
www.elsevier.com/locate/advwatres

Advances in Water Resources 30 (2007) 543–554
Capturing critical behaviour in soil moisture
spatio-temporal dynamics

Antonella Di Domenico a, Giovanni Laguardia b,*, Mauro Fiorentino a
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Abstract

A physical system is subject to a phase transition process when it shows a discontinuous change of a macroscopic feature of the system
under a continuous change of a system’s state variable.

For certain properties of physical systems subject to phase transition it is possible to observe a scale-invariant behaviour in the point
of coexistence of the phases, which in that special case is defined ‘‘critical point’’.

Since the soil moisture spatial patterns in their seasonal time dynamics show the transition between spatially random to spatially con-
nected appearances, we have investigated whether this process behaves as a critical point phenomenon. We have developed an algorithm
working in analogy to the percolation theory [Bruce A, Wallace D. Critical point phenomena: the physics of the universality at large
scales. In: Davis P, editor. The new physics. Cambridge: Cambridge University Press; 1989.]. The implemented methodology has been
explored by applying to 365 soil moisture maps of daily data from a 507 km2 natural catchment in Southern Italy. We have investigated
the relation between the occupation probability in the soil moisture spatial patterns and the normalized size of the largest cluster and the
behaviour of the system under changing grid scales. The critical exponents have been also calculated.

The undertaken analyses show that the process has a critical behaviour. The critical point for the examined river basin, expressed in
terms of occupation probability, has a value of 0.88, which is maintained also after the coarse graining procedure.

In order to evaluate the response of the model to the choice of its parameters, we have carried out a sensitivity analysis.
� 2006 Published by Elsevier Ltd.
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1. Introduction

Soil moisture is well recognized as a key variable in
hydrology since it exerts an essential control on the water
and energy balance, such as the partitioning of precipita-
tion in infiltration and runoff and of the available energy
at the land–atmosphere interface in sensible and latent
fluxes.

The temporal dynamics of soil moisture can be
described as the sum of two signals working at different
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timescales: the first one has high frequency variability influ-
enced by the rainfall intermittency; the second one has low
frequency variability influenced by the climatic seasonality
through the rainfall and potential evapotranspiration
cycles. This latter is certainly that of major interest for
our purposes since it controls the switching and the quan-
titative deviation between wet and dry seasons.

Soil water content also controls the hydraulic properties
of soils. When the soil water content grows, the hydraulic
conductivity also grows with a near power law, leading
to the onset of the mechanisms of lateral redistribution that
controls the spatial patterns of soil moisture.

As pointed out by Grayson et al. [8], in periods when pre-
cipitation continually exceeds potential evapotranspiration,
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the spatial patterns of soil moisture are dominated by lat-
eral water movement by both surface and subsurface path-
ways; drainage lines and other areas of high topographic
convergence are wetter than other parts of the catchment
because of the concentration of shallow, lateral subsurface
flow. When a heavy precipitation event occurs, surface run-
off is generated in the wetter areas with the saturation excess
mechanism. This state is dominated by the so-called non-
local control.

In periods when potential evapotranspiration continu-
ally exceeds precipitation the vertical fluxes of evapotrans-
piration and rainfall dominate; the soil moisture patterns
reflect soil and vegetation differences, taking on a more
random appearance. There is no significant lateral flow
and therefore no connection between a point in the catch-
ment and its upslope area. Only in areas of high local con-
vergence, an organization can be observed. When a heavy
precipitation event occurs, surface runoff is generated in
the areas where the mechanism of infiltration excess occurs.
This state is dominated by the so-called local control.

As the continuous rise of soil moisture at a site (micro-
scopic scale) controls the onset of lateral redistribution
mechanisms leading the spatial patterns of soil moisture
from an unorganized to an organized structure (see [8]),
it is worth to look at the soil moisture processes as a system
subject to phase change.

Western et al. [15] suggest that for adequately represent-
ing the soil moisture spatial variability it is necessary to
catch its two essential features, namely the continuity and
the connectivity. The first one represents the way the spatial
correlation changes between two points and is related to the
smoothness of a spatial pattern; the second one denotes the
extent over which connected features (pathways having sim-
ilar values) are preserved in a hydrological spatial pattern.

Geostatistical techniques provide significant tools for
characterizing spatial patterns. Standard geostatistics (vari-
ogram analysis) can represent continuity but are not able to
discern between patterns with or without connectivity.

