International Journal of Software Engineering
and Knowledge Engineering

Vol. 13, No. 1 (2003) 83-101

© World Scientific Publishing Company

World Sclentific

www. worldstientific.com

A VISUAL SYSTEM SUPPORTING SOFTWARE REUSE IN THE
BANKING LEGACY SYSTEM CONTEXT

GENNARO COSTAGLIQLA*, RITA FRANCESE! and GIUSEPPE SCANNIELLO?

Dipartimento di Matematica e Informatica,
Universita degli Studi di Selerno, Baronissi (SA}, Ialy
* geostagliola@unisa. it
! francese@unisa. it
t gscanniello@unisa. it

Accepted 10 October 2002

Banking legacy systems intensively exchange messages in electronic format. Such systems
are, for their nature, difficult to update and maintain. As a consequence, the introduc-
tion of new types of messages is a hard task. Adding new functionalities requires custom
coding and software reuse is seen as a key to obtain a better time-to-market factor, risk
and cost reduction. In this paper we describe the architecture and part of the implemen-
tation of the SLRE. Visual System, an Interbanking Network Information System that
lets us generate gateways for the exchange of electronic messages among banking legacy
systems and supports software reuse. In particular, the SLRE visual system contains
a Visual Programming Environment that allows us to obtain a rapid development of
the message handling funetions. This environment implements a Visual Programming
Language UVG that allows a programmer to reuse COBOL routines.

Keywords: Visual programming language; legacy system; visual programming efiviron-
ment; software reuse.

1. Introduction

A Legacy Information System (LIS) is a system hard to maintain and to update. LIS
are widely spread and critical for the business they support. As a matter of fact, the
information system has to reflect the continuous changes of business requirements.
Over the years, LISs have had many maintenance interventions to satisfy new re-
quirements and to change hardware and software configurations. As a consequence,
they present a deteriorated software structure often characterized by replication of
code. Because of the lack of documentation, the dependencies between the subparts
of the system are often unknown and the overall understanding of the programs
is very difficult [19, 26]. Thus, small modification often causes system failures that
are hard to detect. It is well known that the applications of such systems are,
for the most part, written in old programming languages, such as COBOL 5],
FORTRAN, PL/1, RPG, and their hardware is obsolete. Besides, it is a matter of

23

84 @. Costagliola, R. Francese & G. Scanniello

fact that legacy systems implement business rules not documented elsewhere, which
could be hard and very time consuming to reconstruct.

For these reasons, in the last decade the Legacy Information System (LIS) prob-
lem has been largely investigated [7-10, 14, 19, 27-29]. It is widely recognized that
LISs are too large and too critical to be substituted en masse because the system
redevelopment (big bang approach or Cold Turkey) has a great risk failure and
prohibitive costs [10]. Software reuse can help a company to gradually evolve their
software. In fact, adding new functionalities requires custom coding and software
reuse is seen as a key to obtain a better time-to-market factor, risk and cost reduc-
tion and to improve the software quality. By using this approach, the old software
becomes the base for the new one and software reuse extends the system lifetime
and let the entire system to be reused.

Several approaches have been proposed to integrate legacy programs also with
Web Applications, see [3, 12, 23, 24] as an example. Moving to the Internet saves
past investments: the system components implementing business functions and
rules, and the database components can be wrapped and reused. Recently, there
has been some work on migrating or integrating legacy systems into web infrastruc-
tures by using XML for legacy systems integration. In [24] XML is employed for
encapsulating legacy COBOL programs.

The LIS problem is particularly felt in the banking context, characterized by a
great diffusion of such systems. Banking Legacy Systems are business critical, are
active 24 hours a day and intensively exchange messages in electronic format. The
growing diffusion of the electronic payment systems, the need to respect precise
transmission time and the general trend to eliminate paper documents force such
kind of system to make large use of electronic messages. So far, the number and
the type of messages are progressively growing and the legacy banking systems
have been repeatedly modified and integrated to be able to make dialog with the
external world. Such systems, for their legacy nature, resist modifications. As a
consequence, the introduction of new types of messages is a hard task and requires
custom coding.

