
Evidence of Weak Chaos Within Plug-Slug Transition in Horizontal Two-Phase Flow

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 Europhys. Lett. 30 75

(http://iopscience.iop.org/0295-5075/30/2/003)

Download details:

IP Address: 193.204.22.47

The article was downloaded on 17/02/2012 at 18:35

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0295-5075/30/2
http://iopscience.iop.org/0295-5075
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


EUROPHYSICS LETTERS 
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Evidence of Weak Chaos within Plug-Slug Transition 
in Horizontal Two-Phase Flow. 

J. DRAHO;(*), M. PuN~ocH&(*), C. SERIO(**) and V. TRAMUTOLI(**) 
(*) Institute of Chemical Process Fundamentals 
Czech Academy of Sciences - Prague, Czech Republic 
(**) Universita della Basilicata - Potenxa, Italy 

(received 10 November 1994; accepted in final form 17 March 1995) 

PACS. 05.45tb - Theory and models of chaotic systems. 
PACS. 02.70 - c - Computational techniques. 
PACS. 47.20 - k - Hydrodynamic stability. 

Abstract. - Intermittent behaviour has been observed in gas-liquid flows in a horizontal pipe and 
a weak sign of deterministic chaos has been diagnosed within a transition from plug to slug flow. 
The analysis has been performed on the basis of an algorithm which exploits the concept of 
short-term predictability of chaotic motions. The method is completely non-parametric and 
works whatever the distribution function of the data points may be. The weak sign of chaos is in 
contrast with the Lorenz-type systems (strong chaos) and supports the idea of Kolmogorov about 
irregular motion in hydrodynamical systems. 

The hydrodynamics of gas-liquid flows has been long studied, but a comprehensive 
analytical treatment is still lacking because of the inherent computational difficulties involved 
in the associated Navier-Stokes equation. Information about the dynamics of these systems 
relies mostly on empirical investigations, typically available in the form of time series of a 
suitable single observable. As shown in the recent literature [l, 21 a correct definition and 
identification of flow regimes in gas-liquid flows may be questionable even for stable and 
seemingly well-developed flow patterns. The difficulties encountered increase substantially 
in the transition regions where the combination of two or more patterns are present and the 
resulting character of the flow displays a variety of behaviour depending on the control 
parameters. This situation occurs also in intermittent-flow patterns in a horizontal pipe, 
which are usually subdivided into two subregimes: plug flow and slug flow. A plug flow can be 
found at  low gas velocities and consists of small and elongated bubbles flowing at  the top of 
the pipe. The liquid phase is homogeneous and the gas-liquid interface is smooth. Slug flow is 
a stratified flow with the intermittent appearance of high-velocity liquid slugs which bridge 
the whole pipe and can be highly aerated. Several criteria have been proposed in the 
literature for defining the transition between the two regimes: some of them are based on 
photographic studies, others use the signals from pressure or conductivity probes (e.g., [31). 
Needless to say, however, that a satisfactory definition of the plug-slug transition is still 
lacking. This work has been motivated by observations made in our former measurements [41 
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where the intermittent flow was studied by using the simultaneous analysis of wall pressure 
pulsations, static-pressure drop and average velocity of liquid phase. At a given superficial 
liquid velocity and for increasing gas velocities, the observed character of wall pressure 
fluctuations changed from a very irregular (caused by the simultaneous presence of many 
bubbles in the pipe) to a well-patterned periodic signal (typical of the developed slug flow). 
The corresponding power spectra evolved from a broad-band type towards the spectra with a 
single dominant peak. However, the amplitude and spectral analysis of pressure fluctuations 
did not give a reliable discrimination between plug and slug flow in this case. To examine a 
possible chaotic feature of the plug-slug transition, a new algorithm recently developed by 
one of the authors ([5-71) has been used. The algorithm exploits non-linear short-term 
prediction of a signal as a tool to distinguish between chaos and randomness. The present 
version of the algorithm does not require any preliminary transform to be applied to the data 
points in order to provide Gaussian-distributed variables. The method works with time series 
whose distribution functions may have significant departure from the normal law. Non-linear 
short-term predictability as a tool to distinguish chaos from randomness dates back to 
Farmer and Sidorowich[8]. In addition, the topic has been discussed by Sugihara and 
May [9], Casdagli [lo], Kennel and Isabelle [ l l l .  

