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Linear independence of translates implies linear

independence of affine Parseval frames on LCA groups
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Abstract

Motivated by Bownik and Speegle’s result on linear independence of wavelet
Parseval frames, we consider affine systems (analogous to wavelet systems)
defined on a second countable, locally compact abelian group G, where the
translations are replaced by the action of a countable, discrete subgroup Γ of
G acting as a group of unitary operators on L2(G). The dilation operation
in the wavelet setting is replaced by integer powers of a unitary operator δ
onto L2(G). We show that, under some compatibility conditions between δ
and the action of the group Γ, the linear independence of the translates of
any function in L2(G) by elements of Γ implies the linear independence of
affine Parseval frames in L2(G).

Keywords: LCA group, Parseval frame, range function, multiplicity
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1. Introduction

The study of doubly invariant subspaces of measurable vector functions
defined in the unit circle and taking values in a separable Hilbert space,
as developed by Helson in [13], has been retrieved in the context of shift
invariant subspaces of L2(Rn) by de Boor, DeVore, Ron [10], and Bownik [4],
leading to what is commonly known as Helson’s theorem.
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A shift invariant subspace of L2(Rn) is any closed subspace V ⊂ L2(Rn)
which is closed under integer shifts, i.e. such that f ∈ V implies Tkf =
f(· − k) ∈ V, for all k ∈ Zn. The Fourier transform is defined as f̂(ξ) =∫
Rn f(x) e

−ix·ξ dx.

Theorem (Helson). A closed subspaces V ⊂ L2(Rn) is shift invariant if and
only if

V = {f ∈ L2(Rn), (f̂(ξ − 2πk))k∈Zn ∈ J(ξ), for a.e. ξ ∈ Tn},

where J is a measurable range function

J : Tn → {closed subspaces of ℓ2(Zn)}.

The correspondence between V and J is one-to-one, under the convention
that the range functions are identified if they are equal a.e.. Furthermore, if

V = span{Tkϕ, k ∈ Zn, ϕ ∈ A },

for an at most countable set A ⊂ L2(Rn), then,

J(ξ) = span{(ϕ̂(ξ − 2πk))k∈Zn, ϕ ∈ A }, a.e. ξ ∈ Tn.

This result has led to significant progress in the study of linear indepen-
dence of wavelet systems (see the work by Bownik and Speegle [6]). Given
ψ ∈ L2(Rn), a wavelet system in Rn is

| detA|j/2 ψ(Ajx− k), x ∈ Rn, k ∈ Zn, j ∈ Z,

where A is an n× n integer-valued, non-singular, expansive matrix.
Helson’s theorem has been generalized to locally compact abelian groups,

by various authors: Kamyabi Gol and Raisi Tousi [16],[17], Cabrelli and
Paternostro [9], Bownik and Ross [5]. In all these works, albeit with several
distinctions, a subgroup Γ of a LCA group G acts as a group of translations
on L2(G). When finishing this paper we became aware also of the work by
Barbieri, Hernández, and Paternostro [3], on characterization of invariant
spaces in terms of range functions and the generalized Zak transform, as well
as of Iverson’s work [15] in the same direction.

One of the aims of this work is to extend Helson’s theorem in case G
is a LCA, second countable, Hausdorff group and Γ is a closed countable
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subgroup of G, with compact dual group of characters Γ̂, which acts as a
group of unitary operators on the space L2(G), meaning that there is a
unitary representation

π : Γ → U(L2(G)).

We do not require Γ to be co-compact, but we assume that the measure µ
on Γ̂, arising from the spectral theorem applied to the representation π, is
absolutely continuous with respect to the Haar measure.

We obtain a characterization of π-invariant subspaces (i.e. closed sub-
spaces V ⊂ L2(G) such that π(γ)V ⊂ V , for all γ ∈ Γ) in terms of the range
function

J : Γ̂ → {closed subspaces of ℓ2(Γ)},

(see Theorem 4.6).
Also, motivated by the above mentioned paper by Bownik and Speegle,

we consider affine systems of functions defined on G, (analogous to wavelet
systems)

{δj π(γ)ψ, γ ∈ Γ, j ∈ Z},

where ψ ∈ L2(G), the translations are replaced by the action of Γ as a group
of unitary operators on L2(G), and the dilation operation of the wavelet
setting is replaced by integer powers of a unitary operator δ onto L2(G),
verifying a compatibility condition with the representation π described below.

We suppose that there is a one to one endomorphism α : Γ → Γ such that
the subgroup α(Γ) has finite index in Γ,

⋂
n≥1 α

n(Γ) = {0}, and the following
relation holds

δ−1π(γ)δ = π(α(γ)), for all γ ∈ Γ.

Affine systems include wavelet systems for a particular choice of the group
and the representation.