In this paper we focus on the problem of exchanging new message types between
banking legacy systems, each of them presenting its internal format. They communi-
cate through the Interbanking Network that employs a proprietary communication
protocol not based on the HT'TP. Thus, to let such system communicate through
this network, it is not possible to adopt Web technologies but it is necessary to con-
vert an outgoing message having the format handled by the LIS application into
the appropriate format of the interbanking network, and vice versa, for incoming
messages. The aim of our work is to define a Visual System for Banking Legacy
Systems that allows an application of a credit institute to dialog with the Inter-
banking Network without taking into account the translation of the messages. Thus,
SLRE provides an easy and semiautomatic way for generating, for each message, a
COBOL program representing a gateway between the legacy banking system and
the external world. The SLRE visual system allows different user profiles to define,

A Visual System Supporting Software Reuse 85

modify or display the structure of the elaboration processes associated to a partic-
ular electronic message. These operations have to be accomplished by allowing a
rapid development and maintenance of the message handling functions that have
to be easily integrated into the banking system. Visual programming languages can
be naturally employed to this aim, allowing us to improve the productivity of an
expert user and the code reusability. In this paper we show how a visual program-
ming system — visual programming language and visual environment — has been
integrated into the visual system SLRE.

The visual language which we have studied and implemented, the User Variable
Generator (UVG), belongs to the class of hybrid visual languages, i.e., UVG con-
tains sentences with both textual and visual elements. It allows the programmer to
describe COBOL routines visually. For this language we have implemented a com-
plete User Variable Environment (UVE) with a user-friendly graphical interface.
UVE lets the user concentrate his/her attention on the structure of a program and
insert the COBOL instructions as textual annotation of the visual language sym-
bols. This environment has been realized by using the grammar-based tool Visual
Language Compiler-Compiler (VLCC) [13].

This paper has been organized as follows: Section 2 gives a description of the
problem we have examined and provides an overview of how an event gateway works
and its integration in a banking legacy system; Sec. 3 describes the visual system
SLRE architecture; Sec. 4 presents the gateway generation process; Sec. 5 gives an
outline of the visual programming language adopted for adding new functionalities
to banking legacy systems and the features available in the Visual Programming
Environment which we have provided; Sec. 6 gives some details on the system
implementation, such as how the field format correctness of a message is handled
and how the UVE has been integrated inside the Visual System. Finally, we give
the conclusions where we summarize our results.

2. The Event Gateway

Information flows between credit institutes through the Inter-Banking Network
(IBN), supporting a proprietary message format following specific standards such
as, for example, the SWIFT [25] inter-banking international standard or, in Italy,
the SIA standard [22]. Banking legacy systems often have an internal message for-
mat different from the IBNs. Thus, an incoming (outgoing) message has to be
translated into the host (IBN) format. Moreover, some banks communicate with
the external world through a service center connected to the IBN. This center han-
dles some network services, such as electronic receipts, and it can happen that some
nodes have a system different from that of the service center.

As an example, if the service center receives an event, i.e. credit transfer, from
the IBN directed towards a node connected to it, it translates the event format into
the receiver’s, signaling to the customer the event receipt with a Short Message
Service (SMS) on the cellular phone, as shown in Fig. 1.

86 G. Costagliols, R. Francese & G. Scanniello

Fig. 1. The banking communication network.

Each time a new type of message is introduced, custom coding is required to
operate the appropriate translation of the message formats.

The solution we propose allows an application of a credit institute to make dialog
with the Interbanking network or with the service center without considering the
translation of the messages. To this aim, a COBOL gateway program is generated
which is capable of converting different type of data formats, or, more in general,
events exchanged between legacy banking systems. For every input event, origi-
nated by a determined input channel, it is necessary to generate a specific Event
Gateway Program. In this way, each credit institute is able to communicate with
the external world by using its internal format that will be appropriately transiated.
An Event Gateway Program is called whenever that event is received and performs
the following operations:

e checking that the input data are formally corrected;

e checking the applicative correctness. As an example, it verifies whether the bank-
ing account referred by the input event effectively exists;

e preparing the output events;

¢ handling errors.

Figure 2 shows the general architecture for handling an event originated by an
input channel, such as Interbanking national network (RNI), the banking informa-
tion system, SMS messages, UMTS message, etc.

Each Event Gateway Program is a COBOL routine that has to be integrated
into the legacy banking system where, it will be compiled and put on-line. When
the host receives an input event, it stores it into a table. As depicted in Fig. 3, the
input event handler extracts the event to be served and calls the Event Gateway
Program associated to the given input event type. The Event Gateway checks the
correctness of the input event by calling the appropriate host routines and performs
a series of operations, such as cyphering or dechyphering the event. Next, it builds
the output event(s) and passes it (them) to an Output Event Handler. This program
stores each output event into a table associated to the appropriate output channel.