Western et al. [14] show that also the variograms of indi-
cator variables are not able to catch the connectivity: the
deviations from the expected value capture differences only
in continuity at different thresholds.

An alternative approach to individuate connectivity
properties is to use connectivity statistics. The concept of
connectivity is widely used in the context of percolation
theory. The theory of percolation was first introduced years
ago to describe polymerization and penetration of fluids in
porous media.

Little direct use of percolation theory results has been
made in the field of surface hydrology, whereas there are
several applications in groundwater hydrology [1,9]. Like
indicator semivariograms, connectivity statistics summa-
rize the pattern of indicator variables. However, connectiv-
ity diagrams refer to separate points with high indicator
values that are connected by any arbitrary continuous path
of high values, whereas indicator variograms refer to sepa-
rate points that have the same indicator value [15].
It should be noted that in order to apply connectivity
statistics it is necessary to work on a binary pattern
obtained by thresholding the original pattern.

The organization of soil moisture fields have been stud-
ied by cluster analysis by Rodriguez-Iturbe et al. [12]. They
illustrate how soil moisture show scaling properties on its
spatial clustering patterns. On the other hand, soil moisture
has a crucial role as a link between hydrological and bio-
geophysical processes through its controlling influence on
transpiration and runoff generation; consequently, the
organization is also evident in the organization of vegeta-
tion of river basin [5].

This work would like to provide a contribution in the
topic of soil moisture organization through concepts of
the percolation theory such as cluster size, percolation
probability, occupation probability, which have been dealt
with in the next section.

2. A foreword to critical point phenomena and

renormalization group concepts

Many properties of a macroscopic system are essentially
determined by the connectivity of the system elements. The
special behaviour of a system that emerges at the onset of
macroscopic connectivity within it is known as percolation
phenomenon. The theory has been extensively developed as
a branch of statistical physics and has found successful
applications in a wide range of problems. The principal
advantage of percolation theory is that it provides univer-
sal laws that determine the geometrical and physical prop-
erties of a system. These laws are independent of local
geometry or configuration of the system. In particular,
many transport processes can be successfully understood
by considering an idealized transport of the fluid through
a conceptual medium. The flow of a fluid through a med-
ium, which is itself in some sense disordered (or random),
may be described as a so-called percolation process [1].

Percolation processes undergo a phase transition experi-
encing a switch from a state of local connectedness to one
where the connections extend indefinitely [7]. A distinctive
feature of a phase transition is a sharp change of one or
more physical properties of a system under a slight change
of a system state variable.

In order to illustrate the basic concepts of percolation
theory that allow to characterize the connectivity, the sim-
ple model of square lattice, a reticular model, is presented.

Let the L · L square grid consist of points representing
empty and full sites connected by small capillary channels.
The full sites that are connected to each other (sharing a
side) represent a cluster. As the occupation process is ran-
dom, the probability of each site being occupied is p = n/N
(defined occupation probability or density probability [13]),
where N is the number of the sites in the two dimensional
square lattice and n is the number of them that are
occupied.

In hydrological terms, the question is whether the water
is able to make its way from pixel to pixel and reach the



A. Di Domenico et al. / Advances in Water Resources 30 (2007) 543–554 545
river network. We model this problem as a two dimen-
sional network of N points (or sites) where one site may
be full (with probability p), allowing the lateral movement,
or empty (with probability 1 � p), cutting off the flow path.

It is clear that as p increases, the probability of finding
larger clusters and the maximum size of the clusters also
increases. In a finite lattice the lowest p value sufficiently
large to ensure that at least one cluster connects the bottom
and the top (or the right and the left) ends of the lattice is
called critical occupation probability, pc; it is also known as
the lattice site percolation threshold. That unique cluster is
called percolation cluster.

Above the percolation threshold, it is possible to deter-
mine the probability P1(p) that an occupied site belongs to
the percolation cluster. The latter is called percolation prob-

ability or cluster density and is defined as the value of
PN(p) = M(L)/L2 when N goes to infinity, where M(L) is
the number of sites that belong to the largest cluster on
the L · L lattice; M(L) is also called mass of the largest

cluster. It has been theoretically shown and it has been con-
firmed experimentally and by computer simulation that
P1(p) has the power law behaviour P1(p) / (p � pc)

b

when p > pc, whilst it is equal to 0 for p < pc.
The critical point pc marks a singularity. The cluster

density PN(p) behaves singularly at this point as the size
of the lattice tends to infinity: below pc (sub-critical region)
the percolation probability PN(p) is very low, going to zero
as L tends to infinity; above pc (super-critical region) the
percolation probability has a fast rise and then leaps into
1 (see Fig. 1).

