
IE
do

www.ietdl.org
Published in IET Software
Received on 4th November 2008
Revised on 30th July 2009
doi: 10.1049/iet-sen.2008.0101

In Special Issue on EASE 2008

ISSN 1751-8806

Evaluating distributed inspection through
controlled experiments
A. De Lucia1 F. Fasano2 G. Scanniello3 G. Tortora1

1Dipartimento di Matematica e Informatica, University of Salerno, Via Ponte Don Melillo, Fisciano (SA), Italy
2Dipartimento di Scienze e Tecnologie per l’Ambiente e il Territorio, University of Molise, Italy
3Dipartimento di Matematica e Informatica, University of Basilicata, Viale Dell’Ateneo, Macchia Romana, Potenza, Italy
E-mail: gscanniello@unisa.it

Abstract: Inspection methods can be classified according to their discipline and flexibility. The discipline concerns
the formal aspect of an inspection method, whereas the flexibility is strongly related to the simplicity of
organising and conducting a meeting. The majority of the available distributed inspection methods have a high
level of discipline and flexibility as they are based on a well-defined process and the discussion among team
members is easily organised and conducted. In this study the authors present two controlled experiments to
evaluate the effectiveness and the efficacy of a distributed inspection process to discover defects within
source code. In particular, the first experiment compares the distributed inspection method proposed to a
disciplined but not flexible method (i.e. the Fagan’s inspection process). In the second experiment the authors
investigate differences between the same distributed inspection method and a flexible but not disciplined
method (i.e. the pair inspection method). Data analysis reveals that more flexible methods require less time
to inspect a software artefact, while the discipline level does not affect the inspection quality.
1 Introduction
Software inspection is a software engineering practice aiming
at identifying defects, reducing rework and producing high-
quality software systems [1]. During the last years formal
inspection techniques have increased in popularity. This
caused the proliferation of several inspection methods to
identify defects within software artefacts [2–4].

Tervoven et al. [5] propose a classification of inspection
methods based on two dimensions: discipline and
flexibility. The former concerns the formal aspect of the
inspection approach, the latter is strongly related to the
simplicity of organising and conducting a meeting and is
measured with respect to: place and/or time independence
(i.e. the difficulty of having reviewers in the same place at
the same time), network (i.e. the base solution for place
and/or time independence), tailorable (i.e. how the
approach may be adapted according to different inspection
scenarios) and varying numbers of participants (what does
it happen in case a lower number of participant is
available). Nevertheless, this classification does not help
T Softw., 2009, Vol. 3, Iss. 5, pp. 381–394
i: 10.1049/iet-sen.2008.0101

Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on Octobe
software quality managers to select the most suitable
inspection method to be adopted. Furthermore, the larger
number of available methods can still generate confusion in
the management of a software company.

In the last years, many software companies are moving
their business to distributed virtual organisation models to
remain competitive in the market. However, such a
globalisation creates software engineering challenges
because of the impact of time zones, distance or diversity of
culture and communication. In the global software
development a combination of traditional and novel
methodologies and practices are required to overcome these
challenges and to take advantage of the opportunities that
global development entails.

Several distributed tools have been presented in the
literature to inspect software artefacts [6–8]. The majority
of them have a high level of discipline and flexibility as
they are based on well-defined process and the discussion
among the team members is easily organised and
conducted. In [9] we have proposed a geographically
381

& The Institution of Engineering and Technology 2009

r 5, 2009 at 10:02 from IEEE Xplore. Restrictions apply.

38

&

www.ietdl.org
dispersed inspection process, which has been also
implemented in WAIT (web-based artefact inspection tool)
a web-based software system. The process extends the
Fagan’s method (FAG) [3] according to the findings
discussed by Damian et al. [10] and encourages inspection
team members to perform a preliminary asynchronous
discussion after a preparation phase and before an optional
meeting. Furthermore, to provide a more effective quality
management support within the software development
process, we also integrated WAIT within an artefact-based
process supporting system (i.e. ADAMS [11]).

Recently, there is an increasing understanding that
experimentations are needed to assess processes, methods
and tools for software development and maintenance [12]
and to understand how to increase the odds that the
technology choice is the right one [13, 14]. To this end,
various forms of research strategies are available: controlled
experiments, case studies, archival analyses and surveys
[10, 15, 16].

We conducted two controlled experiments to investigate
the effect of using a geographical dispersed inspection
process with respect to two well-known traditional
inspection methods selected according to the classification
proposed in [5]. In particular, in the first controlled
experiment we compared the process implemented in
WAIT, which has a high level of discipline and flexibility,
to a method with a high level of discipline and a low level
of flexibility (i.e. the FAG), whereas in the second
experiment we compared WAIT to a method with a low
level of discipline and a high level of flexibility [i.e. pair
inspection (PI) [17]]. The context of both the experiments
is constituted of Master students in Computer Science at
the University of Salerno. In both the controlled
experiments the subjects were asked to inspect two Java
classes.

The remainder of the paper is organised as follows:
Section 2 discusses work related to geographically dispersed
inspection processes and tools. Differences and similarities
with WAIT are presented and discussed as well. Section 3
highlights our inspection process and tool, whereas the
design and the results of the controlled experiments are
presented in Sections 4 and 5, respectively. The discussion
of the results and the threats that could affect the validity
of the experiments are delineated in Section 6. Final
remarks and future work conclude the paper.

2 Related work
Since Michael Fagan proposed his inspection process,
a number of prototype tools for document tracking and
inspection planning [2], comment preparation [18], and for
both individual preparation and group meetings [19] have
been proposed. The most important area of inspection
support tools is represented by the online inspection tools,
which manage the entire process online. These tools
2
The Institution of Engineering and Technology 2009

Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on Octob
provide support for document handling, individual
preparation, meeting support, and data collection.

Among online inspection tools, ICICLE [6] addresses the
inspections of C and Cþþ code, making use of specific
knowledge on the programming language to assist during
the defect discovery phase. Obviously, this approach is not
suitable to review high level software artefacts. Moreover
support to distributed inspection is not provided.

Knight and Meyer [20] propose an inspection technique
that examines the artefacts in a series of small inspection
phases. This technique is implemented in the InspeQ [21]
(inspecting software in phases to ensure quality) toolset. A
preliminary evaluation of InspeQ for the inspection of a
source code written in C has been presented in [20].
InspeQ is different from WAIT, indeed it does not support
distributed meeting. Furthermore, support to the inspection
process management and awareness is poor.

Scrutiny [22] is a collaborative and distributed system for
the inspection and the review of software artefacts. It
implements a process that is similar to the Fagan’s process,
but adds the verifier role to check whether all the founded
defects have been addressed by the author. Scrutiny is
different from WAIT as it only supports source code
artefacts and does not provide support for checklist-based
inspections and asynchronous discussions.

CSI [23] (collaborative software inspection) adopts the
Humphrey’s inspection model [7], which is divided into
four sequential phases: the initiation, the preparation, the
meeting and the post-discussion. CSI supports annotations
by creating hyperlinks between the document and the
inspectors’ annotations. The producer reviews and
categorises the annotations and makes them into one list,
which is discussed by the participants during the meeting.
CSI supports both synchronous and asynchronous
discussions; however, the meeting phase is always
synchronous and the decision support for the moderator is
not provided.

