR) (NoT/BRAK)

E;Ttg Pr:W1) E;TFg P:(Ws) E;Ttg P:(W)

E;TFg PLor P: Wi UWs3) E;T'Fg not P: (W) E;TtFg (P): (W)
(EMPWRONG) (EMPOK)

if (EFB=T(y)) then W={(3,(x,T(x)))} else W=10 not(E+ B =T(x))

E; Tk empty(x) : (W) E; T'kp empty(x) : (0)

Rules to prove judgment E F T :: NodeTest = U are the following:

Et T:node()=T (MATCHANYFILT)

(MATCHLABFILT)

Er IT] =1 =1T)

T=B Vv T=mT
ErT:l=()

(NOMATCHLABFILT)

(MATCHTEXTFILT)

Etr B:text()= B

T=() Vv T=m[T|
EF T:text()= ()

(NOMATCHTEXTFILT)

EF T :: NodeTest = T’ EF U :: NodeTest = U’
E+ T,U :: NodeTest = T', U’

EF T :: NodeTest = U
EF Tx:: NodeTest = Ux

(FORESTFILT)

(STARFILT)

EF T :: NodeTest =T’ EF U :: NodeTest = U’
Er T|U:: NodeTest=T" | U’

Etr E(X) : NodeTest = U
EtF X :: NodeTest = U

(UNIONFILT)

(VARFILT)

Lemma A.5 (Termination of Type Filtering) For any label I, type environment E well-formed and
types T and U, the backward application of the type rules to B+ T :: NodeTest = U terminates.

Lemma A.6 (Type Filtering Checking) For any well-formed type environment E and type T well-
formed in E:

Et T: NodeTest=U < [Ulg ={f :: NodeTest | f € [T]e}
Lemma A.7 (Soundness of DOS) For any E well-formed and T well-defined in E:

{U1,...,Un} = Treesg(T)NU = Uy | ... | Up)x = Vfe[T]g. dos(f) € [U]r
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A.1 Properties of the Type System

We provisionally assumed that Splity(T) = {T'}, which results in a completely standard LET-RETURN
type rule. This is sufficient to obtain the canonical ‘soundness’ property (Theorem A.9): types are upper
bounds for the set of all possible results.

Definition A.8 (R(E,T)) For any well-formed type environment E and T well-formed in E, we define
the set of valid substitutions as

RED) ={p | x=fepe x:Tel'Afe[T]r)}
where x is either a for-variable or a let-variable.

Theorem A.9 (Upper Bound) For any well-formed environment E, T' well-formed in E, and well-
formed Q:
E;Tks Q:(Us 5 ) AN peR(E,T) = [Ql, € [Ule

The next property we have is some form of ‘we will never bother you with a false alarm’, an important
property for our purposes, as we use the proposed approach as a maintenance tool for p2p database
systems; hence, the site administrator would be warned about issues in the mappings only if there are
real problems (not just related to a figment of the type rules).

Theorem A.10 (Soundness of Error-Checking) For each query Q, and T well-formed in E:

E:Tkg Q: (5 SW) =
(B.a,T)€S = Q has an FE error at o w.r.t. R(E,T)

(B.a, (x1,71)0(x2,T2)) €W = Q has a where error at the a-condition x1 § x2 w.r.t. R(E,T)
(B.a,(x,T)) € W = Q has a where error at the «-condition empty(x) w.r.t. R(E,T)

A.2 Type-Splitting

We provisionally assumed that Split,(T) = {T'}. This simple definition is enough to obtain soundness of
type checking and error-checking. These are the canonical properties that are proved for any type system,
but they are not very informative: any system that associates the universal type to any expression, and
never finds any existential error, enjoys them as well. For the language uXQ, we can actually aim for a
much stronger property: a type system that is complete, in a sense to be made precise later, and that is
able to catch every error.

Our provisional type system is not up to this aim. It is not precise enough when, for example, there
are variables that occur more than once (non-linear variables) and with a union type. For example,
consider the (artificial) type X = data[mobile[]* | phone[]*], and the query

x/mobile, x/phone.

