2009 International Workshop on High Performance Computational Systems Biology

An efficient GPU implementation for large scale
individual-based simulation of collective behavior

Ugo Erra*, Bernardino FrolaT, Vittorio ScaranoT, Tain Couzinf
*Dipartimento di Matematica e Informatica, Universita della Basilicata, Italy
Email: ugo.erra@unibas.it
Dipartimento di Matematica e Applicazioni, Universita di Salerno, Italy
Email: ber.frola@gmail.com, vitsca@dia.unisa.it
{Department of Ecology and Evolutionary Biology, Princeton University, USA
Email: icouzin@princeton.edu

Abstract—In this work we describe a GPU implementation
for an individual-based model for fish schooling. In this model
each fish aligns its position and orientation with an appropriate
average of its neighbors positions and orientations. This carries
a very high computational cost in the so-called nearest neighbors
search. By leveraging the GPU processing power and the new
programming model called CUDA we implement an efficient
framework which permits to simulate the collective motion of
high-density individual groups. In particular we present as a case
study a simulation of motion of millions of fishes. We describe
our implementation and present extensive experiments which
demonstrate the effectiveness of our GPU implementation.

Keywords-gpu; individual-based model; simulation;

I. INTRODUCTION

Individual-based simulation is a common way to implement
autonomous characters or individuals to create crowds and
other flock-like coordinated group motion. In this simulation
an individual has a local behavior model and it moves by
coordinating with the motion of each other individual. The
number of individuals involved in such collective motion can
be huge, from several hundred birds to millions of individuals.

Biologists consider the collective motion from a mathemati-
cal point of view by modeling each organism individually [2].
For instance, Couzin et al. [6] propose biological models for
fish schools and bird flocks. Others models can incorporate
experimental observations of the behaviors of the organisms
[1], predicting that individuals typically interact with a fixed,
relatively small, number of near neighbors.

In all of these models, the simulation of local perception is a
key aspect for an interactive results. Each individual must take
decisions according only with its neighbors and so it must be
able to identify efficiently these individuals among all others
in the world. This problem from computational point has a
solution O(n?) by using a brute force approach which is a
bottleneck for a massive simulation.

In recent years, graphics processing units (GPUs) outper-
form CPUs in both floating-point performance and memory
bandwith. Furthermore, general purpose computation on the
GPU (aka GPGPU) is becoming easier thanks to the new

A video of this work is available at http://isis.dia.unisa.it/projects/behavert/
video/hibi09/hibi09.wmv.

978-0-7695-3809-9 2009
U.S. Government Work Not Protected by U.S. Copyright
DOI 10.1109/HiBi.2009.11

51

programing model CUDA that allows to exploit the GPU
processing power by using a C-like programming language.

In this work, we present a GPU-based method for massive
simulation of fish schooling model by using CUDA framework
for the graphics card NVIDIA G8x series. We adopt the GPU
processing power for implementing a uniform data grid to
support local perception. The simulation uses grid cells to
keep track of the individuals position and offloads the sorting
to build up the data grid structure to the GPU. The sorting is
performed inside the cells to optimize the search and then to
quickly obtain information about neighbors for each individual
in parallel.

The remaining of this paper is organized as follow: in the
section II we review related work based on hardware solutions.
In the section III we give some information related to the
GPU and the new programming model CUDA. In the section
IV we illustrate our implementation based on CUDA. Finally,
the section VI and section VII are dedicated to experimental
results and conclusion.

II. RELATED WORK

It is worth noting that computer graphics animation has
investigated in past years behaviors models from the point of
view of visualization. Such models usually can generate visual
pleasing and physical plausible animation in real-time by using
simplified or complex models. In fact, since the introduction
of the first behavior model introduced by Reynolds [20] it was
clear that computing large crowds is a very heavy computing
task for real-time computer graphics animation and several
hardware based solutions have been investigated in order to
alleviate this problem.

In [25], Zhou et al. present a parallel simulation running
over a cluster of 16 processors interconnected with Myrinet
switch. They were able to simulate in real-time 512 individuals
by using an efficient load balancing scheme and a parallel
strategy approach. In [18], Quinn et al. simulate 10.000
pedestrians at 45 frame per second(fps) on 10 processors of
the SWARM cluster connected by a gigabit Ethernet switch.