AISA [24] (asynchronous inspection of software artifacts)
is another prototype implementing the Humphrey’s model. It
addresses the problem of inspecting graphical documents
using a web client to visualise documents that are prepared
as clickable image maps. This allows the inspectors to
annotate the document by using the coordinates of the
image portion clicked. Besides visualisation and annotation
facilities, the only support the tool provides is the
notification of the inspection completion by means of a
message sent to the participants when all inspectors have
finished the collection phase. The adopted approach can
lead to a greater number of false positives as that
annotations are made immediately available to all the
participants. For such a reason in our process and tool
defect annotations are available only when all the inspectors
have accomplished the defect discovery. To overcome the
IET Softw., 2009, Vol. 3, Iss. 5, pp. 381–394
doi: 10.1049/iet-sen.2008.0101

er 5, 2009 at 10:02 from IEEE Xplore. Restrictions apply.

IET
do

www.ietdl.org
false positive drawback, InspectA [25] sends a notification
only when all the detection phases are completed.
Differently from our approach, the moderator does not
have any progress information about the detection phase.
As a consequence, the only way to know that an inspector
has completed the inspection is to wait for the email
generated at the end of the phase.

CSRS [4] (collaborative software review system) is a
flexible tool supporting different inspection processes. This
is achieved by using a process modelling language for
defining the process phases, the participant roles and the
artefacts to inspect. CSRS distinguishes between a private
review phase, where individual review of the artefact is
performed and annotations are hidden to the other
inspectors, and public review phase, which represents an
asynchronous discussion. Differently from us, no support
for synchronous discussion is provided. Moreover, CSRS
supports only plain text artefacts.

ASSIST [26] (asynchronous/synchronous software
inspection support tool) like CRSS is designed to support
any inspection process. To this aim it uses an inspection
process definition language. Another goal of the author was
to reduce the effort required during the inspection. To this
aim, the tool provides a checklist browser implementing
active checklists to record answers, monitor the checklist
usage and visualise cross-references (e.g. to show the same
word appearing in different documents). Meeting support
is provided by means of video and audio tools, and a
whiteboard for a textual discussion. ASSIST also provides
an auto-collation facility to merge multiple lists of issues or
defects by using their similarity in terms of position,
content and classification. Differently from WAIT,
ASSIST is not integrated within a software project
management system, thus the inspection process must be
managed separately from the development process.

CAIS [8] is a tool that supports only asynchronous
discussions for a software inspection in distributed
environment. The tool uses CSI to create defects lists and
organises the inspection meeting as a sequence of
contributions (comments and votes) to a discussion.
Moreover, differently from WAIT, the awareness
concerning the inspection process is not guaranteed by a
notification mechanism.

Jupiter [27] is an inspection support tool developed as an
Eclipse plug-in. A case study carried out with nine
undergraduate students and 16 graduate students revealed
that this tool is more usable and useful than the text-based
code review. An evaluation Jupiter has been conducted and
the results of its effectiveness have been reported in [27].
The prototype only addresses the inspection of source code
and does not support geographical dispersed reviews.

Perpich et al. [28] present a web-based tool, named
Hypercode, to support software inspections with
Softw., 2009, Vol. 3, Iss. 5, pp. 381–394
i: 10.1049/iet-sen.2008.0101

Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on Octobe
geographically distributed inspectors. However, no support
for synchronous and asynchronous discussions and
inspection process support are provided.

Lanubile et al. [29] propose a web-based tool, called IBIS
(internet-based inspection system), which adopts a
reengineered inspection process to minimise synchronous
activities and coordination problems and reduce the overall
cost and time of the inspection process. In particular,
starting from the reorganisation of the inspection process
proposed by Sauer et al. [30], they replace the preparation
and meeting phases of the process proposed by Fagan with
three new sequential phases: discovery, collection and
discrimination. The last of these phases can be skipped to
save time and coordination overhead. IBIS presents several
similarities with our approach. Similarly to WAIT, IBIS
has been evaluated through controlled experiments [29].
The main difference as compared to WAIT is the support
provided to the moderator about the ongoing inspection
and in the inspection process supported.

Moreover, none of the tools presented before are
integrated within an artefact management system. As a
consequence they do not integrate an inspection process in
the software artefact life cycle and do not provide
functionalities to link the reviews to software artefact
versions and maintain and easily recover inspection data
during software evolution.

Table 1 summarises the main functionalities provided by
the discussed online inspection tools.

It is worth noting that, being all online computer
supported inspection tools, none of the considered tool has
a low level of flexibility, since they all allow distributed
inspection teams. However, the level of flexibility for CSI,
ICICLE and Scrutiny is lower as compared to the other
tools, since they require all the inspectors be available at the
same time. Moreover, despite being classified as a
synchronous tool, InspeQ does not expressly provide
support for group meeting, thus its level of flexibility is the
lowest as compared to the other tools.

Finally, all the online inspection tools, except Hypercode,
implement a software inspection process. Some of them are
also checklist based. As a consequence, the level of
flexibility is high for most of the considered tools.

3 Distributed inspection process
and tool support
The inspection process implemented within WAIT is
composed of seven phases, namely Planning, Overview,
Discovery, Refinement, Inspection meeting, Rework and
Follow up. During the Planning phase, the quality manager
specifies which artefact version must undergo a formal
review process, defines or selects an existing checklist, and
383

& The Institution of Engineering and Technology 2009

r 5, 2009 at 10:02 from IEEE Xplore. Restrictions apply.

38

&

www.ietdl.org
Table 1 Comparison of discussed online inspection tool features

AISA ASSIST CAIS CSI CSRS Hypercode IBIS ICICLE InspectA InspeQ Jupiter Scrutiny WAIT

Supported artefact type

graphical †

text/code † † † † †

any † † † † † † †

Inspection process support

checklists † † † † † † †

defect
classification

† † † † † † † † † †

decision
support

† † † † † † †

inspection data
collection

† † † † † † † †

customisable
inspection
process

† †

Meeting/discussion

synchronous
discussion

† † † † † † †

asynchronous
discussion

† † † † † † † † †

Process awareness

project
management

†

email
notification

† † † † † † †

evaluation † † † † †

flexibility high high high high high high high high high high high high high

discipline high high high high high low high high high high high high high
composes the inspection team. When this phase is complete,
the inspectors receive a notification containing the inspection
details and a new task appears in their to-do-list.

In the Overview phase, the author of the artefact explains
the design and the logic of the software artefact to the
inspectors. To this aim, he/she produces a document that
briefly describes the purpose and the scope of the artefact
to be inspected. The inspection mailing list is used to
notify all the inspection participants. Please note that this
phase is not mandatory, so the moderator can decide to
skip it in case no details are required to perform the
subsequent phase.

During the Discovery phase, each inspector analyses the
artefact and takes note of the candidate defects by
highlighting all the cases where the artefact does not
4
The Institution of Engineering and Technology 2009

Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on Octobe
comply with the check items in the checklist. WAIT
supports the inspectors during this phase by recording the
identified defect, its severity and its location within the
software artefact in terms of page and line numbers, or
picture/table number. The inspector can also include a
brief comment describing the reason why it contrasts with
the check item. Anytime during this phase, the moderator
can visualise the inspector’s defect log, the check items
processed or not processed as well as a preview of the
merged defect logs containing the inspection output
produced by the inspection team. This information can be
useful to decide whether to stop the detection phase and
start the next phase.