The critical point behaviour denotes a special type of
phase transition from a state with finite isolated clusters
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Fig. 1. Relation between the probability PN(p) of a site belonging to the
largest cluster and the occupation probability p. The solid curve is
obtained for L = 450, the dash-dot curve for L = 200 and the dotted curve
for L = 50. The vertical line indicates pc = 0.59275 obtained by numerical
simulation (see [7]).
to a state with at least one spanning cluster. Here, the crit-
ical point should denote the transition of soil moisture
structures from an unorganized to organized appearance,
i.e. the growth of variable source areas [6].

In addition to the percolation probability P1(p),
another statistical property of the clusters that should be
considered is the geometric extent of the cluster, also called
correlation length, n (for more details see [7,13]). Similar to
P1(p), the correlation length has a power law behaviour
n(p) / jp � pcj�m when p < pc.

For the percolation theory [3] the correlation length cor-
responds to the mass of the largest cluster, so
M(p) / jp � pcj�m for p < pc. The coefficients defining the
power law behaviour (b and m) are referred to as critical
exponents. Further considerations on the critical exponents

are presented in the following.
The percolation cluster is statistically self-similar [7],

thus when looking at this cluster at a lower resolution the
details will become blurred, but it will appear similar.
The self-similarity leads to invariant-scale behaviour near
the critical point, so the percolation cluster of the scaled
lattice is qualitatively the same as the original lattice. It
should be noted that the scaling transformation does not
change the site occupation probability p, and therefore a
system at pc maintains that state even after the scale
transformation.

The interconnected hillslope-channel network system
possesses a profound order that remains unchanged
regardless of scale, geology or climate. Like in the river
basin evolution, whose planoaltimetric characteristics
may be identified as self-similar structures, also the soil
moisture percolation cluster should be scale-invariant.

The way the scaling is carried out defines a particular
process named coarse-graining, which is a key concept in
the Renormalization Method Group. There are several
kinds of coarse-graining procedure. The procedure, devel-
oped by Kadanoff in the 1960s, consisting of replacing
group of sites by a single new site, depending on the most
common value of the sites in the block, is known as the
scheme of majority rule. Another one is the decimation,
consisting of a deterministic or random removal of a cer-
tain number of sites from the lattice (for more details see
[3]). The result of the coarse-graining is a new lattice with
a new concentration of occupied sites (occupation proba-
bility) p1, which is a function of p0 (the subscript 0 denotes
the original lattice occupation probability). The technique
of real-space renormalization involves the successive appli-
cation of this kind of transformation (coarse-graining),
obtaining the trend (pn,pn+1) as in Fig. 2.

In the neighbourhood of the critical occupation proba-
bility pc, the percolation probability P1(p) / (p � pc)

b

and the correlation length M(p) / jp � pcj�m follow power
laws, with b and m > 0. The coefficients b and m are called
critical exponents, as mentioned above; they describe the
‘‘singular’’ behaviour of the dependent variables with
respect to an increase of the independent one. Such critical
exponents can point out the universality of the critical
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Fig. 2. Relation between the occupation probability of an (n + 1)th-order
cell and the occupation probability of an nth-order cell. The critical
probability for the appearance of the first percolation cluster is pc = 0.618,
that is a very good estimate obtained by renormalization method
compared with pc = 0.59275 by numerical simulation.
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systems, as their values are remarkably independent of the
details of a certain system. The phenomenon of universality

is the occurrence of exactly the same critical exponents in
different physical systems. This involves the possibility to
obtain the critical behaviour of a system from that one of
other systems by means of simple transformations. This
does not imply the existence of a single value for the critical
exponents. Critical systems can be classified into different
universality classes: systems in the same class have the same
set of critical exponents. The critical exponents may be cal-
culated quite accurately by renormalization method
obtaining a very good estimate with brief calculation
respect to long direct numerical simulation.

3. Model development

Soil moisture dynamics may be considered as a system
that undergoes a phase transition consisting in the switch
between an unorganized to an organized spatial pattern.
The application of percolation theory to soil moisture fields
should be in principle meaningful.