Another approach to improve simulation time is to adopt
spatial data structure or optimizations that are able to exclude
individuals that have no influence. For instance, in Shao et

IEEE
computer
® psouety

al. [23] and Reynolds [19] used a regular grid to accelerate
the behaviors calculation and then exclude individuals too far.
While in [24], Silva et al. present an extension of Reynolds
model that uses self occlusion in the neighbor computation
by using the GPU. The idea is to estimate the number
of individuals occluding the viewpoint of each agent and
quickly reject parts of the invisible individuals in the behaviors
calculation. Experimental results show that this extension runs
up to three times faster than the original algorithm.

Recently, researchers have begun to investigate the par-
allelism of the graphical processing units to speed up the
simulation of large crowds. In [3], De Chiara et al. present a
massive simulation and rendering of a behavioral model using
the GPU. In [4], Courty et al. propose a framework called
FastCrowd which permits to simulate and render a crowd of
10.000 individuals at 35 fps using the GPU. FastCrowd simu-
lates a complex physics-based animation model that takes into
account the influence of gaseous phenomena in the behavior of
the crowd. In the same spirit, Richmond et al. in [21] present
an efficient GPU implementation, for real-time simulation and
visualization. The framework, called ABGPU, allows massive
individual based modeling underlying graphical concepts of
the GPU. In [11], Li et al. propose an individual-based model
for fish schooling on the GPU. They observed a speed up
of 230-240 times for the simulation of 100 fishes over the
corresponding CPU code but they did not take in consideration
a large scale simulation due to lack of optimizations that allows
to identify efficiently neighbors among all existing agents
in the world. In this work, we adopt the GPU processing
power for implementing a uniform data grid to support local
perception in the nearest neighbors search. As we well see,
this approach fits well with distributed behavioral models
and provides a performance increase when compared to the
previous results.

thread

%l per thread local memory

thread block
per block
shared
memory

grid 0

1 ~ global
8 memory
Fig. 1. Levels of parallel granularity and memory sharing on the GPU [14].

III. CUDA: COMPUTE UNIFIED DEVICE ARCHITECTURE

In the last years, the increasing performance of the
GPUs has led researchers to explore mapping general non-

52

graphics computation onto these new parallel architectures.
The GPGPU phenomenon has shown some impressive results,
but the limitations and difficulties of a mapping a problem via
graphics APIs leaved these successful experimentations only
to 3D graphics experts. The demand to use the GPU as a
more general parallel processor motivated NVIDIA to release
in 2006 a new generation of graphics cards (the so called
G80 architecture or one of its successors) that significantly
extended the GPU beyond graphics through a new unified
graphics and computing GPU architecture and the CUDA
programming model [14].

From the point of view of hardware model, the GPU
architecture is built as a scalable array of multithreaded multi-
processors. Each multiprocessor consist of a number of SIMD
ALUs which one called processor. The processor executes at
the same time the same instruction in a SIMD fashion and
has access to local registers. On the multiprocessor level, all
processors of a multiprocessor have read/write access to a
shared memory.

From the point of view of software model, CUDA is a
minimal extension to C language which permits the writing of
a serial program called kernel. A kernel executes in parallel
across a set of parallel threads. Following the representation
in Figure 1, each thread has a private local memory. The
programmer organizes these threads into a hierarchy of thread
blocks and grids. A thread block is a set of concurrent threads
that can cooperate among themselves through barrier synchro-
nization and have access to the shared memory with latency
comparable to registers. The grid is a set of thread blocks that
may each be executed independently. All threads have access
to the same global, constant or texture memory. These three
memory spaces are optimized for different memory usages
and thus have different time access. For example, the read-
only constant cache and texture cache are shared by all scalar
processor cores and this speeds up reads from the texture
memory space and constant memory space.

The grid and block sizes must be defined for every kernel
invocation. Each block is mapped to one multiprocessor and
then multiple thread blocks can be mapped on the same
multiprocessor and are executed concurrently. Multiprocessor
resources (registers and shared memory) are split among the
mapped thread block. As a consequence, this limits the number
of thread blocks that can be mapped onto the same multipro-
cessor. In order to maximize the number of threads supported
by a multiprocessor it is important to take into account the
resources required by each kernel. Then, the choice to design
a framework by using several kernels is a crucial point to
exploit the resources of the GPU and to maximize the amount
of thread parallelism.