This approach has been used by Baggett and his collaborators in [2],
in the context of the GMRA. By the spectral theorem of Stone and von
Neumann, in conjunction with the characterization of spectral measure, any
subrepresentation of π, arising from an invariant subspace, is realized as a
direct integral. We obtain, see Lemma 5.5, that the multiplicity functions
associated with the subrepresentations of π on an invariant subspace V and
its “dilation” δ(V ) verify the same relation obtained by Bownik and Rzes-
zotnik in the case G = Rn,[7, Corollary 2.5], for the corresponding dimension
functions. It is worth to recall that the dimension function of an invariant
subspace V is defined as dimV (ξ) = dim J(ξ), where J is the range function
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provided by Helson’s theorem and that in case of translations the dimension
function is indeed equivalent to the multiplicity function.

This fact allows us to prove, by extending the technique used in [6],
that every affine Parseval frame is linearly independent if it is assumed that
the translations of each function in L2(G) are linearly independent. The
hypothesis on linear independence is certainly verified in the case of G = Rn,
while it is not, for example, in the case of finite groups (see the work of
Rosenblatt [20] for a discussion on this topic).

We say that a sequence (en)n∈Z in a Hilbert space H is linearly indepen-
dent if every finite subsequence of (en)n∈Z is linearly independent, i.e.

cn ∈ C, n ∈ F finite,
∑

n∈F

cn en = 0 ⇒ cn = 0, for all n ∈ F.

We decided to label the following hypothesis, since we shall assume it
several times:

(A) For any 0 6= f ∈ L2(G), the sequence of translates {Tγf, γ ∈ Γ} is
linearly independent.

As it will be shown in Section 6, our hypotheses on Γ and µ guarantee
that linear independence of translates implies the linear independence of the
sequence {π(γ)f, γ ∈ Γ}, for any 0 6= f ∈ L2(G).

Before stating the main results, we need the definition of a (Parseval)
frame. Frames in a separable Hilbert space provide redundant but stable
expansions for elements of the space itself. Frames play key roles in many
settings, such as sampling theory, wavelet analysis, and time-frequency (Ga-
bor) analysis. We say that a sequence (en)n∈Z in a Hilbert space H is a
frame if there exist constants A,B > 0 such that

A‖x‖ ≤
∑

n∈Z

| < x, en > |2 ≤ B‖x‖, for all x ∈ H.

If A = B, we say that (en)n∈Z is a tight frame, if A = B = 1, a Parseval
frame.

The main results of the paper are

Theorem 1. Assume hypothesis (A). Suppose ψ ∈ L2(G) and its space of
negative dilates V0 = span{δj π(γ)ψ, j < 0, γ ∈ Γ} is π- invariant.

Then the affine system {δj π(γ)ψ, j ∈ Z, γ ∈ Γ} is linearly independent.
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Theorem 2. Assume hypothesis (A). Suppose ψ ∈ L2(G). If the affine
system {δjπ(γ)ψ, j ∈ Z, γ ∈ Γ} is a Parseval frame, then it is linearly
independent.

We are mainly interested in affine systems on L2(G) , so we decided to
state and prove all results in that context, but, as the reader can easily
check, still being valid hypothesis (A) on translates in L2(G) , all results
remain valid if we replace L2(G) by any separable Hilbert space H, and the
representation π by any unitary representation

π′ : Γ → U(H),

verifying the analogous compatibility condition to (1) together with a unitary
operator δ′ onto H.

We tried to separate those results that do not need neither all the ma-
chinery of representation theory of LCA groups, nor the characterization of
π-invariant spaces by Helson from those who do. So after the main hypothe-
ses in Section 2, we state a first result on linear independence in Section 3. In
Section 4 we extend Helson’s theorem to π-invariant spaces, and in Section
5 we prove the main properties of the multiplicity function. The proof of
Theorem 1 and Theorem 2 are given in Section 6.

2. Hypotheses and Notations

In this section we collect all the hypotheses and notations needed in this
paper. We assume that G is a locally compact abelian, second countable,
Hausdorff group (LCA) (so that the Hilbert space L2(G) is separable) and
Γ ⊂ G is a closed countable subgroup of G with compact dual group of
characters Γ̂. We do not require Γ to be co-compact. Note that Γ̂ is compact
and metrizable, hence separable and second countable.

We suppose that there is a one to one endomorphism α : Γ → Γ such
that the subgroup α(Γ) has finite index in Γ, i.e. the quotient group

Γ/α(Γ)

has a finite number of elements, say N > 1.
We consider the dual endomorphism onto Γ̂, α∗ : Γ̂ → Γ̂, defined, in any

character χ ∈ Γ̂, by α∗(χ) = χ ◦ α. We assume that
⋃

n≥1 kerα
∗n is dense in

Γ̂, which is equivalent to require
⋂

n≥1 α
n(Γ) = {0}. Note that | kerα∗| = N

and that α∗ is ergodic with respect to the normalized Haar measure λ on Γ̂.
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We assume
π : Γ → U(L2(G)),

is a unitary representation of Γ on L2(G), and δ : L2(G) → L2(G) a unitary
operator verifying the following relation

δ−1π(γ)δ = π(α(γ)), for all γ ∈ Γ. (1)

It follows that

π(γ)δj = δπ(α(γ))δj−1 · · · = δjπ(αj(γ)), j ≥ 1, for all γ ∈ Γ. (2)

For any given σ-finite measure µ on Γ̂, by L2(Γ̂, ℓ2(Γ), µ) we mean the

Hilbert space of (equivalence class of) vector functions F defined on Γ̂, at-
taining values in ℓ2(Γ), which are measurable and square integrable with
respect to the measure µ, i.e. such that

‖F‖2 =

(∫

Γ̂

‖F (χ)‖ℓ2(Γ) dµ(χ)

)1/2

< +∞.