When the Discovery phase is completed, the moderator
accesses the defect log, containing all the defects identified
by the inspectors. In case the inspectors disagree with the
IET Softw., 2009, Vol. 3, Iss. 5, pp. 381–394
doi: 10.1049/iet-sen.2008.0101

r 5, 2009 at 10:02 from IEEE Xplore. Restrictions apply.

IET
do

www.ietdl.org
defects for a check item, WAIT highlights it, allowing the
moderator to decide if the Refinement phase should be
enacted. In this case, the tool sends a notification message
containing the list of conflicts to the inspection
participants. This message also aims at notifying the team
members that the conflicts can be analysed in order to
obtain an agreement. The main goal of this phase is to
remove false defects and to build the consensus on true
defects. Similarly to Lanubile et al. [29], we consider a
defect as a true defect when at least two inspectors identify
it. In this case the defect is not highlighted in the defect
log. It is worth noting that the minimum number of
reviews required to automatically obtain an agreement
could be differently chosen by the inspection manager
according to the inspection process constraints and the
number of inspectors.

During the Refinement phase, the inspector accesses the
merged defect list and selects one of the defects that caused
the conflict. To assist the inspector during this phase,
WAIT highlights the conflicts using a different colour for
different types of conflicts and provides hypertextual links
to the defect details. By using the defect details, the
inspector can decide whether it is an actual defect or a false
positive. To this end, the inspector may decide to further
analyse the considered software artefact. Note that the
merged defect list is shared among all the members of the
inspection team. Hence, when an inspector solves a
conflict, it is removed even from the list of all the other
inspectors. When all the conflicts for a check item are
solved, the corresponding highlighting is also removed.
Note that this phase is not mandatory, so the moderator
can decide to skip it and directly resolve the conflicts
on the identified defects (e.g. in case of a low number of
defects).

A synchronous inspection meeting can be performed in
the Inspection meeting phase to discuss about unsolved
conflicts. Even this phase can be skipped (e.g. in case the
number of conflicts is manageable by the moderator or the
time distance does not permit a synchronous discussion). It
is worth noting that our tool does not require that all the
participants join the inspection meeting, thus enabling the
enactment of sub-teams meeting to resolve conflicts not
involving other inspectors.

The author can use the produced defect log to fix the
artefact during the Rework phase. Let us note that a
different defect log is maintained for each version of a
software artefact. Thus, in case the artefact undergoes
several revisions, it is possible to access the defect logs for
each version.

Similarly to the Fagan’s process, during the Follow-up
phase the moderator checks the quality of the revised
artefact and determines whether a new inspection is
needed.
Softw., 2009, Vol. 3, Iss. 5, pp. 381–394
i: 10.1049/iet-sen.2008.0101

Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on Octobe
4 Controlled experiments
In this section we describe the design of both the controlled
experiments according to the guidelines proposed by Wohlin
et al. [31]. In the following, these controlled experiments are
referred to as Experiment I and Experiment II, respectively.

4.1 Experiment definition and context

To investigate whether the choice of different approaches
significantly affects the time and quality of the inspection,
two controlled experiments involving second year Master
students in Computer Science were conducted in the
Software Engineering research laboratory at the University
of Salerno. Experiment I aimed at comparing the efficiency
and the effectiveness of WAIT and the structured
inspection process proposed by Michael Fagan [3]. In
particular, the Fagan’s inspection process is a formal,
efficient and economical method to find errors in software
artefacts produced both in the design and coding phases.
To this end, Fagan proposes a structured process, which
consists of five sequential phases: Overview, Preparation,
Inspection, Rework and Follow up. In the Overview phase
the designer first describes the overall domain area being
addressed and then provides details about the specific area
he/she has designed. Once this phase is concluded,
documentation concerning the software artefact to inspect
is distributed to all the inspection participants. Participants,
using this documentation, do their ‘homework’ trying to
understand the design, as well as its intent and logic. The
checklist adopted in the following phase of the process has
to be studied and deeply understood. During the
Inspection phase, the moderator chooses a reader (usually
the author) and a face-to-face meeting is carried out.
Within one day of the conclusion of the inspection, the
moderator should produce a written report, which is
provided as input to the Rework phase. During the Rework
phase, the designer or coder/implementer addresses the
defects identified during the Inspection phase. Finally,
during the Follow-up phase the moderator checks
the quality of the rework and determines whether a
re-inspection is needed.

WAIT and the PI methods have been compared in the
second experiment, namely Experiment II. PI is a very
flexible and undisciplined way to review software artefacts.
Only two people are required to inspect a software artefact,
that is the author and an inspector who reviews the author’s
artefact. In some cases the author could lack. In this case
two inspectors conduct the inspection. PI requires
continuous iterations, so any strict rules can be formulated
to guide the inspection. Owing to the iterative nature of
the process, the recording of defects found in informal
meetings is not required. A form or a template is adopted
to annotate the defects of the software artefact under
review. In some cases, the defects are annotated on paper
documents and corrected during the next inspection cycle.
A checklist can be optionally used to drive the inspectors
385
& The Institution of Engineering and Technology 2009

r 5, 2009 at 10:02 from IEEE Xplore. Restrictions apply.

38

&

www.ietdl.org
during the review of a software artefact. In addition, the
author and inspector together can also write down
comments for the acceptance review.

The main goal of the experimentation presented here
concerns the investigation of how the discipline and
flexibility dimensions affect the effectiveness and efficacy of
the inspection of low-level software artefacts. To this end,
two are the defined research questions that we aim at
addressing:

Q1. Is the distributed inspection process implemented within
WAIT more efficient and effective than the FAG to inspect a
software artefact?

Q2. Is the distributed inspection process implemented within
WAIT more efficient and effective than the PI method to
inspect a software artefact?

The research question Q1 will be addressed in Experiment I,
whereas the research question Q2 will be investigated in
Experiment II.

Both the experiments involved 18 students. The subjects
were volunteers and were grouped into six inspection teams.
All the involved subjects conducted a controlled experiment
as a series of optional laboratory sessions conducted within a
Software Engineering course. Note that each subject
performed only one experiment. This was possible as the
students involved in the experiments attended the Software
Engineering course within two subsequent academic years.

It is worth to point out that we posed great care to ensure that
ethical requirements imposed by the Italian legislation were
met. In fact, the subjects were asked to sign a document
where the following sentence was written: ‘Data collected will
be used only for research purposes and they will be revealed
only in aggregated form’. The subjects were also informed
that: (i) the experiment had a pedagogical purpose, (ii) for
privacy reasons the results were made anonymous and (iii)
students were not evaluated on their performance.

4.2 Hypotheses

To address the research questions presented above, for each
experiment two null hypotheses have been defined. These
hypotheses aim at assessing the efficacy and the effectiveness
of our distributed process, respectively. To assess the efficacy
of the distributed process and the supporting tool, the
following null hypothesis has been defined:

† Hn1: the use of WAIT does not significantly affect the
time to inspect the software artefact.