Further details on the GPU architecture and CUDA pro-
gramming model are available in NVIDIA’s CUDA Program-
ming Guide [15].

IV. THE F1SH SCHOOLING MODEL

Many animal groups such as fish schools and bird flocks
clearly display structural order, with the behaviour of the

Repulsion

Field of view /°

i

T~

Orientation and

Blind attraction

volume

Fig. 2. A schematic representation of the fish schooling model. Each
individual 4 has a position ¢; and a direction v;. The zone of repulsion
is represented by a circle of radius r, while the zone of orientation and
attraction is represented by an annulus of inner radius r, and outer radius
rp. All individuals have a field of view of degree f and a blind volume of
degree (27 — f).

organisms so integrated that even though they may change
shape and direction, they appear to move as a single coherent
entity. Many of the collective behaviours exhibited by such
groups can only be understood by considering the very large
number of interactions among group members. Individual-
based computer simulations are a very useful analytical tool
to study such groups, and using this technique, it has been
possible to demonstrate that group leadership, hierarchical
control, and global information are not necessary for collective
behaviour.

In the collective behaviors model two rules play a crucial
part in the simulations. In the first rule, individuals attempt to
maintain a minimum distance between themselves and others
at all times. This rule has the highest priority and corresponds
to a frequently observed behaviour of animals in nature [10].
In the second rule, if individuals are not performing an
avoidance manoeuvre to maintain a minimum distance they
tend to be attracted towards other individuals (to avoid being
isolated) and to align themselves with neighbours [17]. These
behavioural tendencies are simulated using local perception
and simple response behaviours.

In our approach, we implemented the fish schooling model
proposed originally by Couzin [7] and modified by Li [11]. In
this model each individual has a strictly local perception of the
space it occupies. None of the creatures being part of group
has a full knowledge of the entire group. Hence, the decisions
must be taken by every individual taking into account only
local neighbors that are perceived from its fields of view f.

Groups are composed of n individuals. At time ¢, each
individual ¢ has a position ¢;(t), a direction v,(t), a speed
s; and maximum turning rate 6 (Figure 2). Individuals simul-
taneously determine a new desired direction of travel d; by
considering neighbors within two behavioral zones. The first
zone, called zone of repulsion, has a local interaction range
rr. Bach individual attempts to avoid collision between itself
and others individual j in this zone by turning away

-y alhmal

it + Ab)
(t+ — (0]
J#i

|CJ

53

This behavior has always the highest priority. If neighbors
are not detected in the zone of repulsion then the individual
i tend to align with j neighbors in the second zone called
zone of orientation and attraction. This zone is a annulus of
inner radius 7, and outer radius r, around the individual. The
desired direction of travel in this case iS'
Z
\

d;i(t+ At) =w

=+ ‘ Z ‘CJ

The terms w, and w, are the weights of attraction and orien-
tation, respectively. As discussed in [11], by using these terms
the individuals can balance their orientation and attraction
preferences. For example, if w, > w,, individuals are more
interested in orienting their direction of travel with their
neighbors than attraction towards them while if the weights are
approximately the same individuals balance their orientation
and attraction preferences. Give the desired direction of travel
randomness is included in the model by rotating the vector d;
by an angle draw from a normal distribution. Since individuals
can only turn §At radians in one time step, if the angle
between d;(t) and d;(t + At) is greater than At the desired
direction is not take into account and individuals rotate At
towards it. While, if the angle is smaller than 6A¢ the
individuals position is updated as

7C’L

ci(t + At) = c;(t) + sd;(t + At)

where ziz is the normalized vector. Note that during the
computing of the desired direction we consider that orientation
and repulsion zone have a blind area of degree (2w — f)
for which neighbors within these zone are undetectable while
for zone of repulsion and zone of orientation individuals
communicate with their neighbors (Figure 2).

The model illustrated above requires to identify neighbors
out of whole world and in particular determines all individuals
that fall inside the zone of repulsion and zone of orientation
and attraction. A brute force approach requires O(n?) steps
for a proximity screening i.e., compares each individual to all
others and gathers all individuals within the range r,. and 7.
This approach is sufficient for a hundred individuals but it is
clear that is computationally inefficient for the simulation of
thousands individuals in real-time.