It has not been evaluated yet if this process may be con-
sidered as a critical point phenomenon. In this section, the
adaptation of some notions of the percolation theory and
of the renormalization group method for the application
on a river basin is presented. A step-by-step example of
the processing of a soil moisture map is reported in Fig. 3.

The proposed methodology works in analogy to the per-
colation theory though some differences exist between a
percolation system and the watershed. The more evident
differences are due to the definition of the system bound-
aries and of the fluxes exchanged with other systems.
A percolation system, for instance, consists of a rectan-
gular lattice with two open edges; the exchange fluxes are
represented by a fluid injected into a site on one edge and
the fluid come out somewhere on the other edge. For our
purposes, despite a much more complicated geometry, a
watershed can be seen in a similar way: the incoming fluxes,
the rainfall, should be subtracted of all those components
not involved in the soil water content redistribution mech-
anisms, such as evaporation, deep percolation and surface
runoff. In order to match the water balance of the system,
the outcoming fluxes are represented by the subsurface
runoff.

Another distinction between the percolation system and
the watershed is that in the former the grid-cells are ran-
domly filled, whereas in the latter certain properties (e.g.
soils, topography) can generate preferential filling of the
soils.

In the following, the model development is described.

3.1. Dichotomisation

The first issue is related to the need of transforming a
soil moisture map into a binary map. It has been made con-
sidering the definition of preferred states given by Grayson
et al. [8]. The switching mechanism between local and non-
local control is due to the non-linearity of soil hydraulic
conductivity. A decrease of soil water content causes a
decrease in conductivity and thus a reduction in lateral
flow.

The switching value has been set on account of the K(H)
relation (Fig. 4); thus, one assigns zero to pixels below the
switching value and one to pixels above that value. The
thresholding procedure has been applied to each soil mois-
ture map once chosen the switching value (Fig. 3a and b).
What is important is to point out the generality of this pro-
cedure with regards to the applicability to each map; con-
versely, the thresholding procedure of other analyses
based on a percentile of the univariate distribution of a var-
iable, is valid only for one map. The switching value is the
first model variable which the sensitivity analysis has been
carried out on.

3.2. Individuation of clusters

Once the binary map has been generated, the easy up to
down percolation scheme controlled by the hydraulic gra-
dient has to be adapted to the river basin scheme. Thus,
the second step consists of finding clusters of one pixels.

It can be reached considering the role of the orography
in controlling the flow pathways; these are represented on a
grid scheme by the flow direction function: two contiguous
wet pixels belong to the same cluster if a flow path between
them exists.

A recursive algorithm for searching one pixels by step-
ping from neighbour to neighbour in the whole map has
been implemented. As each pixel has eight neighbours,
it controls whether (i) at least a one pixel exists in the



Fig. 3. The soil moisture map for June, the 10th (a) is transformed in a binary map (b) by thresholding its values; the clustering algorithm is then run
producing a map detecting all the clusters (c) and then merging those being connected to the channel network and finding the largest one (d). The maps
resulting after the scaling process (e,f) are also presented.
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neighbourhood and (ii) it is along a possible flow path.
This process labels pixels that satisfy both the previous
conditions with a unique label, involving looping through-
out the map. Whenever an unlabeled one pixel is encoun-
tered, this latter is labelled with a new label. Finally,
several clusters are identified.

As discussed, until now the search of the clusters is due
to geometrical and physical considerations. The clusters
can be interpreted as partial contributing areas that are
responsible of the runoff generation.

A further condition on the cluster aggregation has been
modelled for representing the hillslope-channel system. As
the time scale of the water flowing through a cluster, con-
sidered as an entity related to the sloping processes, is very
large respect to the time scale of the channel flow, it is
worth to consider all the clusters connected to the channel
network as a whole cluster directly connected to the catch-
ment’s outlet (Fig. 3c and d). The channel network can be
obtained by thresholding the flow accumulation function.
Choosing the proper value for the catchment’s flow accu-
mulation is a key issue for catching the difference between
slopes and channels.

The choice of the flow accumulation threshold is docu-
mented in the model application by means of comparisons
with available cartography. It is the second model variable
investigated by means of sensitivity analysis.
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Fig. 4. Hydraulic conductivity versus water content for a medium soil.
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In a catchment-like system there are no borders to con-
nect. The assumption that a percolation cluster always
exists, being that of major size, has been made; hence, larg-

est cluster assumes the meaning of percolation cluster. As
non-zero clusters exist when the occupation probability
falls under its critical value, the phase change at the critical
point could be not so evident.