The alternative hypothesis is

† Ha1: the use of WAIT significantly affects the time to
inspect the software artefact.
6
The Institution of Engineering and Technology 2009

Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on Octobe
On the other hand, we also investigated the effectiveness of
the distributed process implemented in WAIT with respect
to the other two inspection methods (i.e. Fagan’s process
and PI method). To this end, the following null hypothesis
has been formulated:

† Hn2: the use of WAIT does not significantly affect the
inspection quality.

The related alternative hypothesis is:

† Ha2: the use of WAIT significantly affects the inspection
quality.

4.3 Selected variables

In order to properly design the experiment and analyse the
results, we considered the following independent variables:

† Method: this variable indicates the factor the studies are
focused on, namely the investigated inspection methods,
WIT (WAIT inspection tool), FAG and PI.

† Lab: the experiments are organised in two subsequent
laboratory sessions, also named runs (i.e. Lab1 and Lab2).
The runs were subsequently performed to reduce the
possibility that subjects exchange information between
Lab1 and Lab2.

† Task: this variable indicates the inspection tasks to
perform in both the experiments.

In particular, the inspection tasks the subjects were asked
to perform in both the experiments are:

† T1: inspecting a Java class implementing a binary tree data
structure and the algorithms to traverse and modify it;

† T2: inspecting a Java class enabling the construction and
the execution of queries on a relational database.

Some statistics of the tasks are presented in Table 2. It is
worth mentioning that the defects within the tasks were
uniformly distributed, thus reducing their effect on the
experimental results.

Table 2 Statistics of the tasks

T1 T2

lines of code 166 145

lines of comments 27 31

number of methods 12 7

number of global variables 4 13

number of inner classes 3 0

number of defects 78 56
IET Softw., 2009, Vol. 3, Iss. 5, pp. 381–394
doi: 10.1049/iet-sen.2008.0101

r 5, 2009 at 10:02 from IEEE Xplore. Restrictions apply.

IE
do

www.ietdl.org
The use of source code within the two tasks is due to the
fact that the subjects were familiar with procedural and object
oriented programming languages. Therefore they can be
considered not far from junior industry programmers, thus
improving the external validity of both the experiments.
Note that the defined inspection tasks were expected to be
accomplished within 2 h.

To verify the null hypotheses Hn1, we considered the
following dependent variable:

† Time: the sum of the times that the team members spent
to perform the task.

The quality of an inspection was assessed using two well-
known measures, namely precision and recall. In our case the
recall is defined as the ratio between the number of actual
defects identified by the team and the total number of
actual defects, whereas the precision is ratio between the
number of actual defects identified by the team and the
total number of identified defects. These measures range
between 0 and 100%. If the recall is 100%, it means that
all the true defects have been identified, even if there could
be identified defects that are false defects. If the precision is
100%, it means that all the identified defects are correct,
even if there could be correct defects that were not
identified. This indicates that the precision and recall
measures abstract different and specific concerns. Hence, to
obtain a balance between these measures the harmonic
mean (i.e. F-measure [32]) was adopted. This measure is
defined as follows

F-measure ¼ 2�
precision�recall

precisionþ recall

As a result, to test the null hypothesis Hn2 the following
dependent variable has been considered:

† F-measure: the harmonic mean of the precision and recall
values.

4.4 Experiment design

Although we designed the experiments to avoid the task
effect on the considered dependent variables, the Task
factor has to be tested to ensure that it does not influence
the results. Hence, the possible combinations of Method
and Task factors represent the considered treatments. To
avoid results to be biased by group ability, each group
experienced both the inspection methods and both the
tasks over two laboratory sessions.

4.4.1 Experiment I: The design of Experiment I is
summarised in Table 3. We randomly assigned inspection
teams to the groups A–D. Since the number of teams was
six and the number of groups was four, two groups had
two teams assigned namely A and B, and two groups had
one team assigned, namely C and D. A researcher, who
T Softw., 2009, Vol. 3, Iss. 5, pp. 381–394
i: 10.1049/iet-sen.2008.0101

Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on Octobe
played the role of moderator within the team, supported
each team. Moderators were asked to restrict themselves to
coordinate the inspections. All combinations of the
Method (FAG and WIT) and Task (T1 and T2) factors
represent the considered treatments. Also, to minimise the
learning effect, we needed to have teams starting to work in
Lab1 both with and without the tool on both the tasks.

4.4.2 Experiment II: Table 4 summarises the design of
Experiment II. We randomly assigned inspection teams to
groups A and B. These groups had three teams assigned.
In the first laboratory session, each team was composed of
three students and a researcher. Similarly to Experiment I,
the researchers played the role of moderator without
participating in the identification of the defects within the
software artefact of the tasks. When the first laboratory
session was concluded we removed the moderator and one
subject from each team belonging to groups A and B. The
removed subject was randomly selected. This was necessary
because the PI needs only two inspectors for each team.
Similarly to Experiment I, all the combinations of the
Method and Task factors represent the considered
treatments.

4.5 Preparation

All the subjects attended an introductory training session on
the usefulness of the inspection methods to detect and
remove defects within software artefacts produced in the
whole development process of a software system.
Furthermore, the subjects of Experiment I attended a
training session where the Fagan’s inspection method was
deeply presented and discussed. Examples (not related to
the tasks to avoid biasing the experiment) were also
proposed. On the other hand, details on the PI method
were provided to the subjects of Experiment II. Even in

Table 3 Design of Experiment I

Subject’s group Method

FAG WIT

A T1, Lab1 T2, Lab2

B T2, Lab2 T1, Lab1

C T2, Lab1 T1, Lab2

D T1, Lab2 T2, Lab1

Table 4 Design of Experiment II

Subject’s group Method

WIT PI

A T1, Lab1 T2, Lab2

B T2, Lab1 T1, Lab2
387

& The Institution of Engineering and Technology 2009

r 5, 2009 at 10:02 from IEEE Xplore. Restrictions apply.

38

&

www.ietdl.org
this case we discussed examples not related to the
experiments. Note that the subjects of both the
experiments also attended a training session on our
distributed inspection process and tool. To give subjects
more confidence with the tool, some examples were also
presented. The training sessions were concluded presenting
detailed instructions on the tasks.

The attended training sessions aimed at providing all the
subjects an equal prior knowledge and to deeply describe
the software application and the investigated inspection
methods. At the end of each laboratory session a post-
experiment survey questionnaire was submitted to the
subjects (see Table 5). This questionnaire has been mainly
employed to assess the overall quality of the provided
material and the clearness of the laboratory session goals
and of the inspection tasks. The questions expected closed
answers according to a five-point Likert scale [33]: 1
(strongly agree); 2 (agree), 3 (neither agree nor disagree), 4
(disagree) and 5 (strongly disagree).

4.6 Material, execution and data analysis

To perform the experiment each subject was provided with a
folder containing a pencil, white sheets and the following
hard copy material:

1. the introductory presentation of the training session;

2. the guidelines to perform the assigned tasks according to
our inspection method and the FAG;

3. the source code of the class to be inspected in the
two tasks;

4. a checklist to be used to perform the inspection tasks. The
checklist (see Table 6) was the same for each treatment
within the experiments;

5. an inspection defect log template to be used to perform
the tasks when the subjected used FAG and PI; and

6. the post-experiment survey questionnaires to be filled in at
the end of each laboratory session.

