
A Visual Adaptive Interface to File Systems

Rosario De Chiara
Dipartimento di Informatica ed
Applicazioni “R.M. Capocelli”

Università di Salerno
84081, Baronissi (Salerno),

Italy

dechiara@dia.unisa.it

Ugo Erra
Dipartimento di Informatica ed
Applicazioni “R.M. Capocelli”

Università di Salerno
84081, Baronissi (Salerno),

Italy

ugoerr@dia.unisa.it

Vittorio Scarano
Dipartimento di Informatica ed
Applicazioni “R.M. Capocelli”

Università di Salerno
84081, Baronissi (Salerno),

Italy

vitsca@dia.unisa.it

ABSTRACT
In this paper we present our experience in building a visual
file manager, VennFS2, that offers to users an adaptive
interface toward access to files. Our file manager was orig-
inally designed to overcome some of limitations of hierar-
chical file systems, since it allows users to categorize files in
such a way that files may belong multiple categories at once.
Based on the past history of the files that were opened and
modified by the user, VennFS2 graphically presents the
user a small number of choices of the next file the user will
modify. Some preliminary testing with interesting hints are
also reported.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Interaction styles

General Terms
Venn diagram

Keywords
Set, Venn, User Interfaces, Adaptivity

1. INTRODUCTION
VennFS2 is proposed as a novel interface for the most com-
mon interaction all the users perform on a computer: access
of the files stored on their computer.

Single-inheritance. As stated in [6] “The desktop and
file&folder metaphor were created so that users could relate
their computer-based systems to the paper-based systems
they were used to”. The heaviest heritage of this origin is
the “single-inheritance” structure of filesystem: a file can be
in one place at a time. A solution to this problem is pro-
vided in [5], multiple inheritance is given by the attributes
associated to documents. Documents attributes capture the
multiple different roles that a single document might play.

In VennFS2 a simpler and more intuitive way of multi-
inheritance has been implemented.

Adaptivity. As far as we know, there are no specific adap-
tive visual interface that provides the same capabilities of
VennFS2. Nevertheless, some works on related topics show
a particular interest in trying to improve and adapt the pre-
sentation and interaction with users. A work that is ger-
mane to our research, though not visual, is the Adaptive
Command Line interface [2] where previous commands for
a UNIX shell are used to provide indication to the next,
most probable command to be typed. Some simple “adap-
tive” mechanism are also provided by Microsoft Windows.
One of them is extremely silent and, still, very effective.
Windows users that put to good use the ALT-TAB keys to
switch among currently active tasks would have probably
noted that the tasks are presented always in order of most
recently accessed (i.e. that had most recently the focus) to
least recently used. This consists in a consistent time saving
in repeatedly switching between few relevant task among all
the active ones.

Our proposal. The prototype that we present here is a tool
that can help the user during daily activities. Our work fol-
lows the research line that started by developing VennFS
[3] that allowed users to place documents and categories on a
plane where files may belong to multiple categories at once,
by using well-known and intuitive Venn diagrams to repre-
sent graphically each category. Our tool, VennFS2, is able
to adaptively suggest the user what the next action (in term
of access to files) can be. In fact, the files that are placed
in the Venn diagrams are constantly monitored to recognize
actions by the user. The actions performed up to that point
are, then, used by VennFS2 to provide a certain number
of suggestions. The suggestions are visual since they are
based on the graphical representation with Venn diagrams,
in such a way to present the file within its context, i.e. the
categories and the files that are “close” to it in the plane.
Our interface provides suggestions that are only few clicks
(or keys typed) away of our normal activity. Therefore, we
placed particular care in designing an interface that, though
fully visual, asks only few and quick interactions by the user.
The adaptive interface is not intrusive: the user is silently
observed during the common activities and discreetly pre-
sented with the suggestions.