3.3. Scaling transformation

The last task is related to the definition of the scaling
method. We have chosen to work on three by three cell that
will become a zero pixel in the scaled grid if there are no
clusters or a one pixel if a cluster is found (Fig. 5). The
aggregation of the clusters in each three by three cells has
been carried out in the same way throughout the grid
map. Finally, the occupation probability of the scaled
map can be computed (Fig. 3b, e and f).
Fig. 5. Scaling transformation. Zero pixels are white, one pixels are light-
grey; the arrows indicate the flow direction. (a) No cluster is found, scaled
cell is zero; (b) a cluster is found, scaled cell is one.
4. Data collection

Soil moisture data are required for testing the methodol-
ogy on a river basin. The choice of the soil moisture data
source is itself a breaking issue since it is hard to match
the requirements of frequency and spacing of the sampling
and of accuracy of the measurement.

The availability of field data for little catchments or
hillslopes is strongly limited by the small number of sam-
ples and the short time extent of the collection. As a first
experiment the catchment percolation scheme has been
tested on the Tarrawarra data [16], acknowledged as the
best available data for catchment space/time soil moisture
patterns. Unfortunately, the results obtained are quite dif-
ficult to be appreciated for the limited number of available
maps. In facts, these maps allowed us to achieve only a few
pairs of values (p,PN(p)), which made it possible to barely
reproduce a short piece of the curve as in Fig. 1, and more
precisely the limb close to p = 1, in a region that is likely
beyond the critical point. Thus, it was recognized that
Tarrawarra data do not constitute a suitable sequence in
order to assess the evidence of a critical point. However,
it will be shown in Section 5 that the PN(p) relationship,
calculated with regard to these field data, although too
scattered to show criticality, does not contrast the pro-
posed hypothesis.

An alternative can be represented by remote sensing
data. Remote sensing techniques do not allow to match
the spacing requirements or to guarantee the full coverage
of a catchment at a good temporal sampling. Moreover,
the data are difficult to interpret due to many confounding
factors, such as vegetation characteristics and soil texture.

Another option is using data obtained by simulation
with a distributed hydrological model. In this way, the
problems of spacing and temporal sampling can be over-
come easily. On the other hand, it is needed to understand
whether the model is able to represent in a reliable way the
processes regulating soil moisture spatial variability.

A set of daily soil moisture maps obtained by means of
the DREAM distributed hydrological model set up on the
Agri catchment [11] have been made available for the pres-
ent work. The DREAM model has shown good skill in
reproducing the hydrologic balance as well as the probabil-
ity distribution of the areas contributing to flood peaks for
several river basins [10], thus soil moisture maps are
expected to be quite reliable. It is useful to point out that
the quality of the soil moisture maps can have only a lim-
ited effect on the results of the modelling here carried out
since no strictly quantitative results are investigated.

The Agri river basin is located in the Basilicata region,
southern Italy. The sub-catchment closed at the Tarangelo
water level gauging station has an area of 507 km2. The ele-
vation of this sub-catchment ranges from 500 to 1800 m
a.s.l. The Agri river upstream Tarangelo drains a typical
humid basin with a mean annual rainfall depth h =
1100 mm and a Thornthwaite’s climatic index Ic = (h �
Ep)/Ep = 0.69, where Ep is the mean annual potential
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evapotranspiration. As provided by the CORINE-Land
Cover Project cartography shown in Fig. 6a, the basin is
mostly covered by forest and semi-natural areas (68% of
the total basin surface), whereas the remaining part con-
sists of agricultural areas (31.2%) and in a minimum part
of water bodies and artificial surfaces (0.8%). Calcareous
mountains and floodplains made up of gravel, sand, clay
and flysch characterize the basin that comprises twelve lith-
ological units. In Fig. 6b the soil texture map of the basin
[4] is reported.

For this basin intensive data collection and modelling
efforts has been carried out in the last years at the Univer-
sity of Basilicata. The DREAM model has been set up on a
digital elevation model (DEM) with a 240 m grid
resolution, which has been preserved in the soil moisture
maps.
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5. Results and discussion

The Agri catchment daily soil moisture maps at a spatial
resolution of 240 m have been processed by means of the
methodology described in Section 3. In Fig. 7 the average
soil moisture for each map is shown. The seasonal behav-
iour with a wet winter and a dry summer is evident.