Table 5 Post-experiment survey questionnaire

Id Question

Q1 I had enough time to perform the inspection task

Q2 the task objectives were perfectly clear

Q3 performing the task was easy

Q4 the supporting material to perform the task
provided enough information

Q5 the checklist was clear and well structured

Q6 the defect identification was easy
8
The Institution of Engineering and Technology 2009

Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on Octob
The inspection teams accomplished each laboratory
session of the experiment without time limit. When the
experiments were concluded the supervisors collected the
post-experiment survey questionnaires, the log files
containing the information traced by WAIT as well as the
defect reports. The supervisors also gathered information
(i.e. time spent and defect logs) about the inspection tasks
performed by using the FAG and PI methods. The defect
logs have been also analysed in order to compute the
precision and recall values for each treatment. To this end,
two experts not involved in the development of WAIT
analysed the defect logs. These worked independently and
iterated until they reached an agreement. The experts
adopted the same checklist used by the inspection teams
during the task execution.

Owing to the low number of observations, we used
parametric tests in the data analysis of both the
experiments. In particular, to reject the defined null
hypotheses we used the Wilcoxon test [34], whereas to
verify the absence of learning or tiring effects we used the
Kruskal–Wallis test. In the first experiment the Kruskal–
Wallis test was employed to analyse the influence of the
Task and Lab factors on the selected dependent variables.
On the other hand, in Experiment II this test was used to
investigate the influence of the Task factor.

Table 6 Checklist used within the experiments

the class is properly commented

there is a comment for each declared variable

the comments do not negatively influence source code
readability and are always useful

there is correspondence between the methods signature
and the comments

the scope and behaviour of the classes are properly
clarified by comments

the comments properly describe the source code
in close proximity

the comments are not banal

the names of the constants, variables, classes, and
packages are compliant with the established naming
convention (e.g. CONSTANT_NAME, variableName,
ClassName, packageName.subpackageName)

the names of the classes and variables are meaningful

the information hiding is respected

the output of each method is consistent with the name

before using an object that could be null its state is
always verified

the code is properly indented

each method implements a specific functionality
IET Softw., 2009, Vol. 3, Iss. 5, pp. 381–394
doi: 10.1049/iet-sen.2008.0101

er 5, 2009 at 10:02 from IEEE Xplore. Restrictions apply.

IE
do

www.ietdl.org
Owing to the design of Experiment I (i.e. factorial design
with confounded interaction), the order the subjects
performed the tasks within the two subsequent laboratory
sections (i.e. order of methods) needed to be controlled
[35]. In fact, the order of methods may produce learning
effects, which may bias the results in terms of time to
accomplish the tasks and inspection quality. Accordingly,
for each subject x and for the time and F-measure
dependent variables we computed:

Diffx ¼ observationx(FAG) 2 observationx(WIT)

Diff(WIT) represents the performance difference of the
subjects, who used WIT first and then FAG, whereas
Diff(FAG) indicates the performance difference of the
subjects, who used FAG first and WIT second. To test
whether Diff(FAG) is larger than Diff(WIT), we used the
non-parametric two-sample Kolmogorov–Smirnov test.
We expected Diff(FAG) to be larger than Diff(WIT) on
both the dependent variables. This is because the subjects’
ability to use WIT may improve through laboratory
sessions. As a result, we needed to verify the null
hypothesis H0t: Diff(FAG) ¼ Diff(WIT) on the time
dependent variable. The alternative hypothesis is as follows:
Hat: Diff(WIT) , .Diff(FAG). Similarly, we defined the
null hypothesis H0f on F-measure. The alternative
hypothesis Haf can be easily derived as well.

Let us note that the results of the tests used here are
intended as statistically significant at a ¼ 0.05.

5 Results
In this section we present the results of the experiments
including the results of the post-experiment survey
questionnaire.

5.1 Experiment I

Table 7 shows some descriptive statistics (i.e. minimum,
maximum, mean and standard deviation) – grouped by
Method – on the time and F-measure dependent variables.

Table 7 Descriptive statistics of Experiment I

Minimum Maximum Mean Std.
deviation

FAG

Time 147 259 202 47.24

F-measure 55 74 65.66 6.31

WIT

Time 127 235 171 39.80

F-measure 52 77 67 10
T Softw., 2009, Vol. 3, Iss. 5, pp. 381–394
i: 10.1049/iet-sen.2008.0101

Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on Octob
The subjects spent on average less time to accomplish the
task using WIT. On average a slight difference in terms of
the F-measure values was observed between the teams
using or not our inspection process.

The Wilcoxon test revealed that the null hypotheses Hn1

and Hn2 cannot be rejected as the p-values were 0.463 and
0.600, respectively. To further investigate this concern, we
analysed the needed time to inspect the software artefact
within the tasks and the F-measure values achieved by the
subjects. In particular, Table 8 shows the number of
subjects that using WIT spent less time to accomplish the
tasks (WIT , FAG) and the number of subjects that using
WIT spent more time (WIT . FAG). Similarly, the
results on the F-measure dependent variable are presented
as well.

5.1.1 Influence of Task, Lab and Order of method:
The Kruskal–Wallis test revealed that the influence of the
Task factor was not statistically significant concerning the
Time-(p-value ¼ 0.199) and F-measure (p-value ¼ 0.748)
dependent variables. Even, the influence of Lab was not
statistically significant on Time (p-value ¼ 0.05). However,
the significance level of the test is very close to 5%. A
further analysis revealed that the subjects on average spent
less time to accomplish the second laboratory session. This
could be because of the fact that in the first session they
spent time to get familiar with the inspection methods (i.e.
FAG and WIT). On the other hand, the the Kruskal–
Wallis test revealed that the influence of Lab was not
statistically significant on the F-measure dependent variable
(p-value ¼ 0.810).

Finally, the two-sample Kolmogorov–Smirnov test
revealed that the null hypothesis H0t could not be rejected
(p-value ¼ 0.518). This means that the second laboratory
session does not bring significantly larger performance
differences in terms of time to accomplish the tasks. Even,
the null hypothesis H0f cannot be rejected (p-value ¼ 0.996),
thus indicating that the second laboratory session does
not bring significantly better results with respect to
F-measure.

5.1.2 Post-experiment survey questionnaire for
Experiment I: Fig. 1 visually summarises the data
collected from the survey questionnaire of Experiment I. In
particular, the answers corresponding to FAG and WIT
are summarised by the bars on the left- and right-hand
sides, respectively. The analyses of the collected data
showed that the time to perform the inspection tasks was

Table 8 Performance differences according to WIT and FAG

Dependent variable WIT , FAG WIT . FAG

Time 4/6 2/6

F-measure 3/6 3/6
389

& The Institution of Engineering and Technology 2009

er 5, 2009 at 10:02 from IEEE Xplore. Restrictions apply.

39

&

www.ietdl.org
Figure 1 Results of post-experiment survey questionnaire of Experiment II
considered appropriate as well as their objectives (see
questions Q1 and Q2). The bars of Q3 and Q4 concerning
the FAG and WIT methods present some differences.
Despite this, the general judgment of the subjects is
satisfactory. Therefore the subjects expressed on the average
a positive judgment on the inspection task clarity as well as
on the hard copy material. Moreover, the checklist was
considered clear and well structured (see Q5). The subjects
used the FAG and WIT methods generally provided
different answers on Q6. In particular, the subjects that
performed the task using the FAG method, on the average,
found the defect identification simpler than the subjects
that used the tool. This is the case where a controlled
experiment provides an insight into the difference between
the perceived usefulness of a given method and the
effective advantage of using it. To better address this point
replications on a larger dataset are however needed.