The scalar product in L2(Γ̂, ℓ2(Γ), µ) is given by

(F,G) =

∫

Γ̂

(F (χ), G(χ)) dµ(χ),

where the inner product inside the integral is the one in ℓ2(Γ).
We recall some consequences of the spectral theorem that we shall need

in the paper.
By the spectral theorem of Stone and von Neumann, [11], and the char-

acterization of spectral measure, see [14], since L2(G) is a separable Hilbert
space and

π : Γ → U(L2(G)),

is a unitary representation, there exists a finite measure µ on Borel subsets
of Γ̂ (we normalize it so that µ(Γ̂) = 1) and measurable subsets

. . . σi ⊂ · · · ⊂ σ2 ⊂ σ1 ⊂ Γ̂,

there exists a unitary map

T : L2(G) →
⊕

i

L2(σi, µ) →֒ L2(Γ̂, ℓ2(Γ), µ), (3)
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such that

[T (π(γ)f)]i(χ) = (γ, χ)[T (f)]i(χ), for all γ ∈ Γ, f ∈ L2(G), µ-a.e. χ ∈ Γ̂,
(4)

where by L2(σi, µ) we mean (scalar) functions defined in Γ̂ with support in
σi.

Note that, since Γ is countable, T (f)(χ) is identified with the sequence
((Tf)i(χ))i ∈ ℓ2(Γ), and if χ ∈ σj \ σj+1 all entries following position j are
zero.

Furthermore (4) implies the following identity for F ∈ L2(Γ̂, ℓ2(Γ), µ),
f ∈ L2(G), and the inner product in ℓ2(Γ),

(F (χ), T (π(γ)f)(χ)) = (γ, χ)(F (χ), T f(χ)), for all γ ∈ Γ, µ-a.e. χ ∈ Γ̂.
(5)

As reported in the work by Aldroubi et al., [1], if there exists some f ∈
L2(G) such that the collection {π(γ)f, γ ∈ Γ} is a frame for L2(G) , then
T maps L2(G) unitarily onto L2(σ1, µ).

We assume, since in general this is not the case, that µ is absolute con-
tinuous with respect to the Haar measure λ on Γ̂.

A closed subspace V ⊂ L2(G) is said π-invariant if π(γ)V ⊂ V , for all
γ ∈ Γ. We use the following notation for a fixed ψ ∈ L2(G) ,

Y = {δj π(γ)ψ, j ∈ Z, γ ∈ Γ},

Vk = span{δj π(γ)ψ, j < k, γ ∈ Γ} = δk(V0), k ∈ Z.

The indicator function of any set A is denoted by IA. All Hilbert spaces in
this paper are separable.

3. Extension of Bownik and Speegle result

Results in this section extend some work by Bownik and Weber [8], and
Bownik and Speegle [6] to abstract context. We include the proofs for sake
of completeness.

Definition 3.1. The frame operator for a frame (ej)j∈J in the Hilbert space
H is

S : H → H, S(x) =
∑

j∈J

< x, ej > ej .
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It is a bounded, positive, invertible operator. The frame is a tight frame if
and only if S = AI, where I is the identity operator. The frame is a Parseval
frame iff S = I i.e.

∑

j∈J

< x, ej > ej = x, for all x ∈ H.

Theorem 3.2. If Y is a Parseval frame then for all k ∈ N the set

Vk = span {δjπ(γ)ψ, j < k, γ ∈ Γ}

is π-invariant.

Proof. Fix k ≥ 0. Since Y is a Parseval frame, for all f ∈ L2(G) , we have

f =
∑

j≥k

∑

γ∈Γ

< f, δjπ(γ)ψ > δjπ(γ)ψ

+
∑

j<k

∑

γ∈Γ

< f, δjπ(γ)ψ > δjπ(γ)ψ

= B1f +B2f,

where, by the frame property, the linear operators Bi are bounded.
Now, if η ∈ Γ, since k is positive, by (2),

π(η)B1f =
∑

j≥k

∑

γ∈Γ

< f, δj π(γ)ψ > π(η)δjπ(γ)ψ

=
∑

j≥k

∑

γ∈Γ

< f, δjπ(γ)ψ > δjπ(αj(η))π(γ)ψ.