The rationale behind the scheme is that if only a few degrees of freedom interact 
non-linearly to generate deterministic chaos then a local (non-linear) predictor can be 
constructed which approximates the dynamics of the low-dimensional signal better than any 
global (linear) predictor. Technically, predictors are built by locally and globally fitting 
autoregressive processes to the data: 

n 

where x (n )  denote a certain signal, or function of time (we assume that the signal is sampled 
at  equal interval of time, say I t ,  then we write x( t  = nAt) = x (n ) ;  n = 1, ..., N ,  N being the 
number of data points), p is the order of the autoregressive process and 3 j  ; j = 1, . . . , p ,  are 
the autoregression coefficients. These coefficients, in the case of the global (linear) 
representation do not depend on the time origin n (therefore, they generate a time-shift 
invariant filter), otherwhise they do. 

The global approach is equivalent to represent the observations by means of a linear 
(infinite-dimensional) stochastic model, whereas the local approach is equivalent to 
represent the data on the basis of a low-dimensional deterministic chaotic system. Then, the 
predictive skill of the two approaches is compared. If the local representation gives a 
predictive advantage over the global one, and therefore over the entire class of linear 
stochastic systems including regular attractors and coloured noise, the conclusion is for 
chaos, otherwise the reverse conclusion is taken. 

For both forecasting approaches (local or global), let us define the forecast error for the 
I-step ahead prediction by: e ( l )  = x ( n  + l )  - x^(n + 1 )  (here x^(n + I )  represents the forecast a t  
the time n + I ) ,  then the normalized root-mean-square forecasting error, E(l) ,  will be defined 
as the expectation value of the forecast error: E ( l )  = ( e 2  ( l ) ) / g g ,  where the angular brackets 
denote expectation and gz is the standard deviation of the series. E(l )  provides a quantitative 
measure of the predictive skill of each representation (local or global). Provided that the 
signal x(t) is the output of a chaotic system and p > D, where D is the dimension of the 
underlying attractor, then, subject to very generic assumptions [7,12], we have that: 
Egl ( 1 )  > El, ( l ) ,  where Egl denotes the root-mean-square forecasting error affecting the global 
prediction and El, ( 1 )  is the corresponding value but in the case of the local prediction. 

In applying the above procedure we need a suitable estimation of the optimal order p of 
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the autoregressive model (local or global) fitted to the data points. The rationale for the 
selection of the optimal order is as follows. We divide the time series into two separate parts: 
a fitting set x(l) ,  . . ., x(Nl) and a testing set x(Nl + 11, . . ., x(N1 + N 2 ) ,  N = N1 + N Z  being 
the size of the sequence. For each given order p ,  the first part of the series is used to compute 
the autoregression coefficients (global or local), then forecasts are produced at  the location of 
the data points in the second part of the series and the corresponding errors, ep (1) computed. 
Here, the subscript p remembers that this operation is repeated for different values of p ,  
i .e .  p = 1, ..., p,, where p ,  is an upper bound specified from the user. Then, the fore- 
cast error function Ep(l)  is computed and the norm, K(p) ,  evaluated by K ( p )  = 

= V E ;  ( 1) + . . . + E; ( Zmm). Finally, we adopt as the order of the process, popt, that p for which 
K ( p )  is minimized. Here, I,, is the maximum step ahead at  which forecasts are obtained. In 
practice, it is obtained by the condition E ( k m )  = 1. 

The procedure is used either in the case of the global predictors or in the case of the local 
ones. In both cases we obtain t r u e  optimal mean-square predictors. This point is important 
since for arbitrary p the representation (1) is not necessarily the best in the least-square 
sense. This point is not explicitly recognized, e.g., by Casdagli [lo] which uses an approach 
similar to OUTS. 

Once the optimal predictions have been obtained and the forecast error function E(Z) 
computed, the error bar for E(Z) can be estimated by var[E2(Z)] = E4(Z)(Z + y2)/m, where 
y2  is the kurtosis index of the population {e(Z)}  ( y z  = 0 for a Gaussian population) and 
m = N 2  - Z,, is the size of the forecast error series. 
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Fig. 1. - The time dependence of the wall pressure fluctuations for the five gas velocities. Only the fiist 
2000 data points of each time series are shown in the figure. 
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Fig. 2. - Power spectra of the five time series. The frequency scale is normalized to the Nyquist 
frequency. 