A Visual System Supporting Software Reuse 87

Banking -
Information Outpnt data Banking
System e \ Information
Channel System
\ P— Channel
Area
] RNI
RNI =—
Channel];s: | | Event Gateway o'“::; Channel
Arca
Output dara
Area
X Owputdata | Other
Other Ama Channel
Channel
Fig. 2. The event handling scheme.
Banking Legacy System
Event Gateway [* I
Input N Host
Event Handler —,| Routine

—J

Input Event
Output Event(s)

Event Handler =

Fig. 3. The integration of the gateway program inside the banking legacy system.

In the literature, see [10] as an example, gateways provide a bridge between the
legacy IS and the migration target environment. They are used for incrementally
migrating the user interface, data or applications. In our approach the “gateway”
term has a more restricted meaning: it is a COBOL program integrated into the
Banking Legacy System translating a message into a BLS format or, vice versa,
from the BLS format to another format. It allows the system to evolve, but it
does not support system migration. Such kind of gateways already existed and
programumers used to write them by hand. With our system, we generate gateways
in a semi-automatic way for improving software quality and time-to-market factors.

88 . Costagliola, R. Francese & G. Scanniello

Format Gateway

Checker Generator Gareway
Repository
]
User
Visual . User
Interface Variable Generation Rules
1 Environmen
E 3 UVG Repository
User Profile
Syster Repository
- User Repository

Fig. 4. The SLRE Visual System architecture.

3. The SLLRE Architecture

Nowadays, there is an ever increasing pressure by banking institutes to let their
applications be able to communicate with other external institutes. To this aim,
the SLRE visual system supports a large variety of message types and allows the
users to create and customize their own data formats and to translate between
format types. Thus, SLRE eases and accelerates the development of Event Gateway
Programs by supporting software reuse of existing COBOL code. Such a system has
been realized by integrating heterogeneous components, as shown in Fig. 4.

The SI.RE Visual System information is stored into a repository constituted by
five logical repositories:

e the System Repository, containing information associated to the events and to the
COBOL routines to be reused. In particular, each event is characterized by a type
(SIA, S.I. AMS, etc.) and by a layout consisting of an ordered sequence of fields.
The COBOL routines are employed for error handling and event correctness
check;

e the User Repository, containing the information about user access rights;

e the Generation Rules, containing information useful for the gateway generation,
such as templates and code common to all the gateways;

e the Gateway Repository, containing the Event Gateway Programs generated by
the SLRE visual system;

e the UVE Repository, containing visual sentences expressed by the UVG language.
These sentences are modifiable by using the User Variable Environment.

The other software components of the SI.RE architecture are:

A Visual System Supporting Software Reuse 89

e the User Visual Interface (UVI), the module allowing the user to handle the
event data stored in the system repository; it assists the user in the definition
and the generation of the event gateway program. Moreover, UVI allows the user
to compose the output events in a very user-friendly way, starting from the given
input event. Thus, it is possible not only to add some fields of the input event to
the output event but alse to create new fields;

¢ the User Profile module, handling the access rights to the visual system. We
distinguish three professional profiles: the system administrator, handling the
access permission; the designer, responsible for the gateway generation and of
all the data associated; the generic user whose only permission is to display
information;

e the User Variable Environment (UVE), an environment implementing the UVG
visual language. It allows the designer to generate COBOL routines to be included
into the event gateway program and will be better detailed in the following;

e the Gateway generator, a module that creates the event gateway program asso-
ciated to a given input event. It receives the description of the input and output
events from the Visual Interface together with the modality for compiling the
output events.

o the Field Format Checker module, handling the lexical and syntactic correctness
of event field formats during the gateway design.

4. The Gateway Generation Process

In this section, to better explain how the modules previously described interact,
we detail the process for generating a gateway event program supported by the
SLRE visual system. An event gateway program is a COBOL routine that converts
a message format into another message format and calls host COBOL routines to
check the correctness of the input messages by considering both the formal and the
applicative correctness. A gateway is created by following the steps of the process
shown in Fig. 5.