V. THE GPU-BASED METHOD

In order to avoid the O(n?) complexity of the neighbors
search due to the communication of each individual with every
other individual in the group, we adopt a common strategy
based on the assumption that interaction with some or all
steering behaviors drops off with distance. Then, we are inter-
ested only to compute efficiently a relatively limited number
of individuals. Not only is this computationally efficient but it
captures an important aspect of organization in fish schools,
that individuals are typically in close proximity (often less than
a bodylength apart [17]) which limits the range over which
individuals can detect one another [10] [5]. This biologically-
based assumption alleviates the computational effort required
by the neighbors search as well as the difficult to manage

dynamic data structures which are not trivial to implement on
the GPU.

In order to accomplish this task, a static grid subdivides the
world into cubic cells. Each cell in the world is of equal size
and has a unique ID. To aggregate all the individuals inside
the same cell in the GPU memory we assign a hash value to
each individual based on its center position. Specifically, given
an individual position the hash value is the ID of its cell. At
the end of this step, the GPU performs a radix sort based
on ID cells. This reordering allows us to identify quickly all
individuals inside the same cell as well as to increase the cache
hit rate during neighbors search. In fact, to find all individuals
within a given region it is sufficient to consider individuals
inside the cells that overlap a region of interest.

Hash
Mapping
Sorting

Data
Reordering

Cells
Counting

Neighbors
Search

Simulation
Update

Fig. 3. The execution flow. The CPU is only in charge of the initialization
of data structure and the generations of attributes such position, direction and
speed.

The execution flow of the simulation can be divided as
illustrated in Figure 3. The initialization of data structures is
implemented in the CPU and consists of the random generation
of individuals’ attributes such position, direction and speed.
These attributes are float4 data type and are copied in the
global memory of the GPU as three distinct 1D arrays. Each
subsequent step in the GPU consists of one or more separate
kernels that run for each individual (except in the sorting step).
When a thread calls a kernel, the kernel first figures out the
calling thread’s ID (using the CUDA special variable blockldx
and threadldx). This thread ID is then used as individual ID
to access which individual’s attributes the current thread will
work on. Then, each thread independently will be able to
process the individuals’ attributes inside the 1D arrays.

The execution flow can be divide into in several steps. The
following subsections describe for each step the data structure,
the role of sorting and how we implement the fish schooling
model.

Hash Mapping

This step consists of a kernel that for each individual
computes and stores a pair <CELL ID, INDIVIDUAL ID>

54

in the global memory as a 1D array (see Figure 4a). This
operation is performed from scratch at the beginning of each
simulation cycle. The CELL ID of each individual is a hash of
its centroid’s coordinate. As in the work of Green [9], we use
the linear CELL ID as the hash function which provides good
coherence in memory access.

Sorting

The 1D array of previous step is sorted based on the CELL
ID. The sorting is performed using a GPU radix sort described
in [13] by Scott Le Grand. At end of this step, the array <CELL
ID, INDIVIDUAL ID> maintains a list of individual IDs in cell
order (see Figure 4b).

Data Reordering

The data reordering step objective is to reorder the position,
the direction and the speed arrays by using the INDIVIDUAL ID
order of the previous step (see Figure 4c). For this purpose we
use a kernel that takes the INDIVIDUAL ID sorted list and an
array as inputs and returns the reordered array. For this step our
approach is to assign a separate kernel for each array to reorder
and perform three separate kernel execution. In this way, we
avoid the situation where there is an insufficient amount of
any one or more types of resource needed for the simultaneous
execution of the threads. Such a situation could be required by
the thread assignment for managing of all attributes’ individual
in the same kernel.

Cells Counting

From the previous <CELL ID, INDIVIDUAL ID> array, we
need to find the index start of any given cell in the sorted
array. Then, given a cell, we will able to scan all individuals
that fall inside the cell from the sorted list (see Figure 5).
This is achieved by running a kernel which uses one thread
per individual. For each thread, if the CELL ID of the current
individual is different from the CELL ID of the previous
individual then the current thread ID is used as index start
of the current cell, and is written to another array. At the end
of this step, we can scan over all individuals that falls inside.
The scanning goes from from the index start up to the current
cell index that no longer equals the index of the cell we are
examining.

ThreadID|0|1|2|3|4|5|6|7|8|9|

Fig. 5. The cells counting step. The CellStart array mantains the list of
individuals that fall inside each cell.