2. MAIN FEATURES OF OUR TOOL

VennFS (see [3]) can extend the traditional desktop metaphor
based on hierarchical file systems by graphically organizing
files on a plane in such a way that (1) each files can be-
long to multiple categories, (2) proximity on the plane of
files/categories can be used by the user to relate informa-
tion and (3) filtering by time is possible. The goal, here, is
to solve the problem of documents that belong to several as-
pects of our work and that, therefore, should be placed into
several folders at once. The technique we used is based on
Venn diagrams. Categories are natural extension of folders
and are represented by ellipses on the plane. The intersec-
tion of two or more ellipses is the logical place where to place
files that belongs to different categories.

A remark is needed about symbolic links, the only technique,
offered by file systems, to possibly address the problem of
multiple categorization. They do not represent a suitable
solution to our problem since they provide a solution for a
single document and the approach is neither systematic nor
visual (i.e. unintuitive at all). Moreover, links are difficult
to trace back from the original document and therefore it is
complex to change the folder which the document belongs
to: all the links pointing at the document should be changed
at once. The problem is well known in the Hypertext area:
it is similar to the broken links that can be found on the
Web, and for which solutions, like Open Hypermedia, were
originally designed by the community.

Several advantages can be found on the representation of
files on the plane, since we push the user to set data relation-
ships as spatial relations by representing closeness of argu-
ment (between categories as well as between documents) by
means of proximity in the plane. The user is suggested, im-
plicitly, to draw related categories close to each other, since
it allows partial overlap of them, while totally unrelated cat-
egories are intuitively placed far away. An interesting visual
consequence of this usage of distance to relate documents is
that filtering by arguments is implicitly obtained by zoom-
ing on the region and zooming in/out to get at the desired
level. Our objective is that the user is given an instrument
to easily draw the environment represented by the (unstruc-
tured) corpus of his/her own documents, place documents
into (possibly multiple) categories and relate categories by
proximity: the task of information retrieval for the user is
made easier by building a cognitive map [10] of this environ-
ment. Since the environment is created by the user himself,
the internalized analogy in the human mind of the physical
layout (created by using our tool) becomes easier to grasp.
In a sense, one may see VennFS2 as a way to make a cog-
nitive map of its documents explicit and browseable. In or-
der to facilitate the navigation we provide the capability to
place landmarks, since it well known that their identification
helps in navigating [4] as well as learning and memorizing
[7]. Landmarks do not correspond to files. A list of them
is shown to the user and each one can be easily reached by
double-clicking on landmark’s label. A first attempt to help
the user in recognizing recently accessed file was originally
present in VennFS. In fact, an indication of how recent is
the file is shown by using an easily interpretable metaphor:
recent (i.e. recently accessed) files are “hot” (i.e. red) while
old files are “cold” (i.e. blue) with intermediate colors to
represent intermediate age. Then, it is important to allow
filtering over the time (by using a slider) in such a way to

show only the files whose last modification date is below a
given date.

2.1 Prediction of the next file to access
The adaptive mechanism of VennFS2 is based on Markov
chains. The way of training a Markov chain and the way
of use it are two critic choices, so we have also performed
a preliminary testing sessions of the system that have been
done on two users with different behavior.

Markov chain. As long as the user modifies files and doc-
uments kept in the sets diagram, VennFS2 keeps track of
modifications by probing last write time for every file. The
variation of last modification time causes two effects: the
color of the file label in the diagram goes to red (meaning a
“hot” file) and a list of modified files (considering consecu-
tive writes too) is kept up to date. This list is used to train
a Markov chain. A Markov chain is a stochastic process
with what is called the Markov property : the process con-
sists of a sequence X1, X2, X3, . . . of random variables taking
values in a “state space”, the value of Xn being “the state
of the system at time n”. The discrete-time Markov prop-
erty says that the conditional distribution of the “future” :
Xn+1, Xn+2, Xn+3, . . . given the “past”, X1, ..., Xn, depends
on it only through Xn. Each particular Markov chain may
be identified with its matrix of “transition probabilities”, of-
ten called simply its transition matrix. The entry i, j in the
transition matrix are given by pij = P (Xn+1 = j | Xn = i)
that is the probability of moving to state j from the state
i. Our Markov chain is labeled using file identifiers because
we are interested in predicting the sequence of files modified
by the user. We have tested two kinds of Markov chain.