If we set ν = αj(η)γ (on the other hand any ν can be written obviously as
αj(η)[αj(η)]−1ν), and we use (2), by unitariness of π the latter is equal to

∑

j≥k

∑

ν∈Γ

< f, δjπ([αj(η)]−1)π(ν)ψ > δjπ(ν)ψ

=
∑

j≥k

∑

ν∈Γ

< f, π(η)∗δjπ(ν)ψ > δjπ(ν)ψ

=
∑

j≥k

∑

ν∈Γ

< π(η)f, δjπ(ν)ψ > δjπ(ν)ψ

= B1(π(η)f).
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It follows that B2(L
2(G) ) is π-invariant since

π(η)B2f = π(η)(f −B1f) = π(η)f − B1(π(η)f) = B2(π(η)f),

and so B2(L
2(G) ) is π-invariant as well.

Next we show that B2(L
2(G) ) = Vk, from which we obtain that Vk is π-

invariant. Indeed obviously B2(L
2(G) ) ⊂ Vk and so we get B2(L

2(G) ) ⊂ Vk.
Conversely, if f ∈ B2(L

2(G) )⊥, then

0 =< f,B2f >=
∑

j<k

∑

γ∈Γ

| < f, δjπ(γ)ψ > |2,

so f ∈ V ⊥
k and everything is proved.

Lemma 3.3. Assume V ⊂ L2(G) is a π-invariant closed subspace, and let
PV be the orthogonal projection onto V. Then, for any γ ∈ Γ, we have

PV π(γ) = π(γ)PV .

Proof. Since V is π-invariant, then V ⊥ is π-invariant, too. Indeed, if v ∈ V
and w ∈ V ⊥ then

< π(γ)w, v >=< w, π(γ)∗v >=< w, π(γ−1)v︸ ︷︷ ︸
∈V

>= 0.

Let u ∈ L2(G) and write u = v + w, where v ∈ V and w ∈ V ⊥. For any
γ ∈ Γ we have

π(γ)PV u = π(γ)v = PV (π(γ)v + π(γ)w) = PV (π(γ)(v + w)) = PV π(γ)u.

Theorem 3.4. Assume V0 = span {δjπ(γ)ψ, j < 0, γ ∈ Γ} is π-invariant,
V0 6= V1 = δ(V0). Assume that for any 0 6= f ∈ L2(G) the collection
{π(γ)f, γ ∈ Γ} is linearly independent.

Then the affine system Y is linearly independent.

Proof. Suppose there exist a finite number of non-zero constants cj,γ ∈ C
such that ∑

j∈Z

∑

γ∈Γ

cj,γ δ
jπ(γ)ψ = 0. (6)
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By applying either δ or its inverse as many times as we need, we can suppose
that the biggest j in the sum (6) such that cj,γ 6= 0, for some γ ∈ Γ, is j = 0.

So (6) leads to

∑

γ∈Γ

c0,γ π(γ)ψ = −
∑

j<0

∑

γ∈Γ

cj,γ δ
jπ(γ)ψ ∈ V0.

If PV0
is the orthogonal projection onto V0, then, by Lemma 3.3

0 = (I − PV0
)[
∑

γ∈Γ

c0,γ π(γ)ψ]

=
∑

γ∈Γ

c0,γ (I − PV0
)π(γ)ψ

=
∑

γ∈Γ

c0,γ π(γ)(I − PV0
)ψ. (7)

Note that ψ /∈ V0, otherwise, since V0 is π-invariant, we get π(γ)ψ ∈ V0 for
any γ ∈ Γ, and the contradiction

V1 = span {δjπ(γ)ψ, j < 1, γ ∈ Γ} = span {δjπ(γ)ψ, j ≤ 0, γ ∈ Γ} = V0.

Therefore (I − PV0
)ψ 6= 0, and (7) leads to a contradiction of our hypothesis

on linear independence.

The above theorem obviously holds if we only assume that for any 0 6=
f ∈ V ⊥

0 ⊂ L2(G) the collection

{π(γ)f, γ ∈ Γ}

is linearly independent. A closer look to its proof shows that it generalizes
to more than one function, say 0 6= ψ1, . . . , ψn ∈ L2(G) , assuming that the
set

{π(γ)(I − PV0
)ψi, γ ∈ Γ, i = 1, . . . , n}

is linearly independent and no ψi belongs to V0.
This last remark is used in the following example, taken from [6], to show

how the use of more general groups leads to results that cannot be reached
just using the group Z.
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Example. Given ε > 0, let us define the function ψ = ψ0 + εψ1 where

ψ̂0 = 1[−1/4,−1/8]∪[1/8,1/4], ψ̂1 = 1[−1/2,−1/4]∪[1/4,3/4].

We note that the system {D2jTkψ} is a frame for sufficiently small ε > 0,
even if this does not matter here.

The space of negative dilates is

{f ∈ L2(R) , suppf̂ ⊂ [−1/4, 3/8], f̂(ξ − 1/2) = f̂(ξ) for a.e. ξ ∈ [1/4, 3/8]}

which is 2Z-shift invariant but not shift invariant.
Thus Bownik and Speegle’s theorem does not apply, while a direct calcu-

lation shows that {D2jTkψ} is linearly independent.
On the other hand, we note that

{D2jTkψ, j, k ∈ Z} = {D2jT2kφ, j, k ∈ Z, φ = ψ, T1ψ},

the space of negative dilates being obviously the same 2Z-shift invariant
space. Furthermore both ψ and T1ψ do not belong to V0.