10

,.
o _~©
Wl

14

Fig. 4.

Neighbors Search

This step is responsible to create a list of neighbors from the
individual position. As we will see in the evaluation section,
this is a critical phase and require a careful choice of graphics
hardware resources to obtain superior performance results.

We take in consideration two types of spatial queries:
range query and k-nearest neighbors (k-NN). The range query
identifies all the individuals that fall inside a given radius.
While the k-NN searches the k neighbors individuals nearest
to the query individual. We adopt a hybrid approach for
spatial query that we can called k-NN range query where k
is maximum number of nearest neighbors that fall inside a
radius. Furthermore, the search radius is defined in terms of
depth search from the current cell. Then, a zero-depth search
scans only the cell of the current individual, a one-depth search
scans all 3 x 3 x 3 cells, a two-depth scans 5 x 5 x 5 cells,
and so on.

In this approach, the cell size is important to trade-off the
correct simulation with the accelerations of k-NN range query.
If the cell is too small, the filling of the uniform grid could be
require additional computational times and could be necessary
to enlarge the search radius. On the other hand, if the cell is
too big there could be too many individuals that fall inside the
cell and we could lose the benefits of the uniform data grid
for neighbors search. Another important aspect is the the size
of the grid that enclose the simulation. We adopt the simple
following strategy. Given the grid density d as the number of
individuals per grid cells, the grid size v is calculated with
the equation v = <{/n/d, where n is the total number of
individuals.

Simulation Update

Once we have obtained the list of neighbors for each
individual we can calculate the interactions between them.
This is achieved by running a kernel for each individual. Then,
each thread by using the list of neighbors computes the desired
direction of travel described in section IV. Of course, the
thread has to distinguish between the individuals at distance

55

c)

The first three steps of the execution flow: a)Hash Mapping, b)Sorting, c)Data reordering.

r and r,. Figure 9 shows a rendering of the fish schooling
model during the execution.

VI. PERFORMANCE EVALUATION AND DISCUSSION

We performed a series of experiments in order to measure
the performance of our approach. The tests were executed on
a Core 2 Duo 2.0Ghz equipped with 2GB RAM and Geforce
8800GTX 768MB (Compute Capability 1.0). All the kernels
were written in CUDA 2.1 and the application in C++.

To begin a simulation, individuals are placed in a bounded
region (so that each individual initially interacts with at least
one other individual), with random positions and directions
of travel. The parameters were fixed to be r, =1, 1, = 7.0
(and 7, = 1.5), wo/w, = 16, f = 350°, s = 1, A = 0.2,
o = 0.01, and § = 115°. We considered the average values
for 3000 steps which is sufficient to obtain a stable simulation
without the influence of initial random position and velocities
and allowing individuals to meet and form small local groups.

On the left of Figure 6, we report a simulation considering
only 31 nearest neighbors while steering each individual and
a cell size equals to 7, that is 7.0 and 1.5 with a density of
0.005. With these values it is possible to simulate about 900 K
individuals per second with r, = 7.0 and 6.2M individuals
per second with r, = 1.5. This result is obtained with an
execution configuration where the block size is 128 and the
number of total blocks is always computed as (total threads /
block size). In our experimentations, these values fit well with
the resources requirements of our kernel code.

From point of view of visualization our GPU implementa-
tion is able to visualize about 8192 (for r, = 1.5) and 65536
(for r, = 7.0) individuals at 60 fps as shown on the right of
Figure 6). Note that a frame rate of 60 times per second is
more than sufficient for smooth animations allowing to interact
and visualize the simulation in real-time. De Chiara et al. [3]
simulated 1600 individuals at 60 fps with obstacles avoidance
too. While in [19], Reynolds reporting 15000 individuals at
60 fps on PlayStation3 development system. It must also be
noted that due to different graphics hardware generations or
different architectures these results are difficult to compare

/ 700
140,0
512 ==r_ p=7.0 ‘.\-\
=—=r_p=7.0
—&-r p=15 I
_p / 120,0 o =15
256
= T100,0 LN
Py 194 S
= 9
‘; 128 + 80,0
: / / b 8_ \ \
b 7
°]
] 60,0
= ’ : \ \
%] (N8
40,0
* . \ \\
32 2
-~
Y 200 \ \.
16 T 0,0 : : . : : ‘
2710 272 214 N 2716 2718 2720 2010 2112 2114 2116 2718 2420
Fig. 6. Performances with increasing number of individuals. The simulation is performed with maximum 31-NN and a cell size equals to r,. The grid

density d is 0.005. On the left, computational times in seconds to complete a simulation of 3000 steps. On the right, visualization time in frames per second

with rendering.

