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a b s t r a c t

This paper deals with the nonlinear analysis of high-shear deformable elastic plane frame, frequently
used to model beam of composite materials, elastomeric beam-like bearings of bridge and seismic
isolation, or to model DNA strands and polymer chains. The work uses a FEM approach based on a Coss-
erat–Timoshenko beam model with an exact geometrical description, evaluating all the axial, shear and
bending contributions. It follows a mixed implementation of a Riks-path following locking-free strategy
of analysis, exploring its implementation details and proving its effectiveness and reliability. At last the
paper reports the quantitative and qualitative influence of shear contribution on known classical
examples.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

FEM analysis of geometrically nonlinear elastic plane frame is a
topic widely discussed in literature, either using Riks standard
path-following arch-length strategies (Riks, 1972, 1979) or Koiter
perturbative approaches (Salerno and Lanzo, 1997). A hypothesis
that is widely accepted in the relevant literature is that of represent-
ing beam structural elements taking into account only their flexural
and, sometimes, axial deformation effects, while nearly always
neglecting their shear deformation contributions. Nevertheless, sit-
uations can be found that do not fit this hypothesis, where shear
deformation effects are not negligible and fundamental to the anal-
ysis. For instance, the analysis of beam of composite materials and
elastomeric beam-like bearings (frequently used in bridge and seis-
mic isolation), or the modeling of DNA strands and polymer chains,
etc. This work aims to take into account these situations.

While a previous paper (Lanzo, 2004) focuses on the beam mod-
el in a perturbation strategy of analysis, the present paper aims to
examine aspects connected to the use of a path-following numer-
ical reconstruction strategy of the equilibrium path. In this respect,
the work follows a mixed variant of the classical arch-length meth-
od of Riks, initially suggested in Garcea et al. (1998) as a solution of
some locking problems, using a step control defined both in terms
of displacements and internal stress components, in addition to the
load parameter. In the present paper, the internal stress compo-
nent referred to are the axial and the transversal tension compo-
nents (N; T) of the beam elements, and not merely the axial

component N as considered in the paper by Garcea et al. (1998),
where the shear effects are substantially neglected. In this study
a geometrically exact Cosserat–Timoshenko beam model (Rubin,
2000) and an accurate discrete interpolation (exact in terms of
stress components) are used.

The mixed path-following strategy suggested in the present
paper proves to be reliable and numerically stable. A careful
implementation also involves computational costs comparable
to that of a traditional displacement-based path-following
strategy.

2. The elastic beam model

A Cosserat–Timoshenko planar beam model (Rubin, 2000) is
kinematically defined in terms of displacements components
ðu½s�;w½s�Þ of the centroid axis in the problem plane (x; z)

po½s� ¼ ðsþ u½s�Þiþw½s�k

and in term of the rigid rotation u½s� of its generic section, with ref-
erence to an initial configuration with rectilinear axis of length l and
sections orthogonal to it (see Fig. 1).

The strain allowed by the kinematical model includes axial,
shear and bending deformations. For finite displacements, exact
strain measures ðe½s�; c½s�;v½s�Þ are defined by the relations (see Ant-
man, 1977, 1995; Pignataro et al., 1982; Lanzo, 1994; Salerno and
Lanzo, 1997)

r;s ¼ ð1þ eÞaþ cb; v ¼ h;s

where ð�Þ;s stand for derivation with respect to the abscissa s and
the unit vectors
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a ¼ cos h i� sin h k; b ¼ sin h iþ cos h k

are, respectively, normal and tangent to the plane of the section in
the deformed configuration. The development of the above defini-
tions leads to the following nonlinear strain–displacement
relationship

1þ e ¼ ð1þ u;sÞ cos h�w;s sin h ð1aÞ
c ¼ ð1þ u;sÞ sin hþw;s cos h ð1bÞ
v ¼ h;s ð1cÞ

Let (N; T;M) be force measures so that internal forces and couples of
contact action are represented by the vectors

t ¼ Naþ Tb; m ¼ Mb� a

In the absence of loads along the axis of the beam, the internal equi-
librium conditions are the following

t;s ¼ 0 ð2aÞ
m;s þ r;s � t ¼ 0 ð2bÞ

A simple linear elastic beam model is obtained by means of the fol-
lowing constitutive relations

N ¼ kne; T ¼ ktc; M ¼ kmv

where kn, kt ed km are, respectively, the axial, shear and flexural
stiffness moduli, from now on referred to as EA, GA ed EJ, for simi-
larity with the classical linear beam model, i.e.