When x has type X, this query yields either a sequence of elements mobile[] or a sequence of elements
phone][]. Instead, as in XQuery, our type system infers a type (mobile[]x, phone[]x), which also contains
sequences with both mobile[] and phone[] elements.

Our provisional type system does not guarantee completeness of error-checking either. For example,
consider the type Y = c[a[] | b[]] and the query:

Qs = for X in y/a return y/b

where y is of type Y (this code returns a sequence of y/b iff y has a child a, and returns () otherwise). The
query is NE-incorrect, as there is no substitution that makes the subquery y/b yield a not-empty result:
if y is of type c[a[]] then y/b cannot return any tree, and if y is of type ¢[b[] then y/a is empty, hence
y/b will not be evaluated at all. Nevertheless, our provisional type system validates the query as correct.
This is because the two uses of y are deemed acceptable by exploiting two separate, and incompatible,
branches of the union type of y. More specifically, during type-checking, every free variable is substituted
with the whole type that the variable is assigned to by the environment. For the same reason, the type
inferred for this query, Z = b[] | (), is different from the optimal type “()”(similar phenomena happen in
all related type systems we are aware of, including the XQuery type system).

Similarly, if we assume Splity(T) = {T'}, then the type system considers as correct the following query

let x :=y/a/text()
let z := y/b/text()
where x =z

return x
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where y is of type Y = ¢[a[] | b[]].

As before, the type system considers this query as WHERE-correct, as both x and y have type B | ().
However, the query is not WHERE-correct, as, in each possible evaluation of the query, one of the two
compared variables is assigned to ().

We solve these problems by using in the rules a finer Split() function, which produces more precise
types and errors. For example, type cla[] | b[] is split into {c[al]], ¢[b[]]}, hence the query Qs presented
above is analyzed once with y : c[a[]] and once with y : ¢[b[]]; then, the sub-query (Qg)}; is (correctly)
flagged as wrong, since the location 1 is in the error set of both runs of the analysis. The definition of
Splity(T) is non-trivial because of recursive type variables. Consider the type Y = a[Y] | b[Y] | () and
a type assumption y : Y. Every time we unfold Y, new instances of | appear, which have to be “pulled
out” by Split;(T), and which generate new cases to analyze. We would like to unfold Y just once, and
to analyze the query just three times, trying y : a[Y], y : b[Y] and y : (). However, consider the following
query, where (/a)™ stands for n consecutive occurrences of /a:

Q" =for X in y(/a)*/a return y(/a)"/b

To catch the error, Y must be unfolded n 4+ 1 times. However, a solution like this is hard to generalize,
because of queries containing the self-or-descendants axis, like:

for Z in y//node()
for X in Z/a
return z/b

still with y of type Y = a[Y] | b[Y] | ().

Our solution, which is acceptable in practice, is based on a mild restriction on the use of recursion.
We restrict to environments F, namely *-guarded environments, for which recursion is guarded by a *
type constructor, hence ruling out the Y type above (see [4] for details). Under this restriction, error-
completeness is obtained by unfolding recursion until * is met, and “pulling out” only the union type
constructors that are found outside the * (Definition A.11).

Definition A.11 (Split;(T)) If E is x-guarded, then:

Splitg(()) = {0}

Splity(B) = {B}

Splitp (Us) £ {Ux}

Split(X) £ Splity(E(X))

Splity (T |U) £ Splity(T) U Splity(U)

Splitp(I[T]) = {I[A] | A € Splity(T)}

Split, (T, U) = {(A,B) | A€ Splity(T) A B € Splity(U)}

If F is x-guarded, Split;(T) can be computed by a standard top-down recursive implementation of
the definition above: *-guardedness of E implies that the x case will break any potential infinite loop
due to the recursive definition of a type variable. As stated in the body of the paper, for E *-guarded,
this finer definition of Splity(T') ensures completeness for ()-correctness, and we are quite confident that
completeness extends to WHERE-correctness as well. As an example, consider the previous counter-
example:

let x:=y/a/text()
let z:=y/b/text()
where x =z

return x

The type-splitting system correctly deems this query as a not WHERE-correct query.
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