Step 1. Input event definition: the Visual Interface Module enables the choice of
the input event type. Actually, there exist several event types, such as SIA message,
SMS message directed to or coming from cellular phones, UMTS (Universal Mobile
Telecommunications System) message, proprietary types, etc. and the aim of our
system is to easily extend both the event types and the number of events for a
given event type (see Fig. 6). Once an event type has been chosen, it is possible to
define the format of a new input event. Each event has associated to it the following
information:

e the event code (i.e. ‘001’), a field that univocally identifies the event for a given
event type;

s the event name, such as ‘credit transfer’;

» a direction: send or receive;

90 . Costagliola, R. Froncese & @. Scanniello

Input
Event
Definition

!

Input Event Control
Associations

l i

Output
Event
Definition
L

:

Output Event
Composition

il

User Variable
Generation

Gateway Generation

Fig. 5. The Gateway CGeneration Process.

L] Input Event

Fig. 6. Input Event Type.

A Visual Sysiem Supporting Software Reuse 91

Fig. 7. An example of input Event Format.

e a description: note and normative reference;
e a message layout.

The message layout describes in detail the fields’ succession composing the event.
Each event field, as shown in Fig. 7, is described by specifying:

¢ the field name, such as “Sender”;

o the field presence, i.e. facultative (F) or obligatory (O);

¢ the field format. It is specified by using a formalism very close to the regular
expressions. Section 6 gives more details on the field format expressions and on
the Field Format Checker module. .

Step 2. Input Event Control Associations: during this step, the system proposes the
catalog of the routines, stored it into the system repository for controlling the input
message correctness. As an example, if a facultative field is present, the presence of
another facultative field can become mandatory and has to be checked.

Step 3. Output Event Definition: the output event(s) associated to the given input
is (are) defined. For this (these) event(s) it is necessary to specify the same infor-
mation provided for the input event (type, code, description, etc.). As an example,
we can associate two output events to the credit transfer event: an SMS message
to the customer cellular phone (type= SMS, code = 01200, etc.) and a message to
the BLS (type = IS buffer, code = A302, etc.).

Step 4. Qutput Event Composition:; the layout of an output event is obtained by
elaborating the layout of the input one. During this step, the fields that remain
unaltered are exported from the input event layout. It is possible to place a field
into a different position and some fields can be left blank. See Fig. 8 as an example.

92 . Costagliola, R. Francese & G. Seanniello

|| l'nlpul I,.||w|||_| '

Fig. 8. Composition of the output event format.

For automatically generating the output event, it is necessary to specify how
its field has to be filled. To this aim, we associate to each field one of the following
assignment modality:

direct, i.e. the same value as an input event field;

constant, i.e. a constant value;

system, i.e. a system value such as the current date; -

a user variable, a value obtained elaborating the input data. A user variable is
a COBOL procedure that calculates the value of the given output field by using
the input event data. As an example, the input field named “data” in Fig. 7 is
unpacked in the “day”, “month”, "year” fields of the output event.

Step 5. User Variable Generation: if the User Variable modality of assignment has
been chosen, the systems runs the User Variable Environment for the generation
of the COBOL routines that fill the output event fields having a format different
from the input one. The next section better details these aspects.

Step 6. Gateway Generation: once the assignment modalities have been provided,
the Gateway Generator module creates the Gateway Program by using the informa-
tion about the input and output events for structuring the COBOL record layouts
into the WORKING-STORAGE SECTION. It also includes the COBOL code gen-
erated by the User Variable Environment for filling the output fields that cannot
be filled by a simple MOVE instruction.

A Visual System Supporting Software Reuse 93

5. The User Variable Environment

In this section we present the functionalities of the User Variable Environment
for the UVG language. First, we provide a short overview of some basic concepts
about visual programming languages and next, we give the basic characteristics of
the UVG language and its implementation through the UVE.

A visual language may be conceived as a collection of visual sentences composed
by graphical objects arranged in two or more dimensions. Visual Languages are
syntactically described by the grapical ob jects of the language, the relation used to
compose the sentences, and a set of rules defining the set of visual sentence belong-
ing to the language. Graphical attributes characterize the object image. Syntatic
attributes are used to relate graphical objects in order to form visual sentences. A
set of graphical objects form a visual sentence ance all the syntactic attributes have
been instantiated. A visual sentence is correct if it is lexically and syntactically
correct [15].

VPLs are programming languages where visual techniques are adopted to ex-
press relationships among or transformations to data [6,15]. Nevertheless, practical
experience has shown that visual programming requires the use of text, because
pictures allow to define too high level operations and the most complex details can
be specified only through texts [11]. In particular, the text is necessary for describ-
ing documentation, distinguishing between elements that are of the same kind, and
expressing algebraic formulas [6].