N ¼ EAe; T ¼ GAc; M ¼ EJv

3. A mixed formulation of the problem

A mixed formulation of the beam model can be obtained by set-
ting its normal and shear internal stress components ðN; TÞ as the
primary variables of the problem, in addition to the displacement
variables, and defining its internal strain energy by the following
functional

U½u;r� ¼
Z l

0
rt�u �

1
2

rtFrþ 1
2

EJv2
� �

ds

where

�u ¼
e
c

� �
; r ¼

N

T

� �
; F ¼

1
EA 0
0 1

GA�

" #
Alternatively, a more convenient mixed formulation can be ob-
tained by referring instead to the new set of static variables ðeN ; eT Þ
defined by

t ¼ eNiþ eT j;
eNeT

" #
|fflffl{zfflffl}

~r

¼
þ cos u � sinu
þ sinu þ cos u

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Rt
u

N
T

� �
|ffl{zffl}

r

In fact, because of the internal equilibrium conditions (2a), these
new tension parameters ~r � ðeN ; eT Þ are constant along the generic
beamfN;s ¼ 0; eT;s ¼ 0

and then trivially represented in a FEM discrete approach. The inter-
nal strain energy can be rewritten in the new set of variables
r � ðu; ~rÞ as

U½u; ~r� ¼
Z l

0
~rt~�u �

1
2

~rtRt
uFRu~rþ 1

2
EJv2

u

� �
ds

with

~�u ¼
~e
~c

� �
¼ Rt

u�u ()
~eu ¼ 1þ u0 � cos u
~cu ¼ w0 � sinu

�

4. The variations of the strain energy

In order to develop a path-following analysis strategy, the first
and second variations of the strain energy of the beam model are
needed. The relative expressions follow

U0dr ¼
Z l

0
d~rt ~�u � Rt

uFRu~r
� �

þ ~rtð~�0uduÞ
n

�1
2

du~rtðR0tuFRu þ Rt
uFR0uÞ~rþ EJu0du0

�
ds

U00 _rdr ¼
Z l

0
d~rtðe0u _uÞ þ _~rtðe0uduÞ þ ~rtðe00u _uduÞ � d~rtRt

uFRu _~r
n

� ð _ud~rþ du _~rÞtðR0tuFRu þ Rt
uFR0uÞ~r

þ _udu~rtðRt
uFRu � R0tuFR0uÞ~rþ EJ _u0du0

o
ds

In a FEM approach, the values of the rotation u½s� can be made small
enough using an adequate discretization mesh. This allows the
simplifications

sinu � u; cos u � 1 ð3Þ

By setting k ¼ 1
EA� 1

GA, we therefore obtain the following simplified
expression of the strain energy variations

U0dr �
Z l

0
fdeN u0 � 1

EA
eN � kueT	 


þ deT w0 �u� 1
GA
eT � kueN	 


þ du0 eN þ dw0eT
þ du eNu� eT þ kuðeN2 � eT 2Þ � keNeT� �

Þ þ EJu0du0gds

U00 _rdr �
Z l

0
fdeN _u0 þ deT _w0 þ _eNdu0 þ _eTdw0

� 1
EA

deN _eN � 1
GA

deT _eT � kuðdeN _eT þ deT _eNÞ
þ ð _udeN þ du _eNÞðuþ 2kueN � keT Þ
þ ð _udeT þ du _eT Þð�1� keN � 2kueT Þ
þ _uduðeN �ueT þ kðeN2 � eT 2Þ þ 4kueNeT Þ þ EJ _u0du0gds

5. The finite element

The internal stress variables ~r � ðeN; eT Þ, constant on each beam
element, have a natural discrete representation. However by devel-