• One label state memory: the next file that will be
modified depends on the last file modified by the user.
Every state in the chain is, therefore, labeled with one
file identifier.

• Two labels state memory : the next file that will be
modified depends on the last two files modified by the
user. Every state in the chain is labeled with a couple
of identifiers from the last two modified files.

Another critical decision to be taken how many time we
query the Markov chain in trying to guess the next file the
user will modify. Experimental results shows that these pa-
rameters are critical in terms of percentage of correct pre-
visions. Preliminary experiments seem to suggest that pre-
senting 3 choices is enough to make the tool useful.

3. PRELIMINARY EXPERIMENTS
3.1 Users characterization.
One user, the “focused”, was working on an article in the
days just before the deadline. The second user, the “dis-
continuous”, was working on an article with no deadline
and a software package. The focused user had a profile
characterized by a sequence of a short patterns of modifi-
cations often repeated (e.g. article.tex 7−→ article.log

7−→ article.dvi) interleaved by sequence of modifications
of a small number of files (e.g. figures for the article, charts,
. . .). The discontinuous user busy with a paper and an ap-
plication, was characterized by a discontinuous pattern of

modifications with various length. This difference of behav-
ior can be justified thinking about the way the two users
work : the focused one was completing a paper so his mod-
ification session were short and frequent: corrections of the
english or the fonts etc. . . ; the discontinuous user had long
modification sessions interleaved by off line work like ready-
ing a paper. This difference is emphasized by the fact that
the focused user was near a deadline, so he was in a hurry.
It should be noticed that the experiments were run by users
that were using their traditional desktop (MS Windows) and
whose activity was simply monitored by a non invasive appli-
cation that simply records the history of files modifications.
This application is the same probing core implemented in
VennFS2.

Tests results. Here we show the results that driven us in
fixing the parameters of the file prediction. It may be worth
a remark that our tool is also adaptable, since we just pro-
vide the default settings but also let users free to specify
them on his/her own. The first question we had to answer
was how much memory had to be used in Markov model.
We have used the focused user samples and we have queried
our model verifying the correctness of the forecast. That
is to say, at each step we built the model with the history
of file access up to the point, queried (probabilistically) the
model and, then, compared the prediction with the actual
choice of the user. The results are that the chain with one
state memory forecasts correctly the next file to open in
about the 22% of cases while the two states memory chain
forecasts correctly in the 26% of the cases. Having, conse-
quently, decided that appealing to two states memory was
worth the (moderate) increase in the computation needed
for each suggestion, the second question is about the num-
ber of suggestions to present to user. Of course, the number
of suggestion that are simultaneously presented to the user
is a crucial parameter: it can (of course) increase the suc-
cess rate but can, as well, induce disorientation if too many
choices are presented. In Table 1 we show the performances
comparing different number of suggestions proposed by the
system. For every group of suggestions the test verifies if
the next file is correctly predicted. In Figure 1 we show
how the performance of our model, expressed in percentage
of correct predictions, increase linearly with the number of
suggestions obtained by querying the Markov chain.

Figure 1: Forecasting performance on increasing
number of suggestions.

Launches Focused user Not focused user
Average Std. Dev. Average Std. Dev.

1 26.76% 4.23 15.58% 0.31
2 38.81% 6.94 16.67% 0.30
3 49.76% 8.40 17.18% 0.99
4 60.07% 5.64 17.05% 0.45
5 65.93% 5.52 17.82% 0.73

Table 1: Prediction correctness on varying number
of launches. For both typologies of users.