The User Variable Generator (UVG) visual language has been adopted for gen-
erating COBOL routines and for supporting the reuse of the existing ones.

UVG is a hybrid language, i.e. it integrates visual and textual notation. In par-
ticular, it implements a type of flowchart suitable for the COBOL programming, as
shown in Fig. 9, presenting a screen dump of the User Variable Environment where
an UVG sentence has been drawn and the corresponding COBOL code has been
generated. The graphical aspect of UVG symbols is shown on the symbol palette
available in the User Variable Environment, on the left of Fig. 9. The visual sen-
tences of UVG are obtained by connecting the symbols through links, as an example
see the sentence depicted in Fig. 9, and by specifying the symbol annotations. The
annotation types supported by the UVE are the following:

e the visual annotation, i.e., the possibility of associating a given symbol with a
visual sentence belonging to another language. Such a facility is useful for imple-
menting sub-processes and for supporting structured programming. In particular,
we visually annotate the symbol STAT with another Aow-chart language (UVG
Perform language). The UVG Perform language is a modified subset of UVG
useful for specifying visual annotation. Such a language presents the same con-
nection rules as the UVG ones, the author, working and linkage symbols are
not present, being this language employed for subroutines, the end program
symbol is replaced by the end perform and the subroutine begins with a begin
perform symbol. In this way, we support structured visual programming.

94 G. Costagliola, R. Francese & G. Scanniello

Fig. 9. A snapshot of an UVG sentence and the corresponding generated COBOL code.

e the textual annotation, i.e., the possibility of associating text with a given
symbol, as shown in Fig. 10 where a textual annotation for the symbol “impera-
tive statement” is depicted. To check the correctness of such an association, the
annotated text is subject to a textual scanning and parsing. To this aim, different
lexical and syntactic analyzers correspond to each symbol. In fact;"each symbol
represents a subset of the COBOL language or English-like strings. The textual
scanner has been generated by lex, whereas the parser by yace. One of the main
uses of lex is as a companion to the yacc parser-generator, ensuring lexical and
syntactic correctness of textual annotation. As an example, both the conditional
symbol and the for loop are annotated by a text. The text associated to the for-
mer describes the condition, such as “A IS NOT ZERQ", where A is a variable
and the one associated to the latter consists of the specification of the iteration
number of the annotated visual sentence.

e the direct textual annotation, i.e. the possibility of associating some text by
writing directly on the symbol.

5.1. The UVE output

The visual sentence is compiled by clicking on the lightening button on the top
menu bar. If the visual sentence and the annotated texts are error free, the compiler

A Visual System Supporting Software Reuse 95

Jmovs: comelrea to c-002b

Fig. 10. An example of textual annotation.

generates a lexically, syntactically and semantically correct COBOL routine. When
a symbol contains incorrect COBOL code, the compiler highlights it and displays
a window showing the number of the line where the error occurs. Figure 9 depicts
a correct UVG visual sentence and the COBOL code generated by compiling it.

5.2. Reusing COBOL code

The UVE supports the reuse of code components such as the existing COBOL
routines and the routines generated by UVG. As shown in Fig. 11, during the
visual sentence creation it is possible to access the System Repository ard select
the appropriate routine to be called in the considered statement block. A user can
find a routine by selecting the routine name in a list of available function names.
Once a routine has been chosen, it is possible to obtain examples showing the results
of its applications and how to use it.

For populating the code repository it is necessary to select a suitable code to
reuse and to include it into a library [13]. The routines stored here are, for the most
part, standard routines provided by IBM. The others are specific of the banking
legacy system and have to be extracted from it, if they are not available, by using
some reengineering technology for acquiring reusable assets, see [4] for an example.

6. Implementation Issues

In this section we outline some details regarding the system implementation. In
particular, we examine the way we handle the field format correctness and the
integration of the User Variable Environment inside the Visual System.

96 . Costagliole, R. Francese & G. Scanniello

Fig. 11. Textual annctation and code proposal.

6.1. The field format correctness

As previously described, during the gateway generation process it is necessary to
define the event layout. Each event field has a specific format represented by a
field format expression, a pattern of text that consists of alphabetic, numeric and
specia] characters known as metacharacters. This pattern describes the format to
be respected by the event field and that has to follow the rules depicted in Table 1.