Fig. 1. Kinematic of Cosserat beam model.
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oping the integral expressions of the strain energy variations, it can
be demonstrated that the displacement fields ðu½s�;w½s�Þ contribute
only through the discrete values (uj � ui;wj �wi) where
(ui;wi;uj;wj) are the relative nodal displacements. Therefore, to ob-
tain a discrete representation of the mixed problem, only the dis-
crete representation of the rotation field u½s� is needed. For this
purpose we assume a classical quadratic polynomial as interpola-
tion function, which is the solution of the Timoshenko–beam linear
problem that takes into account the shear effect. In terms of natural
variables (Argyris et al., 1977, 1979) defined by

e :¼uj�ui

l
; /r :¼wj�wi

l
; /s :¼

ui�uj

2
; /e :¼ 1

1þb

uiþuj

2
�/r

� �
where b ¼ 12EJ

GAl2
, the function u½s� then has the following expression

u½s� ¼ /r þ ð1� 2
s
l
Þ/s þ ð1þ b� 6

s
l
þ 6

s
l

2
Þ/e

By using a co-rotational approach, the beam is referred to a refer-
ence system ðx; zÞwhich is rigidly connected to the deformed actual
configuration, with the x axis along the straight line joining the no-
dal beam positions (see Fig. 2). This allows us to break down the to-
tal displacement fields of the beam into the sum of two
components, the first a rigid rotation from the initial undeformed
configuration to the co-rotational one, the second a pure deforma-
tion described and represented in the co-rotational reference
system:

u½s� ¼ ur ½s� þ ue½s�; con ur½s� � ður ½s�;wr ½s�;urÞ;

ur ¼ arctan
�wj � �wi

ln þ �uj � �ui

	 

As the first displacement component ur½s� is a rigid rotation, the co-
rotational approach filters its effects in the expression of the strain
energy and of its variations, now evaluated only in the second com-
ponent displacement ue½s�. As the geometrical nonlinear effect is al-
most nearly totally connected to the rigid component, it means that
the geometric nonlinear terms only partially affect the strain energy
and its variations. This enables us to simplify some geometric non-
linear terms in their expressions as shown in Eq. (3) in the previous
section. In addition, the rotation field u½s� is now referred to the co-
rotational reference and can be minimized simply by a finer FEM
discretization grid.

Discrete expressions of the strain energy variations were finally
obtained by observing that in the the co-rotational reference sys-
tem the following relations are valid

wi ¼ wj ¼ 0; /r ¼ 0

5.1. The first strain energy variation (the elastic internal force vector)

Shown below is the discrete expression of the first strain energy
variation:

U0dr ¼ deeNlþ d/rððeN þ nÞlb/e � keNeT lÞ

þ d/s
1
3
ðeN þ nÞl/s þ 4

EJ
l

/s

	 

þ d/e ðeN þ nÞ 1

5
þ b2

	 

l/e � ð1þ keNÞbeT lþ 12

EJ
l

/e

	 

þ deN el�

eNl
EA
� keT lb/e

 !
þ deT �

eT l
GA
� ð1þ keNÞlb/e

 !
ð4Þ

with

n ¼ kðeN2 � eT 2Þ ð5Þ

This defines the elastic internal force vector Se of the beam element
on the base of the following equivalence relation:

U0dr :¼ St
edre

where the vector dre represents variations of all the discrete kine-
matical ðe;/r;/s;/eÞ and statical (eN; eT ) parameters of the generic
beam element, i.e.

dre :¼ ½de; d/r; d/s; d/e; deN ; deT �t ¼ ½d�t ; d~rt�t

The elastic internal force vector

Se :¼ ½Se; S/r
; S/s

; S/e
; SeN ; SeT �t ¼ ½St

u; S
t
r�

t ð6Þ

consists of the following components:

Se ¼ eNl

S/r
¼ ðeN þ nÞlb/e � keNeT l

S/s
¼ 1

3
ðeN þ nÞl/s þ 4

EJ
l

/s

S/e
¼ ðeN þ nÞ 1

5
þ b2

	 

l/e � ð1þ keNÞbeT lþ 12

EJ
l

/e

SeN ¼ el�
eNl
EA
� keT lb/e

SeT ¼ � eT l
GA
� ð1þ keNÞlb/e

5.2. The second strain energy variation (the mixed elastic tangent
stiffness matrix)

The discrete expression of the second strain energy variation
defines the mixed local stiffness matrix Km

e on the base of the fol-
lowing equivalence relation

U00 _rdr :¼ _rt
eKm

e dre

The components are:

ð7Þ
Fig. 2. The beam element in a corotational description.
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with

KeNeN ¼ � l
EA

KeNeT ¼ �kbl/e

KeNe
¼ l

KeN/s
¼ 1

3
ð1þ 2keNÞl/s

KeN/e
¼ �kbeT lþ 1

5
þ b2

	 

ð1þ 2keNÞl/e

KeN/r
¼ �eT klþ ð1þ 2keNÞbl/e

KeTeT ¼ � l
GA

KeT /e
¼ �lbð1þ keNÞ � 1

5
þ b2

	 

2keT l/e

KeT /s
¼ �2

3
keT l/s

KeT /r
¼ �eNkl� 2keT lb/e

K/s/s
¼ 4

EJ
l
þ 1

3
ðeN þ nÞlþ 2

15
þ b

3

	 

ð�1þ 4keNÞeT l/e

K/s/e
¼ 2

15
þ b

3

	 

ð�1þ4keNÞeT l/s

K/s/r
¼ 1

3
ð�1þ4keNÞeT l/s

K/e/e
¼ 12

EJ
l
þ 1

5
þb2

	 

ðeN þnÞlþ 2

35
þ3

5
bþb3

	 

ð�1þ4keNÞeT l/e

K/r/e
¼ ðeN þnÞlbþð�1þ4keNÞ 1

5
þb2

	 
eT l/e

K/r/r
¼ ðeN þnÞlþð�1þ4kNÞbeT l/e

6. The path-following strategy

In a mixed FEM approach, the state variables q of the structure
are expressed by the nodal displacements d and by stress element
parameters s. For loads that increase by a k parameter p½k� ¼ kp̂,
the behavior of the structure describes a curve in the space
(d; s; k) represented in implicit form using a generic scalar param-
eter n (the curvilinear abscissa)

d½n�; s½n�; k½n� ð8Þ

Referring to Sd½d; s� and Ss½d; s� as the internal elastic response in
terms of nodal displacements and stress components respectively,
assembled on the basis of the relative components (6) at the local
level of each beam, the points of the curve (8) are solutions of the
nonlinear equations system

kp̂� Sd½d; s� ¼ 0 ð9aÞ
Ss½d; s� ¼ 0 ð9bÞ
g½d; s; k� ¼ n ð9cÞ

where Eq. (9a) expresses the nodal equilibrium conditions of the
problem, Eq. (9b) the internal kinematic compatibility conditions
inside the elements and Eq. (9c) the scalar relation that defines
the curvilinear abscissa n.

The path-following numerical algorithm for the reconstruction
of the curve (8) is based on a succession of steps each defined by

	 a predictor phase, i.e. an extrapolation starting from a known
point

d1 ¼ do þ Dd; s1 ¼ so þ Ds; k1 ¼ ko þ Dk

	 and a corrector phase, i.e. an iterative sequence converging to a
new point of the curve

djþ1 ¼ dj þ _d; sjþ1 ¼ sj þ _s; kjþ1 ¼ kj þ _k

It should be noted that the iterative sequence is regulated by
the jacobian matrix J of the system (9). The problem can be ex-
pressed in the following form

@Sd
@d

@Sd
@s

@Ss
@d

@Ss
@s

" #zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{Km

_d
_s

" #
¼
ðkj þ _kÞp̂� Sj

d

�Sj
s

" #
ð10aÞ

DutM _uþ lDk _k ¼ 0 ð10bÞ

in terms of tangential matrix of the mixed problem Km assembled
on the basis of the local matrices Km

e of the beam elements given
by (7), and suitably transforming the Eq. (9c) into the condition
(10b), which constraints the corrector components ( _d; _k) to belong
to the normal plane of the predictor components (Dd;Dk), making
use of a suitable metric operator defined in terms of the quantities
(l;M).