and we can only report that while we consider 31 neighbors
these implementations considered only 5 neighbors. Moreover,
these implementations consider the Reynolds model which is
computationally less expensive than the Couzin model. The
Reynolds model considers only one zone and the direction
of travel is achieved performing a weighted sum of steering
behaviors from all the neighbors perceived inside the field of
view. In ABGPU [21], authors used a hardware comparable
with our configuration to simulate 65536 individuals at 60
fps. In both approaches, up to a million of individuals can be
simulated at 5 fps without visualization but with a decreasing
number of individuals our approach produces better perfor-
mance. In particular, our GPU implementation gives as average
25 percent better performance than the ABGPU system with
different numbers of individuals ranging from 2'2 to 220 and
also this implementation consider the Reynolds model.

Finally, we performed two experimentations related to the
variation of the ratio w,/w, and k in the k-NN range query for
rp = 1.5, 7, = 7.0 and 65000 individuals. The Figure 7 shows
different values of the ratio w,/w,. In general for different
values of 7, the overall performances are affected slightly.
This is very interesting result because the use of uniform
static grid in our implementation allows to simulate different
orientation and attraction preferences maintaining constant
the performances of the simulation. The Figure 8 shows a
simulation with different values of k. In this case, for r, = 1.5
the choice of k£ has no influence because the small radius of
the zone of orientation and attraction allows to discard a priori
several individuals before the k-NN range query phase starts.
While, for 7, = 7.0 the overall performances are significantly
affect. This is due to the k-NN range query phase that has
to performs much more comparison due to a large number
of individuals that fall inside the zone of orientation and
attraction.

56

250

——7
Z 200 —_-15 —
[J] //
£
+ 150
c
o
=
=< 100
£
)
50 = =
0 . : . . :
0,25 1 4 16 64
Fig. 7. Recorded performance with different values of wo/wq.
250
——7
— 15
@ 200 -
o
E
S 150
c
£ /
&
E 100 —
=
50
0 . : . s
3 7 15 31
Fig. 8. Recorded performance with different values maximum number of

nearest neighbors k.

VII. CONCLUSION AND FUTURE WORK

This paper has described a GPU-based method for run-
ning high performance individual-based simulations based on
CUDA. We adopt an approach based on a uniform data grid in
order to accelerate the neighbors search by using the parallel
architecture of the GPU. Our results show that this approach

Fig. 9. Two renderings of implemented model. In this case the GPU performs simulation and visualization by using OpenGL [16]. In order do not overload

the GPU the 3D fish is a low-poly model with 80 polygons.

can be very effective for such simulations.

We are going to support this work with some extensions.
The memory hierarchy of the GPU is quite complex and we
need exhaustive performance analysis to maximize the GPU
utilization. In particular, an advanced extension concerned with
a better use of the shared memory will help to optimize the
neighbors search.

By exploiting the GPU processing power, we expect that
it will be possible to simulate more complex models or
to integrate features like collective motion during escape
and pursuit response [22]. Our approach extends beyond the
study of fish schools and animal groups. With appropriate
modifications of the interaction terms it could be modified
to simulate very effectively a large number of systems in
which local interactions among mobile elements scale to
collective behavior, from cell aggregates, including tumors [8]
and bacterial biofilms [12], to aggregates of vertebrates such
as migrating wildebeest, and even human crowds. In addition,
our capacity to include variation among individuals could have
enormous potential for the study of the evolution of collective
behavior. For this purpose, we are going to design a flexible
and extensible framework based on a plug-in architecture. This
framework will permit developers to extend as they see fit
with other behavioral models for longer times and over more
realizations.

57

(1]

(2]

[4

=

[5]

REFERENCES

M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, 1. Gi-
ardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, and
V. Zdravkovic, “Interaction ruling animal collective behaviour depends
on topological rather than metric distance: Evidence from a field study,”
PNAS, vol. 105, p. 1232, 2008.