As a first step, we have investigated whether the spatial
resolution (240 m) of the available maps can capture the
separation between hillslopes and channels. At this aim,
we have superimposed the river network obtained by thres-
holding the flow accumulation function to the slope map
produced from the digital elevation model (Fig. 8a) and
to a orthorectified photo map of the catchment (Fig. 8b).
It is evident that the hillslopes are quite accurately
delineated.
200 250 300 350
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Agri river basin at Tarangelo.



Fig. 8. (a) Slope map of the catchment. The river network obtained by the 240 m and 720 m DEMs with a flow accumulation function of 14.4 km2 are also
shown. (b) Orthorectified photo map of the northern part of the catchment. The DEM based river networks are compared to the one obtained by visual
inspection of the photo map.
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In Fig. 8b the river network extracted by the orthorecti-
fied photo map is also shown in order to evaluate a first
guess value for the flow accumulation threshold. The first
guess threshold value for soil moisture has been selected
by analysing its relation with soil hydraulic conductivity
(Fig. 4). The effect of the flow accumulation and of the soil
moisture thresholds on the results has been investigated by
means of sensitivity analysis.

We have chosen 0.6–28.8 km2 thresholds as model
parameters. Hence, the scaling procedure (coarse-graining)
has been performed on the soil moisture maps obtained
with these thresholds. The temporal evolution of PN and
p is illustrated in Fig. 9. The (p0,PN(p0)) scatter-plot is
shown in Fig. 10.
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The scaling procedure provides the scaled maps at a spa-
tial resolution of 720 m. The occupation probability p1 for
each of them has been computed. Fig. 11 shows the relation
between the occupation probability before and after the
scaling. Fig. 12 shows the percolation probability PN(p1)
as a function of the occupation probability p1.

The critical probability can be estimated as pc = 0.88
looking in Fig. 10. This value seems to be confirmed by
the intersection of the p0–p1 curve and the bisecting line
(see Fig. 11). Moreover, it is almost the same after the scal-
ing procedure (see Fig. 12).

As mentioned in Section 4, the same analysis was carried
out with regard to Tarrawarra data and it was recognized
that the amount of information contained in them was
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0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p
c
=0.88

p
0

P
N

(p
0)

Fig. 10. Relation between the percolation probability PN(p0) and the
occupation probability p0 for the Agri catchment soil moisture maps.
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Fig. 13. Relation between the percolation probability PN(p0) and the
occupation probability p0 for the Tarrawarra soil moisture maps.
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not enough to definitely support the hypotheses proposed
in this paper. This is better shown in Fig. 13 where the cal-
culated relation between the percolation probability PN(p0)
and the occupation probability p0 for the Tarrawarra soil
moisture maps is drawn. Incidentally, to the aim of calcu-
lation, thresholds have been set to 0.30 (soil moisture) and
to 7500 km2 (flow accumulation). It is noteworthy that the
graph, although too scattered to show criticality, does not
contrast the results achieved by using simulated moisture
data.
The critical probability value has been plotted also in
Fig. 14 in order to evaluate the effect of the model param-
eters on the model behaviour.

The model has been run nine times with three different
soil moisture thresholds (0.5, 0.6 and 0.7) and three differ-
ent flow accumulation thresholds (14.4, 28.8 and 57.6 km2),
obtaining the occupation probability (p0) and the associ-
ated percolation probability PN(p0) for all the available
maps. Fig. 14 shows four of these (p0,PN(p0)) scatter-plots.

Once set the critical occupation probability, the mass of
the largest clusters (M(L) for p < pc) and the percolation
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probability (PN(p) for p > pc) have been examined in the
neighbourhood of the critical point. Figs. 15 and 16 show
the relations between M(L) and jp � pcj and between
PN(p) and (p � pc) on a log–log scale. This proves they fol-
low power law trends, yielding critical exponents. In the
sample regarding the percolation probability (Fig. 16) the
critical exponent is b = 0.13, whereas the critical exponent
for the mass of the largest cluster (Fig. 15) is m = 0.123.

The analyses carried out show that the soil moisture
dynamics seem to behave like a critical point phenomenon.
The relations between the occupation probability and the
percolation probability and between the occupation proba-
bility before and after the scaling procedure obtained by
means of the methodology illustrated in Section 3 is similar
to the curves shown in Figs. 1 and 2 for the percolation
model. Since in our methodology a ‘‘percolation condi-
tion’’ has not been defined, the value of the percolation
probability is higher than zero also for p < pc (Fig. 10);
anyway, the jump of the percolation probability is almost
evident as the critical occupation probability is reached.