The above procedure has been applied to study the character of the transition from plug to 
slug flow. To this end the wall pressure fluctuations were measured in a horizontal air-water 
flow. The pipe had an inner diameter of 0.05 m and a total length of 5.1 m. A simple tee 
mixing configuration was used at the inlet. The detailed description of the experimental loop 
is given in[13]. The pressure sensor was located 80 diameters downstream from the 
entrance. According to Nydal et al. [14], this distance should be enough to avoid the 
existence of developing slugs at  sufficiently low gas velocities (in ow case from 0.1 to 2 m/s). 
The presence of stable unaerated plugs was confirmed also by high-speed photographs. 

The range of superficial velocities was 0.8-1.0 ms-' for liquid and 0.1-2.0 ms-' for the gas 
phase. Data were sampled at a sampling frequency of 100Hz using a fast 12-bit A/D 
converter. The whole observational time was 600 s, therefore the size of each time series is 
N = 60000. 

For the present work, five time series (see fig. 1) were used corresponding at  the five 
different gas velocities uG = 0.5, 0.75, 1.0, 1.5 and 2.0 ms-' . The superficial liquid velocity 
was uL = 1 ms-' for all the five series. The data a t  uG = 0.5 ms-' are representative also for 
lower gas velocities so that they will not be considered in the present analysis. 

Power spectra are shown for the sequence of the five gas velocities in fig. 2. At uG = 
= 0.50 ms-' , the signal fluctuates rapidly and the corresponding variance spectrum exhibits a 
broad-band part together with different sharp features. This corresponds to the 
simultaneous presence of several elongated bubbles in the pipe. Although the character of 
the time series for uG = 0.75 ms-' is similar, the spectrum seems to be locked in two 
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Fig. 3. - Comparison between local (solid line) and global (dashed line) forecast error function, E 2 ( l ) ,  for 
the five time series. Figure 3f) shows a plot of rp against the gas velocity UG.  

dominant peaks, one at the location f = 0.035 and the other at lower frequency f = 0.009. For 
time series at  uG = 1.0 ms-' the baseline begins to appear, which is typical for the slug flow, 
and its magnitude corresponds roughly to the hydrostatic pressure after passing the slug (i .e.  
if empty space exists between the measuring point and the pipe outlet). The dominant 
frequency in the lowest part of the spectrum gives the frequency of slugs. For increasing gas 
velocity this transition continues and become complete at uG = 1.5 ms-' when only one 
dominant peak emerges in the variance spectrum. 

Figure 3 compares for the five series the local and global forecast function, E2(Z).  For 
these computations, according to  the methodology discussed above, we divided each time 
series in a fitting set with N1 = 59000 and in a testing series N2 = 1000. Of course, 

We see from fig. 3 that at  uG = 0.5 ms-' the global approach is superior over the local one, 
but at uG = 0.75 ms-l, when the spectrum seems to  collapse in two dominant spectral 
features, the local predictions (up to  the 3-step ahead forecast) are superior over the global 
one. Note that the differences between the two curves are statistically significant up to  Z = 2. 
The superiority of the global approach over the local one near the zone where E(Z) = 1 is 
expected since the linear approach is more robust to observational noise than the local one. 
For uG = 1.0 ms-l the local predictions are still slightly superior but the differences are 
statistically insignificant. The two curves almost concide for uG = 1.5 ms-' and, finally, 

NI + Nz = N = 60000. 
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separate when uG = 2.0 ms-’ , that is when the transition to one relevant harmonic has been 
completed. We see that the frequency coupling visible from the variance spectra is 
accompanied by a chaotic transition as indicated from the sequence of the five drawings 
3a)-e). The transition from the plug to the slug regime is characterized by an excess of the 
local predictability over the global one. Thus a proper comparison of the two predictive skills 
can be used to design an objective index to identify the plug-slug transition. To this end, let 
us consider the simple index rp (uG) = [E$ (1) - E; ( l)]/Eil (1). This index will show a 
maximum at  the value uG which corresponds to the transition as illustrated in fig.3f). 

Finally, from fig. 2 we learn that the spectral density is different from zero only on a 
limited region of the normalized frequency interval. This does not agree with the idea of 
strong chaos as modelled in Lorenz-type systems[15]. For these systems a very broad 
spectrum invades the frequency range. The dynamical consequence, then, is that the 
trajectories along the attractor are highly sensitive to initial conditions. Our findings support 
rather the Kolmogorov view of weak chaos in dynamical systems. Kolmogorov-type systems 
have more relation to the Navier-Stokes equation attractors than those of the Lorenz model 
(e.g., [W) .  
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