
Self-Similar Pyramidal Structures and Signal ReconstructionJ. J. Benedettoa, M. Leona, and S. SalianibaDepartment of MathematicsUniversity of MarylandCollege Park, MD 20740USAbDepartment of MathematicsUniversity of PotenzaPotenzaItalyABSTRACTPyramidal structures are de�ned which are locally a combination of low and highpass �ltering. The structures areanalogous to but di�erent from wavelet packet structures. In particular, new frequency decompositions are obtained;and these decompositions can be parametrized to establish a correspondence with a large class of Cantor sets. Furthercorrespondences are then established to relate such frequency decompositions with more general self-similarities. Therole of the �lters in de�ning these pyramidal structures gives rise to signal reconstruction algorithms, and these, inturn, are used in the analysis of speech data.Keywords: Pyramidal structures, self-similarities, frequency decomposition, speech analysis1. INTRODUCTIONWe shall de�ne pyramidal structures in the form of dyadic trees, see Figure 1. The nodes at any level will be functionspaces on the real line; and the nodes at level m will be subspaces of the nodes at level m � 1.There are many examples of such trees, and, in the realm of wavelet theory and signal processing, a standardexample of such a pyramidal structure is de�ned by the Walsh functions and the Haar multiresolution analysis.This particular example is generalized by the theory of wavelet packets, due to Coifman, Meyer, and Wickerhauser.1Wavelet packets provide a particular type of frequency decomposition for a given pair of quadrature mirror �lters(QMFs).Our pyramidal structures are also associated with �lter pairs, but they determine a di�erent frequency decom-position than that of wavelet packets. Since we shall use Paley-Wiener spaces as nodes, we refer to our dyadic treesas Paley-Wiener pyramidal structures. These are de�ned precisely and concretely in Section 2, and we shall see thata large class of them can be characterized in terms of the class of Cantor sets having constant ratio of dissection.2In Section 3 we generalize and simplify the approach of Section 2 by using set theoretic methods from theanalysis of self-similar processes. In this setting, the correspondence between Cantor sets and pyramidal stucturesfrom Section 2 can be generalized to include other self-similarities. Further, we shall see that these more generalself-similar pyramidal structures de�ned in terms of speci�c �lter pairs provide perfect reconstruction dyadic treesin the same sense as wavelet packets, the major di�erence being the di�erence in frequency decomposition. It isnatural to investigate the e�ectiveness of self-similar pyramidal structures with regard to this signal reconstruction.We have chosen to implement our algorithm on speech data, and our results are contained in Section 4. This is partof an ongoing study including a comparison with Fourier and wavelet packet results.Notation. We shall use standard notation from mathematical analysis,3 but we do mention the following. R isthe real line, and bR is also the real line, but considered as the frequency axis. The Fourier transform of a function fon R is the function bf de�ned on bR as 8 2 bR; bf () = Z f(t)e�2�it dt;1
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111Figure 1. Pyramidal Structure Nodes and Mappingswhere integration is over R. The support of a function F is designated by suppF , the characteristic function of aset S is 1S , the measure of S is jSj, and a disjoint union is denoted by �S.Acknowledgements. The �rst two authors gratefully acknowledge support from AFOSR 49620-96-1-0193 and TheCenter for Auditory and Acoustic Research at the University of Maryland, respectively.2. CONSTRUCTION OF PYRAMIDAL STRUCTURESA pyramidal structure is de�ned as a double sequence of spaces Xmn , accompanied by mappingsTm�1�1 :::�m : Xm�1�1:::�m�1 �! Xm�1 :::�mwhich depend on speci�c geometric operations and digital or analogue �lters. The subscripts and superscripts havethe following properties: m = 1; 2; ::: , n = 0; 1; ::::;2m� 1 and n =Pmj=1 �j2j�1 for �j = 0; 1. Thus Xmn is the sameas Xm�1:::�m .It is convenient to begin the process at level 0 with a subspace X0 and mappingsT 00 : X0 �! X10 ; andT 01 : X0 �! X11 :It is also natural to think of fXmn g as nodes of a binary tree, where m denotes a particular level and where Xm�1 :::�m�10and Xm�1:::�m�11 are the nodes at level m coming from Xm�1�1 :::�m�1 , see Figure 1.By our designation of the nodes at level m from the nodes at level m�1, we see that for any �xed m the orderingof the spaces Xmn from left to right is bit reversal ordering. Thus, at level 1, we have the ordering 0, 1; at level 2, wehave the ordering 0; 2; 1; 3 ; at level 3, we have the ordering 0; 4; 2; 6; 1;5; 3; 7; etc.We shall deal with Paley-Wiener pyramidal structures by taking X0 = dPW
, where PW
 is the Paley-Wienerspace of 
-bandlimited, �nite energy signals, i.e.,PW
 = ff : R�! C : f 2 L2 (R) and suppbf � [�
;
]g:In order to de�ne the mappings Tmn we shall begin by considering analogue �lters H0, H1 2 dPW
TL1(bR).Generally, we shall take H0, H1 to be lowpass and highpass �lters, respectively. These functions will also beconsidered as mappings H0;H1 : X0 �! X02