If we prove that the set {T2k(I − PV0
)ψ, T2k(I − PV0

)T1ψ, k ∈ Z} is lin-
early independent, we can apply the (generalization of the) above theorem
with Γ = 2Z, π(2k) = T2k to conclude that {D2jTkψ, j, k ∈ Z} is linearly
independent.

Now an easy calculation shows that (I − PV0
)ψ and (I − PV0

)T1ψ have
Fourier transform, respectively equal to

ε1[−1/2,−1/4]∪[3/8,3/4] + (
1− ε

2
)(1[−1/4,−1/8] − 1[1/4,3/8])

and

εe−2πiξ1[−1/2,−1/4]∪[3/8,3/4] + (
1 + ε

2
)e−2πiξ1[−1/4,−1/8]∪[1/4,3/8].

Hence, since the intervals [−1/4,−1/8] and [1/4, 3/8] have disjoint intersec-
tion with [−1/2,−1/4] ∪ [3/8, 3/4], the linear independence follows.

4. Invariant spaces and range functions

The purpose of this section is to provide a version of Helson’s theorem,
[13, Theorem 8], adapted to π-invariant spaces. In the case of translations,
a proof can be found in the work by Bownik [4] for uniform lattices in Rn,
Cabrelli and Paternostro [9] for uniform lattices in LCA group, and Bownik
and Ross [5] for not necessarily discrete subgroups.
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Definition 4.1. Assume µ is a σ-finite measure on Γ̂. A range function is
any map

J : Γ̂ → {closed subspaces of ℓ2(Γ)}.

J is said measurable if, denoted by P (χ) the orthogonal projection onto J(χ),
for all a, b ∈ ℓ2(Γ), the map

χ ∈ Γ̂ 7→ (P (χ)a, b) ∈ C,

is µ-measurable.

Range functions are identified if they are a.e. equal with respect to the
measure µ on Γ̂.

Definition 4.2. Let J be a range function, let µ be a σ-finite measure on Γ̂.
We define

MJ = {F ∈ L2(Γ̂, ℓ2(Γ), µ), F (χ) ∈ J(χ), µ-a.e. χ ∈ Γ̂}. (8)

Remark 4.3. [13, p. 57][14, p.6, ex.2]

It is useful to recall that, for every sequence Fn ∈ L2(Γ̂, ℓ2(Γ), µ), n ∈ N,
converging to F ∈ L2(Γ̂, ℓ2(Γ), µ) in norm, there exists a subsequence Fnk

,
k ∈ N, converging to F (χ), pointwise a.e..

It follows that MJ is a closed subspace of L2(Γ̂, ℓ2(Γ), µ).

The next lemma, proved in [13, p.58] for Γ̂ = T, extends, mutatis mutan-
dis, to the general setting.

Lemma 4.4. Let J be a measurable range function. Let MJ be the space
defined by (8). Let

P : L2(Γ̂, ℓ2(Γ), µ) → L2(Γ̂, ℓ2(Γ), µ)

be the orthogonal projection onto MJ and, for any χ ∈ Γ̂, let us denote by
P (χ) : ℓ2(Γ) → ℓ2(Γ) the orthogonal projection onto J(χ). Then, for any

F ∈ L2(Γ̂, ℓ2(Γ), µ), we have

(PF )(χ) = P (χ)F (χ), µ− a.e. χ ∈ Γ̂. (9)
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Consider the unitary map defined in (3), arising from the spectral theorem

applied to π, T : L2(G) →
⊕

i L
2(σi, µ) →֒ L2(Γ̂, ℓ2(Γ), µ).

The multiplicity function m : Γ̂ → {0, 1, . . . ,+∞} is defined as m(χ) =
♯{σj, χ ∈ σj} =

∑
j Iσj

(χ).
As proved at the end of the theorem on characterization of spectral mea-

sures [14, p.17], the range of T is an MJ for a certain measurable range
function J

T : L2(G) →MJ . (10)

T commutes between the spectral measure Π on Γ̂ (whose domain is the σ-
algebra of Borel sets and whose values are self-adjoint projections in L2(G) )
and the standard spectral measure (given by multiplication of characteristic
functions of Borel sets), i.e. T ◦ Π(E)(f) = IE T (f), for all f ∈ L2(G) and

any Borel set E ⊂ Γ̂.
The next theorem, which generalizes Helson’s theorem, says that the same

T maps unitarily any π invariant subspace V onto a certain MJV .
We need a preliminary lemma.

Lemma 4.5. Let g : Γ̂ → C be in L1(Γ̂, µ), such that, for all γ ∈ Γ,
∫

Γ̂

(γ, χ) g(χ) dµ(χ) = 0,

where µ is a finite measure on Borel sets of Γ̂ which is absolutely continuous
with respect to the Haar measure λ on Γ̂. Then for µ-almost all χ ∈ Γ̂, we
have g(χ) = 0.