Table 1.

o length and information field:
nn: max length (1 to nn characters)
nn — mm: min and max length
“nn”: fixated length

¢ admitted characters:
n: only numeric
b: numeric and/or alphabetic characters
= all ASCII characters less the : and /. Received unexpected
characters produce a transmission error.
a: alphabetic characters.

The metacharacter “/” specifies a concatenation operation. As an example,
15n/1a indicates that fifteen numeric characters have to be followed by the “/”
special character and one alphabetic character.

The expression enclosed in parenthesis is optional, i.e. the field format expres-
sion “5"n(/“5"n/“2"b) is formed by either five numeric characters or five numeric
characters followed by “/”, five numeric characters, “/ and two numeric and/or
alphabetic characters. It is possible to have several nested level of parentheses.

A Visual Systern Supperting Software Reuse 97

Field Format Checker Module

token

token request

Visual

y Generator
Interface

Fig. 12. The Field Format Checker Module.

This type of expression has to be formally described by a deterministic context-free
grammar. The characteristics of this grammar, see [1] for more details, allow us to
employ & LALR(1) parser for the recognition of format field expressions.

In practice, the correctness of a given field format is handled by the Field Format
Checker module that employs syntactic and semantic analyzers, respectively, the
lexer and the parser, as shown in Fig. 12, created by using the Java-Lex and Java-
Cup tools [14]. In particular, Java-Lex, in a way very similar to Lex, receives an
input file containing the specification of a lexical analyzer and generates the required
lexical analyzer written in Java. Java-CUP {Constructor of Useful Parser), in a way
very similar to YACG, is employed for generating LALR parsers for Java. The lexer
for the field format expression has been generated by providing the lexical analyzer
specification to Java-lex. Once the lexer has been compiled, it is able to analyze
the input string and extract tokens from it. On the other hand, the parser has been
generated by providing the grammar specification in input to Java-CUP and by
compiling its cutput with a Java compiler.

As depicted in Fig. 12, the Field Format Checker Module (FFCM) receives in-
put by the Visual Interface the format field expression associated to a given field
of the input event. The parser checks the syntactic correctuess requiring tokens
from the lexer, by invoking the yylex function. If the expression is not correct an
exception occurs that will be captured and handled by the VI module. Otherwise,
the FFCM module provides information concerning the field format to the Gen-
erator. This information let the generator declare in the WORKING-STORAGE
SECTION the COBOL layout of the record associated to the given field of the in-
put event. Figure 13 shows how the generator constructs the layout of the ‘sender’
field, “5”n(/“5”n/“2"b).

938 @. Costagliola, R. Frencese & G. Scanniello

000255*********'k*************************************t*t****************
000260%* Record : Sender *
000265*****‘k****************************t***************t***************
0002']0**
000275%* Description : Banking Sender Code *
000280******************‘k***1{***
000285 03 WORK-AREA-001.

000290 05 C-5N-004-001-1 FIC 9(5) VALUE ZERO.
000295 05 WORK-SLASH-1 PIC X(0001) VALUE '/'.
0003C0 05 C-5N-004-001-2 PIC 9(5) VALUE ZERC.
000305 05 WORK-SLASH-2 PIC X(0001) VALUE '/'.
0Ccc310 05 ¢-2B-004-001-3 FIC X(2) VALUE SPACES.

Tig. 13. The ‘sender’ field declaration.

6.2. Visual programming environment and visuel programming
environment generators

Tt is common opinion that to effectively use a visual language it is necessary to have
a Visual Programming Environment supporting the given language and enabling
the editing and the compilation of a visual sentence in the given language [15]. The
User Variable COBOL routines are genereated with the support of the User Variable
Environment providing a set of visual symbols and relationships for drawing the
visual sentence and to compile UVG sentences. To design and implement UVE we
have been supported by the Visual Language Compiler Compiler (VLCC) system.
VLCC is a grammar-based graphical system that inherits and extends to the visual
field concepts and techniques of compiler generation tool like YACC [13]. In general,
VLCC offers the opportunity of creating a visual environment for a specific visual
language. It takes as input the syntax and the semantics of a visual language and
the graphical aspects of its components and generates an integrated environment
composed by a graphical editor and a compiler for the implemented langitage. Other
Visual Programming Environment generators can be found in the literature, see,
for example (20, 30].