de�ned by H�(F ) () = H� ()F (), for � = 0; 1 and F 2 X0.Then, for an arbitrary c > 1 and ! 2 bRwe consider the dilation and translation operatorsDc(F ) () = F (c) and �!(F ) () = F ( � !) ;and we use these operators to de�ne the operatorsD0F = DcF and D1F = D 2cc�1 �� c+1c�1
F + �� c+1c�1
F� (1)as well as D�1:::�mF = (D�1 : : :D�m�1H�m)(F ); (2)where F 2 X0 and D�1 : : :D�m�1H�m denote the m-fold composition operator consisting of the D�j s and H�m . Thesecond operator in (1) has the same e�ect as the dissection procedure used in the construction of perfect symmetricsets.2To �x ideas, let 0 < � = 1c < 1 and let H0 and H1 be the ideal lowpass and highpass �lters de�ned asH0 = 1[��
;�
] and H1 = (1�H0) 1[�
;
]: (3)Note that H0 = D01[�
;
] and H1 = D11[�
;
]as elements of X0. Thus, in this case of ideal �lters, the operator D�1:::�m de�ned by (2) asserts that8F 2 X0; D�1:::�mF = (D�1D�2 : : :D�m) (F ) :Example 2.1.a. It is not necessarily true that suppD�F � suppF for F 2 X0, cf., Proposition 2.2. For example, if F = 1[�;
],� > 0, then suppD0F = [�c ; 
c ].b. Further, it is not necessarily true that suppD0D1F � suppD1F even in the case suppF = [�
;
] . Forexample, if F = 1[�
;
], then suppD1F = [�
;�
c ]S[
c ;
], whereassuppD0D1F = [�
c ;�
c2 ][[ 
c2 ; 
c ]:c. On the other hand, if suppF = [�
;
], then suppD�F � suppF andsuppD�1D�2F � suppD�1F:In particular, dealing with the positive axis, we have[ 
c2 ; 
c ] � [0; 
c ]for the case suppD0D1F � suppD0F , [c2 + 12c2 
; c2 + 2c� 12c2 
] � [
c ;
]for the case suppD1D0F � suppD1F , [0; 
c2 ] � [0; 
c ]3