A hysteretic behaviour is evident in the sub-critical
region. It has been found that the seasonal dry to wet
change (increasing p) is carried out through the lower
curve, while the wet to dry change (decreasing p) through
the upper one. Thus, the hysteresis can be associated to
the persistency of organized patterns during the drying
season.

In a watershed it is difficult to locate precisely the critical
point because there is not a strictly sharp transition in the
PN(p) relationship. Although, the relation between the
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occupation probability before and after the scaling should
allow to better delineate the singularity in the occupation
probability and especially to corroborate the previous
results.

The critical point behaviour and the value of critical
occupation probability determined by the PN(p) relation-
ship are confirmed by the typical ‘‘S’’ curve drawn by the
points intersecting the bisecting line at pc = 0.88 (Fig. 11).
Despite the perturbation of model parameters carried out
in the sensitivity analysis (Fig. 14) and the application of
the coarse graining procedure, the critical probability
remains almost unchanged, as well as the shape of the
PN(p) curves.

The determination of critical exponents gives way to the
possibility of classifying the process in a certain universal-
ity class. From a comparison between the determined expo-
nents (m = 0.123 and b = 0.13) and the theoretical ones, it is
evident a good agreement for b but not for m with the 2D
Ising model (m = 1 and b = 1/8 = 0.125; see [2]). The Ising
model is one of the pillars of statistical mechanics. It tries
to imitate a system in which individual elements modify
their behaviour so as to conform to the behaviour of other
individuals in their vicinity. It is the most influential model
of a system capable of a phase transition. It was invented
by W. Lenz in 1920 as a simple model of a ferromagnet,
though it can be interpreted as a model of other systems
too. It was solved (i.e. its critical exponents were calcu-
lated) in 2D by Onsager, but an exact solution only
recently has been proposed by Zamalodchikov (see [2]).
The Tsing model consists of elements or sites which are
arranged in a lattice. Each site can be in one of two differ-
ent states (say, +1/�1), and each pair of neighbours inter-
acts, in particular they have an energetic preference to
achieve the same value (for more details see [3]).

The difference from the theoretical critical exponents
was expected and can be explained as follows. In the Ising
model the configurations are completely random, which
means the mass of the largest cluster remains very low
for p < pc. Whereas the intrinsic spatial organization of
the river basin, supported as well by the organized struc-
tures of the rainfall fields and also of the soil features
and by the persistency of water content during the drying
period (see the upper curve for p < pc in Fig. 10), lets the
mass of the largest cluster M(L) be far from zero also in
dry periods.

When in the 2D Ising model the occupation probability
increases, there is a rapid growth of the clusters that behave
as organized spatial structures. This explains the analogies
of results with the river basin soil moisture patterns for
p > pc.

6. Conclusions

A river basin can be considered as an open and dissipa-
tive physical system whose input energy is represented by
the precipitation with its space and time variability. In
analogy to other physical systems, every change of energy
corresponds to a change of entropy and the principle of
minimum entropy production, leading to organization,
has to be respected. Those concepts, widely investigated
in relation to the river network organization, have a crucial
role also on the soil moisture space–time dynamics.

The spatial behaviour of soil moisture at the basin scale
in its temporal dynamics has been investigated by means of
the percolation theory and renormalization group method.

The soil moisture spatial patterns have shown critical
point behaviour recognizable in a quick change from an
unorganized to an organized structure. The existence of
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the critical point has been confirmed by means of the appli-
cation of the coarse graining procedure.

However, the scale invariance has not been investigated
in depth because of the fast loss of spatial detail due to the
coarse graining procedure and to the quite poor resolution
of the initial data.

In order to assess the generality of the obtained results,
we are planning to perform further research by means of
the application of the model on other basins and at the
hillslope scale. The choice of other soil moisture data
sources will be also considered.

In the spirit of percolation theory, we have aimed to
reduce the complexity of the system soil moisture of a basin
to a few parameters: a percolation parameter, the occupa-
tion probability that rules the connectivity and some basic
exponents, the critical exponents that describe the varia-
tions of the system close to the percolation threshold.

In this paper we have been only concerned by the will-
ingness of discovering a critical point for the system ana-
lysed. The implication of this result, for instance its
application in a study on the optimal soil moisture moni-
toring scale, will be addressed in forthcoming studies.
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