6.3. The native UVE

The User Variable Environment has been developed by generating a C4++ module
with the VLCC system and has been integrated into the Visual System, imple-
mented by JAVA. For integrating the UVE native code into the Visual System
Java application the Java Native Interface (JNI) has been employed [21]. NI let a
Java application interact with modules written in a language other than Java. To
this aim, the keyword native inside a Java program declares native code methods.
Figure 14 shows the declaration of the native method LaunchUVE, running the
User Variable Environment.

A native method declaration can foresee a return value and does not contain
Java code. Once a native method has been declared, the Java program is compiled

A Visual System Supporting Software Reuse 99

public c¢lass NativeUVE |{
public native boolean LaunchUVE(String vlece, String pathvVem, int
protection, String sentence ,String cfile);

static {
System.loadlLibrary ("launcher™);
}

Fig. 14. The Java native method declaration for LaunchUVE,

as shown below, i.e. as any other non-JNI Java program.
javac NativeUVE. java

The javah utility creates a header file that can be used as a guide during the
implementation of the native code method. The following command line creates
the interface, shown in Fig. 14, between the NativeUVE in C++ and the Visual
System.

javah -jni NativeUVE

7. Conclusions

This paper addresses a specific problem of the banking context that has a major
relevance in the market of software and services, but it is traditionally closed to
innovative solutions. In particular, visual languages and advanced interfaces have a
very limited spread. This is mostly true for Banking Legacy Systems. These systems
have to support intensive message exchange made even more difficult by the fact
that each one of them has its own message format. Moreover, they must_handle
the introduction of new message types, requiring custom coding for appropriate
translation of the new messages in both reception and transmission. To address
these problems we have presented the SLRE Visual System. It easily generates
COBOL programs for handling new messages and reusing COBOL software routines
of the legacy system. SLRE allows us to define and convert different types of data
formats. In the paper we have described, in particular, the gateway generation
process for creating COBOL programs and the User Variable Environment {(UVE)
integrated into the SLRE visual system whose aim is to obtain a rapid development
of the new message handling functions. UVE implements a Visual Programming
Language UVG that supports reuse of COBOL routines. The SLRE Visual System
integrates the routines generated by UVG and the existing routines of the Banking
Legacy System. Thus, the generated gateway is a COBOL routine interacting with
the BLS and calling its COBOL modules.

The approach relies on the Visual Language Compiler-Compiler (VLCC) System
previously developed by the authors for the generation of visual environments. At
present, a Java prototype of the visual system SLRE is running on a PC /Windows

e

100 G. Costagliola, R. Francese & (7. Scanniello

'98. The Visual Environment for UVG has been developed by generating a C++
external module with the VLCC and has been integrated into the Visual System.

In the future, we plan to investigate how to structure the routine repository for
a more effective reuse by also using reverse engineering techniques, such as the ones
suggested in [2], and how to extend the system to other language types. Moreover,
we are interested in investigating how to define and implement a visual language
suitable for users who are not expert in COBOL and how to allow a system user to
define several types of routines, such as applicative checking, error handling, etc.,
by using UVE.

Acknowledgements

i

The authors would like to thank the industrial partner, Gruppo Net S.p.A.-Rome,
for the support provided.

References

1. R. S. Aho and J. Uliman, Comgpilers, Addison-Wesley, 1988.

2. J. D. Ahrens and N. S. Prywes, “Transition to a legacy- and reuse-based software life
cycle”, IEEE Computer 28(10) (1995} 27-36.

3. L. Aversano, A. Cimitile, G. Canfora, and A. De Lucia, “Migrating legacy systems to
the web: An experience report”, in Proc. Furopean Conf. on Software Maintenance
and Rengineering, Lisbon, Portugal, 2001, IEEE Comp. Soc. Press 2001, pp. 148-157.

4. R. Arnold and W. Frakes, “Software reuse and reengineering”, CASE Trends, Feb.
1992.

5. E. C. Arranga and W. Price, “Fresh from Y2K, What's Next for Cobol?”, IEEE
Softwaere, March/April 2000.

6. M. Baker and J. Power, “Visual Programming Languages”, cse505, December 1994,
http://www.cs.washington.edu/homes/jpower/vpl/vpl_home html

7. K. Bennet (guest editor), “Special Issue on Legacy Systems”, IEEE Software 12, no. 1
(1995).

8. A. Bianchi, G. Costagliola, P. D’Ambrosio, R. Francese and G. Scanniello, “A vi-
sual system for the generation of banking legacy system gateways”, in Proc. 20071
IEEE Symposia on Human-Centric Compuling Languages and Environments, Stresa,
September 5-7, 2001, pp. 350-357.