for the case suppD0D0F � suppD0F , and[
c ; c2 + 12c2 
][[c2 + 2c� 12c2 
;
] � [
c ;
]for the case suppD1D1F � suppD1F .d. More generally, let suppF = [a; b]� [�
;
]. Then suppD0F = [ac ; bc ] � [�
c ; 
c ] � [�
;
] andsuppD1F = [c� 12c a+ c+ 12c 
; c� 12c b+ c+ 12c 
][[c� 12c a� c+ 12c 
; c� 12c b� c+ 12c 
] = I+[ I�;a disjoint union with the property that I+ � [ 
2c ;
] and I� � [�
;� 
2c ]. Geometrically,D0F will shrink by a factorof 1c the support of F ; and D1F gives rise to two copies of F shrunk by a factor c�12c and sent in opposite directionsaway from 0.e. Let B(; r) be the interval centered at  with radius r > 0. If [a; b] � [�
;
] and B(; r) � [�
;
], thenD01B(;r) = 1B( c ; rc )and D11B(;r) = 1B( c�12c + c+12c 
; c�12c r) + 1B( c�12c � c+12c 
; c�12c r):To simplify notation, we write Em�1;:::;�m = suppD�1:::�m1[�
;
]:Proposition 2.2. If F 2 X0 has the property that suppF = [�
;
], then suppD�1:::�mF � suppD�1 :::�m�1F , i.e.,Em�1;:::;�m � Em�1�1;:::;�m�1 : (4)The following calculation is a formal proof of Proposition 2.2, cf., Theorem 3.6, where we deal rigorously withthis situation. It is formal since the intuitive change of variables can not be justi�ed.Proof. Without loss of generality, let F = 1[�
;
]. We shall prove that if A and B are closed sets for whichA � B, then suppD�1:::�m�11A � suppD�1:::�m�11B: (5)The inclusion (5) is su�cient to prove the result since suppD�mF = A � B = suppF = [�
;
].To prove (5), let D�1:::�m�11B = 0 on an open set U � bR and let � > 0 have support contained in U . We obtainthe desired conclusion by the de�nition of support and the following calculation:0 6 Z D�1:::�m�11A()�()d = Z 1A()D�1�m�1 : : :D�1�1 �()d6 Z 1B()D�1�m�1 : : :D�1�1 �()d = Z D�1 :::�m�11B()�()d = 0:We can now complete our de�nition of the Paley-Wiener pyramidal structure.Definition 2.3.a. The Paley-Wiener pyramidal structure corresponding to the ideal �lters in (3) is the double sequence of spacesXmn = D�1:::�mX0; X0 = dPW
4