The two data set we used (for the focused and discontinu-
ous user) seems to show that the tool can really be effective

for users that are continuously using files, with a tight and
determined schedule while it does not seem useful for er-
ratic usage of the computer. We also tested how quickly the
model developed was able to provide a reasonable success
rate in the suggestions. Results were good for the focused
user: after roughly 100 file modifications, the model had
already reached the success rate (1 and 3 launches) that is
reached at the end (as reported in Table 1). Results were not
as good (which could be expected) about the discontinuous
user given the erratic behavior in accessing files. Consider-
ing the limited amount of data used in these experiments,
it is rather premature to draw definitive conclusions and we
believe that larger data sets (as well as a user study) are
needed.

Figure 2: Forecasting performance on increasing
number of suggestions.

4. THE GRAPHIC INTERFACE
As VennFS2 starts, two windows appear, the main window
shows an empty “desktop” on the right, a left pane with
three group boxes and few simple menus, and a secondary
window ‘named ‘VennFS Suggestions” (see Figure 2). In the
main window the tabbed pane on the left group the boxes
“Overview” that allow navigation and placing/jumping to
the landmarks, “Filter&Zoom” that offers filters by time and
shade by distance of the filename from viewpoint and “De-
tails on Set” that permit to explore and modify information
about categories and documents. These three tasks obey to
Shneiderman task by data type taxonomy[9], as well as fully
reflecting his Visual Information Seeking Mantra “Overview
first, zoom and filter, then details-on-demand”. The win-
dow “VennFS Suggestions” offers a 3D visual of the desktop
emphasizing the probable next three documents to be mod-
ified. The menus offer setting preferences (“VennFS”) and
exporting to a hierarchical file system (“HFS”). A complete
description of the interface can be found in [3]. Here we de-
scribe the file suggestion windows that is the adaptive part
interface.

File suggestions. The secondary window shows informa-
tion about the next three documents that are probably going
to be modified by the user. The proposed size of the win-
dow (i.e. 320×200 pixel) has been carefully chosen in order
to allow effective visualization while, at the same time, al-
low to keep larger windows (with the main task) open. The
VennFS2 desktop’s appears here in three dimensional and
whereas a file is suggested, a “razor-shell” indicates it, with
the height proportional to the probability of the transition
in the Markov chain between the current file and the sug-
gested one. This window using its focus has two “modus
operandi”: (1) when the window has not the focus then
the camera offers a global view about the three suggestions
rotating around them, (2) when the window has the focus
then the user can, by pressing the TAB key, switch the view
point on each suggestion, pressing the Enter key to open the
file when a reasonable choice is made. We have chosen a 3d
interface to visualize file suggestions because we want to pro-
vide the information in the focus+context flavor: VennFS2
shows the 3 most probable files the user is interested to plus
the context in which these files are flying around the razor
shells. Since the first task is supposedly performed during

the main activity, it is realized when there is no focus on the
window and, by using a slowly rotating point-of-view in such
a way to provide a complete overview. Then, when the user
decides to use (possibly) the suggestions, the files are shown
with few clicks1. In fact, by using the Windows ALT-TAB
shortcut, the most probable suggestion can be opened with
2 clicks (ALT-TAB and Enter) if the Suggestions window is
the next task in the list of current tasks that is proposed
by Windows and few more if it is not. Other proposals re-
quire 1/2 clicks more. Access by using the mouse is efficient
as well. The motivation to our choice is that our adaptive
interface must be a small window (possibly shown, as a con-
sequence, with the window of the main task) that is only
“few clicks” away from our main task and can be accessed
with the smallest effort and intrusion in everyday activities.
Some authors [11] have already noticed (in previous expe-
riences with a smart editor) that among users, regardless
of efficiency, only few of them used the provided extended
capabilities with frequency, because of the cost of a slightly
complex interface. The same attitude has been noticed in
adaptable interfaces, such as UNIX customization [8], which
suggests that inconspicuousness must be a paramount char-
acteristics of any tool.