It is known that the direct factorization of the mixed matrix Km

is not the most efficient computational strategy to solve the prob-
lem (10a). It can instead be solved in a partitioned form, through a
block Gaussian elimination of the stress variables _r at each beam
finite element level, where the system (10) has the following
localization

Kuu Kur

Kru Krr

� �zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{Km
e

_u
_r

� �
¼
ðkj þ _kÞp̂e � Sj

u

�Sj
r

" #
ð11Þ

p̂e being the (unknown) part of the load p̂ associated with the ele-
ment and using the definitions of Eqs. (6) and (7). The Gauss elim-
ination of the stress variable _r

_r ¼ �K�1
rrKru _u� K�1

rrSj
r

transforms the problem (11) into

ðKuu � KurK�1
rrKru|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Kc
e

Þ _u ¼ ðkj þ _kÞp̂e � Sj
u þ K�1

rrSj
r

now controlled by the local tangential stiffness matrix Kc
e of the

compatible formulation. Using standard procedures to assemble
the terms at the global level (Ae is the matrix of kinematical com-
patibility of the element)

Kc ¼
X

e

At
eKc

eAe � Sj
d ¼

X
e

At
eSj

u � DSj
ds ¼

X
e

At
eK�1

rrSj
r

transforms the problems (10a) to the condensed form

Kc _d ¼ ðkj þ _kÞp̂� Sj
d þ DSj

ds

which is almost identical to that of the compatible formulation (Kc

is the usual tangential stiffness matrix of the structure), enriched
however by an additional contribute DSj

ds which expresses the influ-
ence of the condensed stress variables. From a computational point
of view, the problem now has a much simpler solution which can be
obtained by a standard factorization procedure of the matrix Kc .

7. Numerical results

The proposed finite beam element in a mixed path-following
formulation was then checked in the light of the numerical results.
The aim was to verify the accuracy and the performance of the
strategy, comparing the results with other available solutions,
and at the same time to analyse the influence of shear deformation
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effects. The analysis was performed varying the finite element dis-
cretization and for several values of the stiffness ratios k ¼ EAl2

EJ and
s ¼ GA

EA.

7.1. Cantilever beam

In the first example, a cantilever beam was studied under
two different load conditions. The first is a condition of pure
bending with a concentrated moment M applied to its free
end. This is a test to verify the accuracy of the suggested
FEM strategy in reproducing a very large rotation of the beam.
In fact the beam deforms, in accordance to Euler formula, into
involved circular shapes and an exact analytical solution of
the equilibrium path can be easily obtained (see Ibrahimbego-

vic, 1997). As can be seen in Fig. 3 where the load parameter
Ml
EJ is plotted vs. the lateral end displacement parameter w

l ,
accurate results are obtained with a discretization of just two
finite elements.

The second condition deals with a concentrated force P applied
to the free end of the beam. In this case, to explore the influence of
the shear deformability, several tests are performed varying the ra-
tio s ¼ GA

EA. The results are plotted in Fig. 4 and show again that only
few finite elements are needed to reproduce accurate values (with
no exact analytical solutions available, the comparison is made
with a discretization of 100 finite elements). This is essentially true
for relatively large values of the ratio s, while some discrepancy can
be observed for low values of s and large values of the displace-
ment parameter w

l .

Fig. 3. Cantilever beam in pure bending (example 1).

Fig. 4. Cantilever beam in shear and bending condition (example 2).

1768 A.D. Lanzo / International Journal of Solids and Structures 46 (2009) 1764–1771
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7.2. Euler beam

The example shown in Fig. 5 is a Euler beam, analyzed with a
transversal load 0:01k, where k is the axial compression load. The
tests were performed for two different values of the ratio k ¼ EAl2

EJ
and for several values of the ratio s ¼ GA

EA, while at the same time
varying the number n of discretization elements of the beam. The
results are represented in Figs. 6 and 7 in terms of load parameter
kl2

EJ vs. central transversal displacement parameter w
l of the equilib-

rium paths.
For all the tests of the case EAl2

EJ ¼ 4p2 (see Fig. 6), the solution of
the perfect initial post-buckling behavior of the perturbation ap-
proach obtained analytically in Salerno and Lanzo (1997) and Lan-
zo (2004) is reported in dashed lines. In this case and for s ¼ 1 the
solutions correspond exactly to those obtained using the model by
Garcea et al. (1998). Furthermore, only a few finite elements
(n = 2–4) were needed to obtain accurate results. The perturbative
approximated curve predicts this solution quite well, both in
qualitative (with a stable post-buckling path) and in quantitative
terms. With a lower value of the ratio parameter s, i.e. when shear
stiffness is noticeably lower than the axial stiffness, the load value
at which lateral buckling phenomena occur are greatly reduced.