and the family of internodal and interlevel mappingsTm�1�1 :::�m : Xm�1�1:::�m�1 �! Xm�1 :::�mde�ned as Tm�1�1 :::�mF = D�1:::�m�1�mFsee Figure 2.b. Note that Xm�1:::�m = X01E ; where E = Em�1;:::;�mand Tm�1�1 :::�mF = 1EF:Example 2.4.We can establish a bijective correspondence between perfect symmetric Cantor sets2 determined by � 2 (0; 1=2)and the Paley-Wiener pyramidal structures of De�nition 2.3, where the ideal �lters in (3) are de�ned by � = 1� 2�.We proceed as follows.At level 0 consider the interval [�
;
], and compute D11[�
;
]. This produces two disjoint intervals C1;1 =[�
;��
] and C1;2 = [�
;
] at level 1, each of length (1 � �)
 = 2
�; and we have thrown away the middleinterval of length 2
(1�2�). Let C1 = C1;1SC1;2. Next, we compute D111[�
;
]. This produces 4 disjoint intervalsC2;1, C2;2, C2;3, C2;4, where C2;1SC2;2 � C1;1 and C2;3SC2;4 � C1;2. Let C2 = C2;1S � � �SC2;4.We proceed in this way and compute D11:::11[�
;
], an m-fold dilation/translation operator.We obtain disjoint sets fCm;n : n = 1; 2; : : :2mg with the property that each jCm;nj = 2
�m; and if we setCm = Cm;1S � � �SCm;2m , then C� = TCm is the perfect symmetric Cantor set determined by �.Thus, the extreme right branch of fXmn g, de�ned by the m-fold dilations and translations D11:::1 originating atX0, corresponds to the Cantor set C� in the sense thatC� =\m suppD11:::11[�
;
]:The structure of this process is self-replicating if we consider right branches emanating from any node, and theallocation of subintervals de�ned by these dilations and translations is essentially of bit reversal type.The procedure of Example 2.4 is generalized and rigorized in Section 3.3. SELF-SIMILAR PYRAMIDAL STRUCTURESWe shall now reformulate the constructive approach of Section 2 in terms of elementary but abstract set theoreticaltechniques which give rise to a more general setting than Section 2.To begin, let A � Rd and letg0i : Rd �! Rd; i 2 I0; and g1i : Rd �! Rd; i 2 I1;be bijections such that A =  �[i2I0g0i (A)! �[ �[i2I1g1i (A)! ;or, equivalently, 1A = Xi2I0 1g0i (A) +Xi2I1 1g1i (A):5
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1Figure 2. Pyramidal Structure Nodes and Mappings from Level m � 1Next, we de�ne �lters H0;H1 : Rd �! R asH0() = 1 Si2I0g0i (A) and H1() = 1 Si2I1g1i (A); (6)and for real-valued functions F on Rd, we de�neD0F (x) = Xi2I0 F (g0i �1(x)) and D1F (x) = Xi2I1 F (g1i�1(x)): (7)>From the de�nitions of D0 and D1 we haveD�1 : : :D�mF = Xi12I�1 � � � Xim2I�m Fg�mim�1 : : : g�1i1 �1and, as in Section 2, D�1 : : :D�m will be denoted D�1:::�m .Lemma 3.1. H0 = D01A and H1 = D11A.Proof. H0() = 1()  2 [i2I0g0i (A)() g0i�1() 2 A for some i 2 I0()Xi1201A(g0i �1()) = 1() D01A() = 1:This proves the result since the range of both functions is f0; 1g. The proof is similar for H1.Lemma 3.2. Let �1 : : : �m 2 f0; 1g , �01 : : : �0m 2 f0; 1g, ij 2 I�j , i0j 2 I�0j . If8X;Y � A; g�1i1 : : : g�mim (X)\ g�01i01 : : : g�0mi0m (Y ) 6= ;;then �j = �0j and ij = i0j for all j = 1; 2; : : :m.Proof. Since the images of di�erent g�i (A)s are disjoint, the result is true for m=1. Assume now that the resultis true for m and that g�1i1 : : : g�m+1im+1 (X)\ g�01i01 : : : g�0m+1i0m+1 (Y ) 6= ;:Then g�1i1 �g�2i2 : : : g�m+1im+1 (X)�\ g�01i01 �g�02i02 : : : g�0m+1i0m+1 (Y )� 6= ;:6



Since the result is true for m = 1 it follows that �1 = �01 and i1 = i01. Then , since the g�i s are one-to-one,g�2i2 : : : g�m+1im+1 (X)\ g�02i02 : : : g�0m+1i0m+1 (Y ) 6= ;;and the result follows by induction.Lemma 3.3. suppD�1 :::�mH0 = [i12I�1 � � � [im2I�m [i2I0 g�1i1 : : : g�mim g0i (A) (8)and suppD�1:::�mH1 = [i12I�1 � � � [im2I�m [i2I1 g�1i1 : : : g�mim g1i (A): (9)Proof. Using the fact that g0i and g1i are bijections, we haveD�1 :::�mH0() = 1 ! g�mim �1 : : : g�1i1�1() 2 [i2I0g0i (A) for some �j; ij () 2 [i12I�1 � � � [im2I�m [i2I0 g�1i1 : : : g�mim g0i (A):This proves the claim since the range of D�1:::�mH0 is f0; 1g. The proof is similar for H1.>From Lemmas 3.2 and 3.3 we obtain the following result.Lemma 3.4. suppD�1:::�m H0\ suppD�1 :::�mH1 = ;:Lemma 3.5. suppD�1:::�mH0 �[ suppD�1:::�mH1 = suppD�1 :::�m�1H�m :Proof. The sets on the left side are disjoint by Lemma 3.4. Also, we can use Lemma 3.3 to evaluate the left sideas follows: 0@ [i12I�1 � � � [im2I�m [i2I0 g�1i1 : : : g�mim g0i (A)1A[0@ [i12I�1 � � � [im2I�m [i2I1 g�1i1 : : : g�mim g1i (A)1A =[i12I�1 � � � [im2I�m [i2I1 g�1i1 : : : g�mim  �[i2I0g0i (A)! �[ �[i2I1g1i (A)! =[i12I�1 � � � [im2I�m g�1i1 : : : g�mim (A) = suppD�1:::�m�1H�m :These results allow us to make the following decomposition.Theorem 3.6. Let X0 be a space of real-valued functions supported by a closed set A � Rd, and de�ne the functionspaces Xmn and mappings Tm�1�1 :::�m as in Section 2, but in terms of the �lters H0, H1 and mappings D0, D1 de�nedin (6) and (7). Then Xm�1:::�m = fF 2 X : suppF = [i12I�1 : : : [im2I�mg�1i1 : : : g�mim (A)g;7