S. Camazine, N. R. Franks, J. Sneyd, E. Bonabeau, J.-L. Deneubourg,
and G. Theraula, Self-Organization in Biological Systems. Princeton,
NJ, USA: Princeton University Press, 2001.

R. D. Chiara, U. Erra, V. Scarano, and M. Tatafiore, “Massive simulation
using gpu of a distributed behavioral model of a flock with obstacle
avoidance,” in VMV, 2004, pp. 233-240.

N. Courty and S. R. Musse, “Simulation of large crowds in emergency
situations including gaseous phenomena,” in CGI ’05: Proceedings of
the Computer Graphics International 2005. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 206-212.

I. D. Couzin and Krause, “Self-organization and collective behavior of
vertebrates,” Advances in the Study of Behavior, no. 32, pp. 1-75, 2003.
I. D. Couzin, J. E. N. S. Krause, R. James, G. D. Ruxton, and N. R.
Franks, “Collective memory and spatial sorting in animal groups,”
Journal of Theoretical Biology, vol. 218, no. 1, pp. 1-11, September
2002.

I. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin, “Effective
leadership and decision-making in animal groups on the move,” Nature,
vol. 433, no. 7025, pp. 513-516, February 2005.

T. Deisboeck and I. D. Couzin, “Collective behavior in cancer cell
populations,” Bioessays, vol. 31, no. 1, pp. 190-197, 2009.

S. Green, “Cuda particles,” nVidia Whitepaper, November 2007.

J. Krause and G. Ruxton, Living in Groups. Oxford University Press,
USA, 2002.

H. Li, A. Kolpas, L. Petzold, and J. Moehlis, “Parallel simulation for
a fish schooling model on a general-purpose graphics processing unit,”
Concurrency and Computation: Practice and Experience, vol. 21, no. 6,
pp. 725-737, 2009.

[12]
[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

C. D. Nadell, J. B. Xavier, and K. R. Foster, “The sociobiology of
biofilms,” FEMS Microbiology Reviews, vol. 33, no. 1, pp. 206-224,
20009.

H. Nguyen, Gpu gems 3. Addison-Wesley Professional, 2007.

J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with cuda,” Queue, vol. 6, no. 2, pp. 40-53, 2008.
Nvdia, NVIDIA CUDA Compute Unified Device Architecture - Program-
ming guide.

Opengl, D. Shreiner, M. Woo, J. Neider, and T. Davis, OpenGL(R)
Programming Guide : The Official Guide to Learning OpenGL(R),
Version 2 (5th Edition). Addison-Wesley Professional, August 2005.
B. L. Partridge, “The structure and function of fish schools,” Scientific
American, pp. 114-123, June 1982.

M. J. Quinn, R. A. Metoyer, and K. Hunter-zaworski, “Parallel imple-
mentation of the social forces model,” in in Proceedings of the Second
International Conference in Pedestrian and Evacuation Dynamics, 2003,
pp. 63-74.

C. Reynolds, “Big fast crowds on ps3,” in Sandbox ’06: Proceedings
of the 2006 ACM SIGGRAPH symposium on Videogames. New York,
NY, USA: ACM, 2006, pp. 113-121.

C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” in SIGGRAPH ’87: Proceedings of the 14th annual conference
on Computer graphics and interactive techniques. New York, NY,
USA: ACM, 1987, pp. 25-34.

P. Richmond and D. Romano, “Agent based gpu, a real-time 3d
simulation and interactive visualisation framework for massive agent
based modelling on the gpu,” 2008.

P. Romanczuk, I. D. Couzin, and L. Schimansky-Geierl, “Collective
motion of animal groups due to escape and pursuit behavior,” Physical
Review Letters, vol. 102, 2009.

W. Shao and D. Terzopoulos, “Autonomous pedestrians,” Graph. Mod-
els, vol. 69, no. 5-6, pp. 246-274, 2007.

A. R. Silva, W. S. Lages, and L. Chaimowicz, “Improving boids
algorithm in gpu using estimated self occlusion,” in Proceedings of
SBGames’08 - VII Brazilian Symposium on Computer Games and
Digital Entertainment. — Sociedade Brasileira de Computagdo, SBC,
2008, pp. 41-46.

B. Zhou and S. Zhou, “Parallel simulation of group behaviors,” in WSC
’04: Proceedings of the 36th conference on Winter simulation. Winter
Simulation Conference, 2004, pp. 364-370.

58