Proof. Let h ∈ L1(Γ̂, λ), be given by the Radon-Nikodým theorem, such that
µ(E) =

∫
E
h(χ) dλ(χ), and

∫

Γ̂

(γ, χ) g(χ)h(χ) dλ(χ) = 0, for all γ ∈ Γ.

By Pontryagin duality theorem and Fourier uniqueness theorem, we get, for
λ almost all χ ∈ Γ̂, g(χ)h(χ) = 0.

Let us denote by A ⊂ Γ̂ the set where g(χ)h(χ) 6= 0, and by B ⊂ Γ̂ the
set where h(χ) = 0. Then λ(A) = 0 and so µ(A) = 0 by absolute continuity.
Also µ(B) =

∫
B
h(χ) dλ(χ) = 0. But

g(χ) 6= 0 =⇒ χ ∈ A ∪ B,

so the result follows.
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Theorem 4.6. Let V ⊂ L2(G) be a π-invariant closed subspace, where
π : Γ → U(L2(G) ) is a unitary representation. Then

V = {f ∈ L2(G) , T f(χ) ∈ JV (χ), µ-a.e.χ ∈ Γ̂}, (11)

where T is the unitary map in (3) and JV is a µ-measurable range function.
The correspondence between V and JV is one-to-one. Moreover

V = span{π(γ)ϕ, γ ∈ Γ, ϕ ∈ A }, (12)

for an at most countable set A ⊂ L2(G) , and for any such A verifying (12)
we have,

JV (χ) = span{Tϕ(χ), ϕ ∈ A }, µ-a.e.χ ∈ Γ̂.

Proof. We omit the incessant reference to the measure µ, hence it is assumed
in this proof that a.e. means µ-a.e..

In order to prove (11), we need to show that

T (V ) = {F ∈ L2(Γ̂, ℓ2(Γ), µ), F = Tf, f ∈ V } =MJV ,

for a suitable measurable range function JV . Indeed, if the latter is true,
f ∈ V implies Tf ∈ T (V ) =MJV , which means, by definition, that Tf(χ) ∈
JV (χ), a.e.. Conversely, if Tf(χ) ∈ JV (χ), a.e., then Tf ∈MJV = T (V ) and
so Tf = Tg for some g ∈ V , yielding f = g, since T is one to one.

Once we prove T (V ) =MJV , the uniqueness of JV comes from Lemma 4.4.
Indeed, assume T (V ) =MJV =MK for two measurable range functions. Let
P be the orthogonal projection onto T (V ) and P (χ), Q(χ) be the orthogonal
projections onto JV (χ) and K(χ) respectively. Then Lemma 4.4 implies that

for a.e. χ ∈ Γ̂, and for all F ∈ L2(Γ̂, ℓ2(Γ), µ)

P (χ)F (χ) = (PF )(χ) = Q(χ)F (χ).

In particular, for any a ∈ ℓ2(Γ),

P (χ)a = P (χ)P (χ)a = Q(χ)P (χ)a, and Q(χ)a = P (χ)Q(χ)a,

hence the range of P (χ) equals the range of Q(χ) that means a.e. JV (χ) =
K(χ), i.e. JV = K.

Now we prove (12).
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Let (en)n be an orthonormal basis for ℓ2(Γ). Since Γ is countable, let us
denote by γk, k ∈ Z, the elements of Γ. Let us consider the following elements
in L2(Γ̂, ℓ2(Γ), µ),

Fk,n(χ) = (γk, χ) en ∈ ℓ2(Γ).

We prove that span{Fk,n, k, n ∈ Z} = L2(Γ̂, ℓ2(Γ), µ).

Indeed, if F ∈ L2(Γ̂, ℓ2(Γ), µ) is such that 0 = (Fk,n, F ) for all k, n ∈ Z,
then

0 = (Fk,n, F ) =

∫

Γ̂

(Fk,n(χ), F (χ)) dµ(χ) =

∫

Γ̂

(γk, χ)(en, F (χ)) dµ(χ).

It follows that the L1 function (n fixed)

χ ∈ Γ̂ 7→ (en, F (χ)) ∈ C,

verifies the hypotheses of Lemma 4.5, hence (en, F (χ)) = 0 a.e. χ ∈ Γ̂, for
all n ∈ Z. Since (en)n is an orthonormal basis of ℓ2(Γ) we have F (χ) = 0 a.e.

χ ∈ Γ̂, and so F ≡ 0, as desired.
Let P(Fk,n) be the projection onto T (V ), then P(Fk,n) = Tϕk,n, for some

ϕk,n ∈ V.
By above, the set {P(Fk,n) = Tϕk,n, k, n ∈ Z} spans the range of P, i.e.

T (V ).
We claim that

V = span{π(γ)ϕk,n, γ ∈ Γ, k, n ∈ Z}.

Indeed, since V is π-invariant, it is obvious that π(γ)ϕk,n ∈ V, so that

span{π(γ)ϕk,n, γ ∈ Γ, k, n ∈ Z} ⊂ V.