Xm�1 :::�m = Xm+1�1 :::�m0 �Xm+1�1:::�m1;and X0 = ��i=0;1Xm�1 :::�m = �n=0;1;:::;2m�1Xmn :Example 3.7.a. We shall now revisit the Paley-Wiener pyramidal structure of Section 2 in terms of bijections g0i , i 2 I0, andg1i , i 2 I1. Let c > 1 and de�neI0 = f1g; I1 = f1; 2g; g01(x) = xc ; g11(x) = c� 12c x+ c+ 12c 
; g12(x) = c� 12c x� c+ 12c 
: (10)Then g0�11 (x) = cx; g1�11 (x) = 2cc� 1x� c+ 1c� 1
; g1�12 (x) = 2cc � 1x+ c + 1c � 1
;thus giving H0, H1, D0, D1, and Em�1;:::;�m as de�ned in Section 2 for X0 = dPW
.If B(u; r) denotes the interval centered at u with radius r (as in Example 2.1e), we haveg01 (B(u; r)) = B(u=c; r=c);g11 (B(u; r)) = B �c� 12c u+ c+ 12c 
; c� 12c r� ;g11 (B(u; r)) = B �c� 12c u+ c+ 12c 
; c� 12c r� ;and, thus, length(g01(B(u; r))) = r=c and length(g11(B(u; r))) = c�12c = lenght(g12(B(u; r))).b. Because of part a we see that the nodes Xm�1 :::�m of the Paley-Wiener pyramidal structure are the functions indPW
 supported by Em�1;:::;�m , where Em�1;:::;�m is a disjoint union of 2k intervals of length2
(1c )m�k( c�12c )k centeredat fg�1i1 : : : g�mim (0)g, and k is the number of �js = 1. Thus, if � = 1=c and k = m, then2
(1c )m�k(c� 12c )k = 2
(1� �2 )m = 2
�m;and Cm = Em1;1;:::;1, where � and Cm were de�ned in Example 2.4.c. In fractal terminology, ( c�12c ; c�12c ) is a contracting ratio list and (g11; g12) is an iterated system of similaritiesthat realizes the ratio list.4 The Cantor sets C� is the limit of its approximants Cm in a well-de�ned norm, and it isthe unique set C with the property that C = g11(C)S g12(C).d. There are analogous constructions for spaces X0 of functions supported in an equilateral triangle or in asquare. In these cases, the subspaces Xm1;:::;1 of X0 are supported in the m-th approximation of the Sierpinski gasketor Sierpinski carpet, respectively.4. SIGNAL RECONSTRUCTION IN SELF-SIMILAR PYRAMIDAL STRUCTURESThe Paley-Wiener and self-similar pyramidal structures of Sections 2 and 3, respectively, are determined by �lterpairs. As such, there are signal processing (for frequency decomposition) and signal reconstruction methods associatedwith these structures. We shall compare these methods with wavelet packet signal reconstruction.1We shall analyze the speech signals depicted in Figure 3.First, we take �xed values of c > 0 and compute with the �lters de�ned in (3). In Figure 4 , the 3 columns ofgraphs correspond to the values c = 2; 3; 4, respectively, and the graphs depict the processed signal at level m = 3.Thus, for each value of c, there are 23 = 8 graphs, and each of the graphs is the inverse Fourier transform of theproduct of F = bs and the characteristic function of E3n. For example, the graph corresponding to c = 2, m = 3, andn = 3 is evaluated as s1;1;0 = i�t[(�t s)1E31;1;0]:8
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Figure 3. Speech SignalWith this simple approach we have s =X s�1 ;�2;�3 :Figure 5 compares the e�ect in the time domain of the frequency decompositions of self-similar and wavelet packetstructures. The �rst column of graphs in Figure 5 is the same as the �rst column of Figure 4 , viz., the Paley-Wienerstructure for c = 2 and m = 3. The other two columns are the wavelet packet processing for the wavelets db5 andcoif4, respectively. The di�erences between the �rst and second two columns are apparent, and analysis is underwayto exploit such di�erences in the area of phoneme discrimination.REFERENCES1. R. Coifman, Y. Meyer, and M. V. Wickerhauser, \Wavelets and their applications," in Wavelet Analysis andSignal Processing, Ruskai, ed., pp. 453{470, Jones and Barlett, Boston, 1992.2. J. P. Kahane and R. Salem, Ensembles Parfaits et Series Trigonometriques, Hermann, Paris, 1963.3. J. J. Benedetto, Harmonic Analysis and Applications, CRC Press Inc., Boca Raton,FL, 1996.4. G. E. Edgar, Measure, Topology, and Fractal eometry, Springer-Verlag, New York, 1990.5. J. J. Benedetto and S. Saliani, \Subband coding for sigmoidal nonlinear operations," in Wavelets Applications,Proc. SPIE 2242, pp. 19{27, 1994.6. S. Ja�ard, \Old friends revisited: the multifractal nature of some classical functions," Journal of Fourier Analysisand Applications 3, pp. 1{22, 1997.7. R. S. Strickartz, \Self-similarity in harmonic analysis," Journal of Fourier Analysis and Applications 1, pp. 1{37,1994.
9