5. CONCLUSIONS
Our research proposes a tool that is meant to extends and
facilitates management of files by offering an alternative
classification of documents as well as a dynamic, adaptive
support to interact with them. Being an interface to a hi-
erarchical file system our tool allows the user to place in
VennFS2 only the really meaningful documents, i.e. those
that contain information and not only raw data, of no inter-
est for the user. In fact, often several auxiliary files (like log
files, backup copies, etc.) are automatically created with the
“master” document and placed into the same folder: their
explicit presence can only distract the user from his/her task
since their role is determined/needed by the software and
not by the user. The adaptivity mechanism is based on the
files that are placed in VennFS2 and, therefore, only on
the documents that were explicitly estimate as relevant by
the user.

The work on VennFS2 is actually in progress. Several steps
are to be taken about the visual presentation of suggestions.
Among the characteristics currently under development, we
are working to further make suggestions inconspicuous e.g.,
by increasing interaction with the status bar.

Another important characteristic is how we can extrapo-
late more abstract information about behavior: given that
the user seems to be frequently opening a sequence of files
xxx.tex 7−→ xxx.dvi develop a model that is able to infer
that when the user opens newpaper.tex (never opened be-
fore) the tool presents as an option to open file newpaper.dvi
right after. In this context, techniques as Relational Markov
Models [1] can be extremely helpful and their application is
under study.

6. REFERENCES
[1] C. Anderson, P. Domingos, and D. S. Weld. Relational

markov models. In Proceedings of KDD-02, 2002.

1By the term click we include also key pressed.

[2] B. Davison and H. Hirsh. Toward an adaptive command
line interface. In Proceedings of the Seventh International
Conference on HumanComputer Interaction, San
Francisco, CA, USA, August 1997. Elsevier Science
Publishers.

[3] R. De Chiara, U. Erra, and V. Scarano. ”VennFS: a venn
diagram file manager”. In Proc. of the Seventh
International Conference on Information Visualization, IV
2003, 16-18 July 2003, London, UK. IEEE Computer
Society, 2003.

[4] A. Dillon, J. Richardson, and C. McKnight. Navigation in
hypertext: a critical review of the concept. In Diaper, D.,
Gilmore, D., Cockton, G., and Shackel, B. (Eds)
INTERACT ’90. North Holland, Amsterdam, 1990.

[5] P. Dourish, W. K. Edwards, A. LaMarca, and
M. Salisbury. Presto: an experimental architecture for fluid
interactive document spaces. ACM Trans. Comput.-Hum.
Interact., 6(2):133–161, 1999.

[6] S. Fertig, E. Freeman, and D. Gelernter. Finding and
reminding reconsidered. SIGCHI Bull., 28(1):66–69, 1996.

[7] C. Johns and E. Blake. Cognitive maps in virtual
environments: Facilitation of learning through the use of
innate spatial abilities. In Proc. of 1st International Conf.
on Computer Graphics, Virtual Reality and Visualisation
in Africa, Cape Town, South Africa. 2001, 2001.

[8] W. Mackay. Triggers and barriers to customizing software.
In Proceedings of ACM CHI Conference on Human Factors
in Computing Systems, pages 153–160. ACM Press, 1991.

[9] B. Shneiderman. The eyes have it: A task by data type
taxonomy for information visualizations. In Proceedings of
1996 IEEE Symp. on Visual Languages, pages 336-343,
Boulder, CO, USA, Sept 1996.

[10] E. C. Tolman. Cognitive maps in rats and men.
Psychological Review, 55:189–208, 1948.

[11] D. S. Weld, C. Anderson, P. Domingos, O. Etzioni,
K. Gajos, T. Lau, and S. Wolfman. Automatically
personalizing user interfaces. In Proc. of the International
Joint Conference on Artificial Intelligence (IJCAI03),
Acapulco, Mexico, August 2003.