Again, this can be accurately predicted with only a few elements.
This case exhibits a decreasing post-buckling behavior, which is
far from the stable post-buckling behavior predicted by an approx-
imated perturbation approach. Higher values of the ratio parame-
ter s increase the buckling load. More specifically, s ¼ 10 and
s ¼ 100 tests initially exhibit an unstable post-buckling path (cor-
rectly predicted by the perturbative approach) but subsequently
show an increased load carrying capacity (ascending path) which
cannot be reproduced by the approximated perturbation approach.
In this case, however, accurate solutions require a large number of
discretization elements (n ¼ 50 for s ¼ 1 and n ¼ 150 for s ¼ 100).

For all the tests of the case EAl2

EJ ¼ 100p2 (see Fig. 7), the solutions
are accurately obtained with only a few elements. The shear effects
are negligible for higher values of the ratio parameter s (for s > 1
the solution substantially coincides with that for s ¼ 1). The level
of influence is sensitive for lower values of s, as can be observed
in the equilibrium paths traced in Fig. 7.

7.3. Roorda’s frame

This example is the classical Roorda’s frame (Roorda, 1965)
with a load k of eccentricity e ¼ l=1000 (see Fig. 8). Tests were

Fig. 5. Euler Beam (example 3).

Fig. 6. Load vs. displacement of Euler beam EAl2

EJ ¼ 4p2
� �

. Fig. 7. Load vs. displacement of Euler beam EAl2

EJ ¼ 100p2
� �

.
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performed for two different values of the ratio k ¼ EAl2

EJ and for
several values of the ratio s ¼ GA

EA. Accurate solutions in terms of
equilibrium paths were obtained with a discretization of just
4þ 2 finite elements. The results are represented in Fig. 9 plot-
ting the ratio kl2

EJ vs. the rotation u of the central node. For
k ¼ 1:0� 103 an influence of the ratio parameter s can be ob-
served for values s < 10, while the curves are practically identi-
cal for s > 10. This influence is negligible throughout for
k ¼ 1:0� 107.

7.4. A deep arch

The clamped-hinged deep arch of Fig. 10 has already been the
subject of extensive study. The solution represented here was ob-
tained using 20 finite elements and varying the ratio s ¼ GA

EA. The
shear influence can be observed only for small values of the
parameter s ðs ¼ 1=1000Þ, while for higher values of s the results
largely coincide with those produced in Garcea et al. (1998) and

Kouhia and Mikkola (1989), here obtained for the specific case
s ¼ 1.

7.5. A rigidly jointed truss

The rigidly jointed truss of Fig. 11 was examined in Salerno and
Lanzo (1997); Garcea et al., 1998 (the results there reported are af-
fected by errors in the graphical representation). The solution in

Fig. 9. Load vs. displacement of Roorda’s frame.

Fig. 10. Deep arch (example 5).

Fig. 8. Roorda’s frame (example 4).
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the present paper uses a discretization of four finite elements for
each beam of the truss. As with the previous example, the results
represented in Fig. 12 also exhibit a shear factor influence only
for small values of the parameter s ¼ GA

EA, while for values s P 1 this
influence is negligible.

8. Conclusions

This paper presented a mixed implementation of the Riks path-
following strategy for the analysis of elastic plane frames, which
effectively takes into account their flexural, axial and shear
deformation contributions. The mixed strategy uses a step control
defined both in terms of displacements and internal stress (axial N
and transversal T) components, in addition to the load parameter.

The finite element model is based on a Cosserat beam and an
accurate discrete interpolation (exact in terms of stress compo-
nents). At any step of the strategy, a partitioned numerical solution
is implemented, using a block Gaussian elimination of the stress
variables at each beam finite element level, which leads at a global
level to a condensed problem almost identical to that of the usual
displacement-based compatible formulation. Some numerical tests
are presented in order to prove the effectiveness of the strategy and
the influence of shear contribution on known classical examples.
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Fig. 11. Rigidly jointed truss (example 6).

Fig. 12. Load vs. displacement of example 6.
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