9, J. Bisbal, D. Lawless, B. Wu, and J. Grimson, “Legacy Information Systems: Issues
and directions”, [EEE Software 16, no. 5, Sept.—Oct. 1999,

10. M. L. Brodie and M. Stonebraker, Migrating Legacy Systems, Morgan Kaufmann,
Inc., 1995.

11. M. M. Burnett, A. Goldberg and T. G. Lewis, Visual Object-Oriented Progrumming,
Manning Publications Co., 1995.

12. G. Canfora, A. Cimitile, A. De Lucia, and G. A. Di Lucca, "Decomposing legacy
programs: A first step towards migrating to client-server platforms”, The Journal of
Systems and Software, 54 (2000) 99-110.

13. . Costagliola, G. Tortora, 8. Orefice, and A. De Lucia, “Automatic generation of
visual programming environments”, IEEE Computers, March 1995, pp. 56-66.

14. F. P. Coyle, “Legacy integration — changing perspectives”, IEEE Software,
March/April 2000.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24,

25.
26.

27.

28.

29.

30.

A Visual System Supporting Software Reuse 101

F. Ferrucci, G. Tortora and G. Vitiello, “Visual programming”, Wiley Encyclopedia
of Software Engineering, ed. J. J. Marciniak, 2nd Edition., December 2001.

G. C. Gannod, Y. Chen and B. Cheng, “An automated approach for supporsting
software reuse via reverse engineering”, in Proc. 13tk IEEE Int. Conf. on Automated
Software Engineering, 1998, pp. 94-103.

Java-Lex and Java-cap tutorial.

http://www.hio.hen.nl/~vanleeuw /cano/tutorial tml#LEX.

K. C. Kang, 8. Kim, J. Lee and K. Lee, “Feature-oriented engineering of PBX software
for adaptability and reusability”, Seftware-Pructice and Experience 29(10) (1999)
875-896.

A. Lauder and 5. Kent, “Legacy system anti-pattern-oriented migration response”,
ed. P. Henderson, Systems Engineering for Business Process Change, Springer Verlag,
2000.

M. Minas and G. Viehstaedt, “Diagen: A generator for diagram editor providing direct
manipulation and execution of diagrams”, in Proc. 11th IEEE Symp. Visual Language
(VL’95), Sept. 1995, pp. 203-210.

D. Parson and Z. Zhu, “Java Native Interface idioms for C-++ class hierarchies”,
Software — Practice and Ezperience 30, no. 15 (2000) 1641-1660.

SIA S.p.A., Interbanking Society for Automation. www.SIA.it.

M. A. Serrano, “Evolutionary migration of legacy systems to an object-based dis-
tributed environment”, in Proc. IEEE Ini. Conf. on Software Maintenance, 1998,

H. M. Sneed, “Wrapping Legacy COBOL Programs behind an XMIL-Interface®, in
Proc. Eighth Working Conf. on Reverse Engineering (WCRE ’'01), 2001.

http:/ /www.swift.com/

P. Tonella, G. Antoniol, R. Fiutem and F. Calzolari, “Reverse engineering 4.7 million
lines of code”, Software — Practice and Ezperience, no. 30 (2000) 129-150.

A. Umar, Application (Re)engineering: Building Web-Based Applications and Dealing
With Legacies, Prentice Hall, June 1997.

L. Warren, The Renaissance of legacy systems: Method support Jor Software System
Evolution, Pratictioner Series, Springer, March 1999.

N. Weiderman, L. Northrop, D. Smith, $. Tilley, and K. Wallnau, “Implications of
Distributed Object Technology for Reengineering (CMU/SEI-97-TR-005)", ..
http://www.sei.cmu.edu/publications/documents/97.reports /97tr005 /97Ttr005abstract-
html.

K. Zhang, D Zhang and JI. Cao, “Design, construction, and application of a generic
visual language generation environment”, IEEE Trans. on Software Engineering 27,
no. 4 (2001) 24-34.

	pp01.pdf
	pp02.pdf
	pp03.pdf
	pp04.pdf
	pp05.pdf
	pp06.pdf
	pp07.pdf
	pp08.pdf
	pp09.pdf
	pp10.pdf
	pp11.pdf
	pp12.pdf
	pp13.pdf
	pp14.pdf
	pp15.pdf
	pp16.pdf
	pp17.pdf
	pp18.pdf
	pp19.pdf