On the other hand, if f ∈ V such that 0 = (f, π(γ)ϕk,n), for all γ ∈ Γ, k, n ∈
Z, since T is a unitary map, by (5)

0 = (Tf, T (π(γ)ϕk,n)) =

∫

Γ̂

(Tf(χ), T (π(γ)ϕk,n)(χ)) dµ(χ)

=

∫

Γ̂

(γ, χ)(Tf(χ),P(Fk,n)(χ)) dµ(χ).

Again, by Lemma 4.5 (k, n fixed), (Tf(χ),P(Fk,n)(χ)) = 0 a.e. χ ∈ Γ̂, for
all k, n ∈ Z. Hence

(Tf,P(Fk,n)) =

∫

Γ̂

(Tf(χ),P(Fk,n)(χ)) dµ(χ) = 0.

15



It follows, since {P(Fk,n) = Tϕk,n, k, n ∈ Z} spans P(L2(Γ̂, ℓ2(Γ), µ) =
T (V ), that f ≡ 0, and so the claim is proved. Hence (12) is proved with A

being the collection of all ϕk,n.

Next let A be an at most countable set verifying (12). Let us define the
range function JV as

JV (χ) = span{Tϕ(χ), ϕ ∈ A } ⊂ ℓ2(Γ), a.e.χ ∈ Γ̂.

We show that T (V ) =MJV .
If F ∈ T (V ), let f ∈ V such that Tf = F. Taken a sequence fn ∈

span{π(γ)ϕ, γ ∈ Γ, ϕ ∈ A } such that fn → f in norm, it follows that
Tfn → Tf = F.

Now, for any γ ∈ Γ, ϕ ∈ A , and a.e. χ ∈ Γ̂, (4) implies

T (π(γ)ϕ)(χ) = (γ, χ)Tϕ(χ) ∈ JV (χ),

since (γ, χ) ∈ C. So a.e. also Tfn(χ) ∈ JV (χ).
As we pointed in Remark 4.3, there exists a subsequence such that Tfnk

→
F a.e.. Since JV (χ) is closed, this implies that F (χ) ∈ JV (χ), a.e. and so
F ∈MJV as required.

Conversely, assume that T (V ) $ MJV . Then, there exists a non zero
F ∈MJV , such that F ∈ T (V )⊥. This yields, for all γ ∈ Γ, and ϕ ∈ A ,

0 =

∫

Γ̂

(T (π(γ)ϕ)(χ), F (χ)) dµ(χ)

=

∫

Γ̂

(γ, χ)(Tϕ(χ), F (χ)) dµ(χ),

and the same reasoning above yields (Tϕ(χ), F (χ)) = 0 for all ϕ ∈ A , and

a.e. χ ∈ Γ̂. In particular, since F (χ) ∈ JV (χ), we get (F (χ), F (χ)) = 0 a.e.,
which implies the contradiction ‖F‖2 = 0.

Finally, it remains to show that JV is measurable. Let P be the orthog-
onal projection onto T (V ) =MJV , and P (χ) the orthogonal projection onto
JV (χ). By Lemma 4.4, if we take the constant function F (χ) = a ∈ ℓ2(Γ),
for a fixed a, by (9) and every b ∈ ℓ2(Γ),

(P (χ)a, b) = (P (χ)F (χ), b) = ((PF )(χ), b).

The function χ 7→ ((PF )(χ), b) is measurable since PF is, so for all a, b ∈
ℓ2(Γ) the function χ 7→ (P (χ)a, b) is measurable and everything is proved.

16



Corollary 4.7. Let V ⊂ L2(G) be a closed π-invariant subspace, ϕ ∈ V, and
f ∈ L2(G) . If T denotes the unitary map in (3), suppose that for µ-almost

all χ ∈ Γ̂ there exists a constant c(χ) ∈ C such that, for all i,

[Tf ]i(χ) = c(χ)[Tϕ]i(χ). (13)

Then f ∈ V.

Proof. Since V is π-invariant, for all γ ∈ Γ we have π(γ)ϕ ∈ V, and

S := span{π(γ)ϕ, γ ∈ Γ} ⊂ V.

Hence it suffices to prove that f ∈ S.
S is π-invariant so, by Theorem 4.6, we can write it in terms of its range

function
S = {g ∈ L2(G) , T g(χ) ∈ JS(χ), µ-a.e. χ ∈ Γ̂}, (14)

where, since S is generated by ϕ,

JS(χ) = span{Tϕ(χ)} = {λ Tϕ(χ), λ ∈ C}.

But (13) implies that, for µ-a.e. χ, Tf(χ) ∈ JS(χ) and so f ∈ S by (14).

Definition 4.8. Let V ⊂ L2(G) be a π-invariant closed space and let JV
be a range function associated with V as in (11) of Theorem 4.6. If A is a

countable set verifying (12), we define, for µ-almost all χ ∈ Γ̂,

dimV (χ) = dim JV (χ) = dim span{Tψ(χ), ψ ∈ A },

where the latter means dimension as a vector subspace in ℓ2(Γ). If A is finite,
we say that V is finitely generated. If V = L2(G) we simply write dim J(χ).

An elementary argument about vector spaces is at the basis of the fol-
lowing proposition.