5.2 Experiment II

The descriptive statistics of Experiment II – grouped by
Method – on the Time and F-measure dependent
variables are shown in Table 9. On the average the subjects
spent more time to accomplish the tasks using the WIT,
while a slight difference was observed in terms of the
F-measure value.

Table 9 Descriptive statistics of Experiment II

Minimum Maximum Mean Std.
deviation

PI

Time 77 104 85.5 10.7

F-measure 62 83 69 8.02

WIT

Time 127 237 186.33 45.47

F-measure 55 85 71.83 12.10
0
The Institution of Engineering and Technology 2009

Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on Octobe
The Wilcoxon test revealed that the null hypothesis Hn1

can be rejected as the p-value was 0.028. This indicates
that use of WAIT significantly affects the time to perform
the tasks. In particular, we observed that the subject on
average spent more time when they used WAIT to
accomplish the task. This is an expected result as the PI
method has a low level of discipline with respect to the
distributed inspection process implemented in WAIT. The
null hypothesis Hn2 cannot be rejected as the Wilcoxon
test revealed (p-value ¼ 0.462). This indicates that the
investigated method does not significantly affect the
inspection quality.

As for Experiment I, we further analysed the time and the
harmonic mean of precision and recall values that the subjects
achieved in the two subsequent laboratory sessions (see
Table 10). We can observe that the inspection teams obtained
better F-measure in case the WIT method was used. In
particular, four teams out of six benefit more using WIT.

5.2.1 Influence of Task: The influence of Task was not
statistically significant on the Time dependent variable as the
Kruskal–Wallis test revealed that (p-value ¼ 0.470). This
indicates that there is no a significant difference in the time
to perform the inspection tasks T1 and T2 in the two
laboratory sessions. The Kruskal–Wallis test also indicated
that the Task factor is not significant on the F-measure
dependent variable (p-value ¼ 0.172).

5.2.2 Post-experiment survey questionnaire for
Experiment II: The data collected from the survey
questionnaire of Experiment II are visually summarised in
Fig. 2. In particular, the bars on the left and right hand
sides summarise the answers of the post-experiment survey

Table 10 Performance differences according to WIT and PI

Dependent variable WIT , PI WIT . PI

Time 0/6 6/6

F-measure 2/6 4/6
IET Softw., 2009, Vol. 3, Iss. 5, pp. 381–394
doi: 10.1049/iet-sen.2008.0101

r 5, 2009 at 10:02 from IEEE Xplore. Restrictions apply.

IET
do

www.ietdl.org
Figure 2 Results of the post-experiment survey questionnaire of Experiment II
questionnaire regarding PI and WIT, respectively. The time
to perform each inspection task was considered appropriate
(see question Q1). However, the subjects that performed
the task using PI provided a better judgment. Moreover,
the tasks objectives were considered clear as the bars for
question Q2 show. The answers of the questions from Q3
to Q5 concerning the FAG and WIT methods present
some differences. In particular, the subjects using WIT
provided a better judgment. However, all the subjects
expressed on the average a positive judgment on the
inspection task clarity, on the provided hard copy material
and on the checklist. Regarding the question Q6, the
subjects that performed the task using WIT generally
found the defect identification more complex than the
subjects that used PI.

6 Discussion
The controlled experiments showed that the only dimension
that influences the inspection is the discipline. In particular,
the time needed to inspect the software artefact is the only
factor influenced by the discipline dimension. In fact, the
data analysis revealed that there is not a statistical significant
difference on the time needed to accomplish the task when
using the methods with a high level of discipline (i.e. the
WIT method and the FAG). On the other hand, a
significant difference was observed in case we compared the
WIT method to the method with a low level of discipline
(i.e. the PI method). Differently, the discipline dimension
does not significantly influence the inspection quality.

Moreover, considering methods according to the flexibility
dimension we observed that both Time and F-measure are
not statistically significant. In fact, Experiment I showed
that Time and F-measure were not significantly affected by
the use of the WIT method (high level of flexibility) or the
Fagan’s process (low level of flexibility). This result was
confirmed in Experiment II, where the compared methods
had a comparable flexibility level.

Despite the differences when using or not our tool are not
significant with respect to FAG, the experiment revealed that
Softw., 2009, Vol. 3, Iss. 5, pp. 381–394
i: 10.1049/iet-sen.2008.0101

Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on Octob
the subjects spent less time as compared to the FAG, while
the overall quality of the results is comparable. To further
investigate the inspection results we analysed the actual and
false defects that the subjects identified using FAG and
WIT. In particular, we observed that they identified a
larger number of actual defects and false positives when
using our tool. This could be motivated with the fact that
the inspectors performed a more rigorous detection phase
when our tool was used. This emerged by the analysis of
the description of the defects provided with the defect logs.
In fact, when the FAG was used, we observed that the
description of the obvious defects was poor and informal.
Differently, a more precise and formal description was
provided when our tool was used. Such a better defect
description could also have affected the larger number of
false positives. Indeed, the description of the defect
identified by the inspector could have convinced the
remaining team members, thus inducing them to
erroneously remove the conflict. Note that this represents
an acceptable drawback in a distributed setting, where the
possibility of reducing or avoiding face-to-face meetings or
synchronous discussions is always welcomed.

Similarly to Experiment I, we analysed the actual and false
defects that the subjects identified using WIT and PI in
Experiment II. This analysis showed that the total number
of defects is nearly the same for all the investigated
methods. On the other hand, the teams identified a larger
number of false defects when using PI. This could be
because of the low number of inspectors involved in the
discussion of the possible defects. In fact, with a lower
number of inspectors an agreement is easier to be achieved.

The results of the post-experiment survey questionnaires
showed that the subjects that performed the inspection
tasks using FAG and PI found, on the average, the defect
identification simpler than the subjects that used WAIT.
This aspect could be because of the fact that the subjects
had to interact with each team member through a tool in
order to accomplish each phase of the inspection process.
Probably, the definition of a distributed approach with a
lower disciplined level could improve the subjects’
391

& The Institution of Engineering and Technology 2009

er 5, 2009 at 10:02 from IEEE Xplore. Restrictions apply.

39

&

www.ietdl.org
satisfaction to inspect software artefacts. Therefore a possible
direction for future work could be the definition of a
distributed inspection process with high flexibility and
discipline.

The distribution of the identified defects within the
software artefacts (in both the experiments) is nearly the
same whatever inspection method is used. Nevertheless,
this is an interesting point that could be further
investigated in the future. In fact, it could be useful to
understand whether an inspection method is more suitable
than others to identify a specific kind of defect.

In order to comprehend the strengths and limitations of our
empirical investigation, threats that could affect its internal,
construct, external and conclusion validity need to be
discussed. Internal validity threats are relevant in studies that
try to establish a causal relationship. In particular, the
presented experiments aimed at concluding that our
approach produces different outcomes with respect to the
FAG and the PI. Generally, the key question is whether the
observed differences can be attributed to the learning effect
and not to other possible causes. The internal validity
threats are mitigated by the designs of both the experiments,
since each group worked, over the two Labs, on different
tasks and with two different methods. Additional
considerations are due about the second experiment. In fact,
despite its careful design there is still the risk that subjects
might have learned how to improve their performances in
the second laboratory session. However, this could only
positively affect the needed time and the inspection quality
of the subjects when experimenting PI. It is worth noting
that the subjects found clear everything regarding the tasks
both in Experiment I and Experiment II.