−1000
0

1000

−1000
0

1000

−1000
0

1000

−1000
0

1000

−1000
0

1000

−1000
0

1000

−1000
0

1000

−1000
0

1000

−1000
0

1000

−1000
0

1000

−1000
0

1000

−1000
0

1000

−1000
0

1000

−1000
0

1000

−1000
0

1000

−1000
0

1000

−1000
0

1000

X
3 0

0
0

−1000
0

1000

X
3 0

0
1

−1000
0

1000

X
3 0

1
0

−1000
0

1000

X
3 0

1
1

−1000
0

1000

X
3 1

0
0

−1000
0

1000

X
3 1

0
1

−1000
0

1000

X
3 1

1
0

−1000
0

1000

X
3 1

1
1 Figure 4. Transforms at level 3 for c=2,3,410



−1000
0

1000

X
3 0

0
0

−1000
0

1000

X
3 0

0
1

−1000
0

1000

X
3 0

1
0

−1000
0

1000

X
3 0

1
1

−1000
0

1000

X
3 1

0
0

−1000
0

1000

X
3 1

0
1

−1000
0

1000

X
3 1

1
0

−1000
0

1000

X
3 1

1
1

−1000
0

1000

−1000
0

1000

−1000
0

1000

−1000
0

1000

−1000
0

1000

−1000
0

1000

−1000
0

1000

−1000
0

1000

−1000
0

1000

−1000
0

1000

−1000
0

1000

−1000
0

1000

−1000
0

1000

−1000
0

1000

−1000
0

1000

−1000
0

1000Figure 5. Nodes level 3 for c=2 and db5 and coif411