The construct validity threats (i.e. the interactions between
different treatments) were mitigated by a proper design of the
experiments that allowed separating the analysis of the
different factors and of their interactions. Moreover,
depending on Method, the measurements of the dependent
variables were performed either analysing the log files
produced by the tool or considering the times gathered by
the experiment supervisors (one for each team). The
questionnaire was designed using standard ways and scales
[33]. Let us note that the construct validity could be affected
by the true and false positive defects that experts manually
identified to compute precision, recall and F-measure. Even
the measure (i.e. F-measure) used to get a quantitative
evaluation of the inspections could condition the achieved
results. Social threats (e.g. evaluation apprehension) could
also affect the observed results. To mitigate this effect, the
subjects were not evaluated on the results they obtained and
were not aware of the experimental hypotheses.

External validity threats are always present when
experiments are performed with students. Generally, last-
year Master students have a good analysis, development
and programming experience, and they are not far from
2
The Institution of Engineering and Technology 2009

Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on Octobe
junior industry programmers. Another threat that could
affect the external validity concerns the type of software
artefacts used within the experiments (i.e. the source code)
and the Java classes to be inspected in the tasks (e.g. the
subjects could be very familiar with the class implementing
a binary tree). The complexity and the size of the used
artefacts could influence the external validity as well. To
confirm or contradict the achieved results replications with
subjects of different academic and industrial contexts
should be performed on larger, different and more complex
software artefacts. For example, replications are needed
on software artefacts produced in the early phases of the
software development process (e.g. analysis and design).

Conclusion validity threats concerns the issues that affect
the ability of drawing a correct conclusion. Even, the
conclusion validity threats were mitigated by the design of
the experiments. Regarding the recruited subjects, we drew
a fair sample from that population and conducted the
experiments with subjects belonging to this sample.
Moreover, proper tests were performed to statistically reject
null hypotheses. In cases where differences were present but
not significant, this was explicitly mentioned and analysed.
Non-parametric tests were used in place of parametric tests
because of the low number of observations.

7 Conclusion and further work
This paper presented two controlled experiments aimed at
comparing three software inspection methods, in terms of
efficacy and efficiency. These experiments involved Master
students in Computer Science at the University of Salerno.
The students had to discover defects within software
artefacts (i.e. Java classes) using inspection methods that
differ in terms of discipline and flexibility. In particular, in
the first controlled experiment we compared the disciplined
and flexible inspection process implemented in WAIT to a
disciplined but not flexible method (i.e. the Fagan’s
process). In the second experiment WAIT was compared
to a flexible but not disciplined method (i.e. the PI). The
experiments revealed that the only significant factor is the
time. In particular, less disciplined methods need less time
to inspect the software artefact. One of the main objectives
here is to provide a software quality manager with some
insight into choosing the inspection method to adopt
according to the projects needs and constraints.

As mentioned above, a further work we have performed
concerns the integration of WAIT within an artefact-based
process support system (i.e. ADAMS [11, 36]), thus
providing a more effective support of the quality
management within the development process of a software
system. The advantages of integrating WAIT within
ADAMS are manifold. First of all, the possibility of
allocating human resources on the software artefact to
review, planning inspection-related tasks within the project
schedule, capturing the minute resulting from synchronous/
asynchronous discussions and associating it to the
IET Softw., 2009, Vol. 3, Iss. 5, pp. 381–394
doi: 10.1049/iet-sen.2008.0101

r 5, 2009 at 10:02 from IEEE Xplore. Restrictions apply.

IE
do

www.ietdl.org
corresponding artefact. A further advantage of this integration
concerns the possibility of using functionalities to notify the
accomplishment of each phase of the inspection process.
Finally, this integration also enables to maintain information
regarding the inspections of all the versions of a given
software artefact and to understand how the identified
defects evolve during the different inspections. More details
can be found in [9].

The support provided by the system resulting from the
integration of WAIT within ADAMS has been
preliminary assessed within the projects conducted by some
students of the Computer Science programme at the
University of Salerno. The students were allocated on
software projects including between three and sixteen
Bachelor students (2nd year B.Sc.) with development role.
On the other hand, one or two Master students (2nd year
M.Sc.) were involved with roles of project and quality
management. Each project manager was responsible for
coordinating the project, defining the project schedule,
organising project meetings, collecting process metrics and
allocating human resources to tasks. Quality managers were
responsible for defining process and product standards of
the project, collecting product metrics and managing the
artefact reviews for quality control.

This investigation confirmed the main results of the
empirical experimentation presented here and provided a
number of directions to improve the usefulness of the
inspection tool in the quality management of ADAMS. A
first direction is to add some features to further simplify the
defect localisation within the software artefact. A second
direction should aim at adding new features to better support
synchronous discussion among inspectors and moderators.

Future work will be also devoted to conduct controlled
experiments and case studies within a software industrial
context to increase the body of knowledge about the
efficacy and effectiveness of inspection methods in the
global software development and to provide feedback on
whether the technologies produced in research laboratories
fulfil the industry needs. We also plan to investigate the
impact of face-to-face against tool-mediated meeting as
compared to the number of true defects and false positives.
This can be useful in case time distance is not an issue, but
moving people might be a problem. Finally, future work
will be devoted to the investigation of over-simplification
problems in formal experiments [37]. In particular, we will
concentrate on different types of benefit, for example the
development of team spirit and the transferring of
technology among the inspection participants.

8 References

[1] FREEDMAN D.P., WEINBERG G.M.: ‘Handbook of walkthroughs,
inspections, and technical reviews: evaluating programs,
projects, and products’ (Little Brown & Co., 1982, 3rd edn.)
T Softw., 2009, Vol. 3, Iss. 5, pp. 381–394
i: 10.1049/iet-sen.2008.0101

Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on Octob
[2] AURUM A., PETERSSON H., WOHLIN C.: ‘State-of-the-art:
software inspections after 25 years’, Softw. Test. Verif.
Reliab., 2002, 12, (3), pp. 133–154

[3] FAGAN M.E.: ‘Design and code inspections to reduce
errors in program development’, IBM Syst. J., 1976, 15,
(3), pp. 182–211

[4] JOHNSON P.M.: ‘An instrumented approach to improving
software quality through formal technical review’. Proc.
16th Int. Conf. on Software Engineering, Sorrento, Italy,
1994, pp. 113–122

[5] TERVONEN I., IISAKKA J., HARJUMAA L.: ‘Software inspection –
a blend of discipline and flexibility’. Proc. ENCRESS-98,
1998, pp. 157–166

[6] BROTHERS L.R., SEMBUGAMOORTHY V., MULLER M.: ‘ICICLE:
Groupware for code inspections’. Proc. 1990 ACM Conf.
on Computer Supported Cooperative Work, Los Angeles,
CA, USA, 1990, pp. 169–181

[7] HUMPHREY W.S.: ‘Managing the software process’ (SEI
series in software engineering, Addison-Wesley Longman
Publishing, Boston, MA, USA, 1989)

[8] MASHAYEKHI V., FEULNER C., RIEDL J.: ‘CAIS: collaborative
asynchronous inspection of software’, SIGSOFT Softw. Eng.
Notes, 1994, 19, (5), pp. 21–34

[9] DE LUCIA A., FASANO F., SCANNIELLO G., TORTORA G.: ‘Integrating a
distributed inspection tool within an artefact management
system’. Proc. Second Int. Conf. Softw. and Data
Technologies, Barcelona, Spain, 22–25 July 2007, pp. 184–189

[10] DAMIAN D., LANUBILE F., MALLARDO T.: ‘On the need for mixed
media in distributed requirements negotiations’, IEEE Trans.
Softw. Eng., 2008, 34, (1), pp. 116–132

[11] DE LUCIA A., FASANO F., FRANCESE R., TORTORA G.: ‘ADAMS:
an artefact-based process support system’. Proc. 16th Int.
Conf. on Software Engineering and Knowledge
Engineering, Banff, Alberta, Canada, 2004, pp. 31–36

[12] BASILI V.R., SELBY R.W., HUTCHENS D.H.: ‘Experimentation in
software engineering’, IEEE Trans. Softw. Eng., 1986, 12,
(7), pp. 733–743

[13] PFLEEGER S.L., MENEZES W.: ‘Marketing technology to
software practitioners’, IEEE Softw., 2000, 17, (1),
pp. 27–33

[14] REDWINE S.T., RIDDLE W.E.: ‘Software technology
maturation’. Proc. Eighth Int. Conf. on Software
Engineering, London, UK, 1985, pp. 189–200

[15] KOLLANUS S., KOSKINEN J.: ‘Survey of software inspection
research: 1991–2005’. Computer Science and Information
393

& The Institution of Engineering and Technology 2009

er 5, 2009 at 10:02 from IEEE Xplore. Restrictions apply.

39

&

www.ietdl.org
Systems Reports, Working Papers WP-40, Dept. of
Computer Science and Information Systems, Univ. of
Jyväskylä. Jyväskylä University Printing House, Jyväskylä,
2007

[16] LAITENBERGER O., DEBAUD J.M.: ‘An encompassing life cycle
centric survey of software inspection’, J. Syst. Softw.,
2000, 50, (1), pp. 5–31

[17] IISAKKA J., TERVONEN I., HARJUMAA L.: ‘Experiences of
painless improvements in software inspection’. Project
Control for Software Quality, ESCOM-SCOPE’99, Shaker
Publishing B.V, 1999, pp. 321–327

[18] BULL S.A.: ‘Inspection process assistant: user guide
v 3.0’, 1997

[19] INIESTA J.B.: ‘A tool and a set of metrics to support
technical reviews’, in ROSS M. (EDS.): ‘Software quality
management II, volume II: building quality into software’
(Computational Mechanics, Southampton, UK, 1994),
pp. 579–594

[20] KNIGHT J.C., MEYERS E.A.: ‘An improved inspection
technique’, Commun. ACM, 1993, 36, (11), pp. 51–61

[21] KNIGHT J.C., MEYERS E.A.: ‘Phased inspections and their
implementation’, Softw. Eng. Notes, 1991, 16, (3), pp. 29–35

[22] GINTELL J.W., ARNOLD J., HOUDE M., KRUSZELNICKI J., MCKENNEY R.,
MEMMI G.: ‘Scrutiny: a collaborative inspection and review
system’. Proc. Fourth European Conf. on Software
Engineering, 1993, pp. 344–360

[23] MASHAYEKHI V., DRAKE J.M., TSAI W.T., REIDL J.: ‘Distributed,
collaborative software inspection’, IEEE Softw., 1993, 10,
(5), pp. 66–75

[24] STEIN M., RIEDL J., HARNER S.J., MASHAYEKHI V.: ‘A case study of
distributed, asynchronous software inspection’. Proc. 19th
Int. Conf. on Software Engineering, Boston, MA, USA,
1997, pp. 107–117

[25] MURPHY P., MILLER J.: ‘A process for asynchronous
software inspection’. Proc. Eighth Int. Workshop on
Software Technology and Engineering Practice, London,
UK, 1997, pp. 96–104

[26] MACDONALD F., MILLER J.: ‘A comparison of tool-based and
paper-based software inspection’, Empir. Softw. Eng., 1998,
3, (3), pp. 233–253
4
The Institution of Engineering and Technology 2009

Authorized licensed use limited to: Universita degli Studi di Salerno. Downloaded on Octob
[27] YAMASHITA T.: ‘Evaluation of Jupiter: a lightweight code
review framework’. M.S. thesis, University of Hawaii,
Honolulu, Hawaii, Number CSDL-06-09, December, 2006,
available at http://csdl.ics.hawaii.edu/techreports/06-09/
06-09.pdf

[28] PERPICH J.M., PERRY D.E., PORTER A.A., VOTTA L.G., WADE M.W.:
‘Anywhere, anytime code inspections: using the web to
remove inspection bottlenecks in large-scale
software development’. Proc. 19th Int. Conf. on
Software Engineering, Boston, Massachusetts, USA,
pp. 14–21

[29] LANUBILE F., MALLARDO T., CALEFATO F.: ‘Tool support for
geographically dispersed inspection teams’, Softw.
Process: Improv. Pract., 2003, 8, (4), pp. 217–231

[30] SAUER C., JEFFERY D.R., LAND L., YETTON P.: ‘The effectiveness
of software development technical reviews: a behaviorally
motivated program of research’, IEEE Trans. Softw. Eng.,
2000, 26, (1), pp. 1–14

[31] WOHLIN C., RUNESON P., HÖST M., OHLSSON M.C., REGNELL B.,
WESSLEN A.: ‘Experimentation in software engineering: an
introduction’ (The Kluwer International Series in Software
Engineering, 2000)

[32] BAEZA-YATES R., RIBEIRO-NETO B.: ‘Modern information
retrieval’ (Addison-Wesley, 1999)

[33] OPPENHEIM N.: ‘Questionnaire design, interviewing and
attitude measurement’ (Pinter Publishers, 1992)

[34] DEVORE J.L., FARNUM N.: ‘Applied statistics for engineers
and scientists’ (Duxbury, 1999)

[35] BRIAND L., LABICHE Y., DI PENTA M., YAN-BONDOC H.: ‘An
experimental investigation of formality in UMLbased
development’, IEEE Trans. Softw. Eng., 2005, 31, (10),
pp. 833–849

[36] BRUEGGE B., DE LUCIA A., FASANO F., TORTORA G.: ‘Supporting
distributed software development with fine-
grained artefact management’. Proc. Int. Conf. on Global
Software Engineering, Costão do Santinho, Florianópolis,
Brazil, 2006

[37] KITCHENHAM B.A., PFLEEGER S.L., PICKARD L.M., JONES P.W., HOAGLIN

D.C., EL EMAM K., ROSENBERG J.: ‘Preliminary guidelines for
empirical research in software engineering’, IEEE Trans.
Softw. Eng., 2002, 28, (8), pp. 721 –734
IET Softw., 2009, Vol. 3, Iss. 5, pp. 381–394
doi: 10.1049/iet-sen.2008.0101

er 5, 2009 at 10:02 from IEEE Xplore. Restrictions apply.