Proposition 4.9. Let V ⊂ L2(G) be a π-invariant closed space and let JV
be a range function associated with V as in (11) of Theorem 4.6. Let A be
a countable set verifying (12). If V is finitely generated, then, for µ-almost

all χ ∈ Γ̂, dim JV (χ) ≤ ♯A < +∞.
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5. The multiplicity function

This section is devoted to the multiplicity function and some basic for-
mulas for it.

As we have already seen, any time we are given a unitary representation

π : Γ → U(L2(G)),

we have a Borel measure µ on Γ̂, a unitary operator T defined as in (3), and
an associated multiplicity function m.

Assume now V ⊂ L2(G) is invariant under π. It determines, in an
obvious way, a unitary representation

π̃ : Γ → U(V ), π̃(γ)f = π(γ)f, f ∈ V,

called the subrepresentation of π on V .
As above, we get a Borel measure µ̃ on Γ̂, and measurable subsets

. . . σ̃i ⊂ · · · ⊂ σ̃2 ⊂ σ̃1 ⊂ Γ̂,

a unitary map

T̃ : V →
⊕

i

L2(σ̃i, µ̃) →֒ L2(Γ̂, ℓ2(Γ), µ̃),

such that

[T̃ (π̃(γ)f)]i(χ) = (γ, χ)[T̃ (f)]i(χ), for all γ ∈ Γ, f ∈ V, µ̃ a.e. χ ∈ Γ̂. (15)

The multiplicity function m̃ : Γ̂ → {0, 1, . . . ,+∞} is defined as

m̃(χ) = ♯{σj, χ ∈ σj} =
∑

j

Iσ̃j
(χ).

Furthermore, we denote by J̃ the range function such that T̃ : V → MJ̃ ,
see (10).
We shall always affix the tilde to objects related to subrepresentations of π.

Remark 5.1. Note that, since π̃ is the subrepresentation of π on V , the
measure µ̃ is absolutely continuous with respect to µ (and hence absolute

continuous with respect to the Haar measure on Γ̂).
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This is a consequence of a general theorem on type I representation (see
Theorem 3.26 in Führ’s monograph [12]), but we can also prove it directly,
and we choose to do so, since this allows to introduce some elements of
spectral theory that we will need later.

We recall that, by the spectral theorem, see [14], representations π and

π̃, are linked respectively to the spectral measures Π and Π̃, in the following
way:

π(γ) =

∫

Γ̂

(γ, χ) dΠ(χ), π̃(γ) =

∫

Γ̂

(γ, χ) dΠ̃(χ). (16)

The meaning of (16) is that for any f, g ∈ L2(G) , and f ′, g′ ∈ V, we have

(π(γ)f, g) =

∫

Γ̂

(γ, χ) dmf,g(χ), (π̃(γ)f ′, g′) =

∫

Γ̂

(γ, χ) dm̃f ′,g′(χ), (17)

where measures mf,g and m̃f ′,g′ are defined by

mf,g(E) = (Π(E)f, g), m̃f ′,g′(E) = (Π̃(E)f ′, g′), (18)

for all Borel sets E ⊂ Γ̂.
An application of Zorn’s lemma yields that there exist f ∈ L2(G) and

g ∈ V such that, for any Borelian E ⊂ Γ̂,

µ(E) = mf,f (E) = (Π(E)f, f), µ̃(E) = m̃g,g(E) = (Π̃(E)g, g).

Moreover, for any other h ∈ L2(G) we have mh,h ≪ µ, and, since π̃ is the
subrepresentation of π on V , we have also, by uniqueness of Fourier-Stieltjies
transform,

µ̃(E) = (Π̃(E)g, g) = (Π(E)g, g), since g ∈ V.

Finally, if µ(E) = 0 then mg,g(E) = 0 and, by above, µ̃(E) = 0.

An additional consequence of Stone’s theorem is the following

Lemma 5.2. Suppose that π is a unitary representation of the abelian group
Γ acting on a Hilbert space H, and let ν and τi be, respectively, the Borel
measure and the Borel measurable sets as in Stone’s theorem.

Suppose that τ ′j is another collection of, not necessarily nested, Borel sub-

sets of Γ̂, and T ′ is a unitary operator,

T ′ : H →
⊕

j

L2(τ ′j , ν)
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satisfying

[T ′(π(γ)f)]j(χ) = (γ, χ)[T ′(f)]j(χ), for all γ ∈ Γ, f ∈ H, ν a.e. χ ∈ Γ̂.

Then, for ν−almost all χ ∈ Γ̂,

∑

i

Iτi(χ) =
∑

j

Iτ ′j (χ).

Remark 5.3. We can recover, by the lemma above, that the multiplicity
function of the representation π on L2(G) satisfies

m(χ) = dim J(χ), µ-a.e χ ∈ Γ̂,

if J is the range function associated with the operator T as in (10).
Indeed it suffices to take T ′ = T, τi = σi, and τ ′j being the set where

dim J(χ) = j.
The same argument applies for a subrepresentation on a π-invariant sub-

space as well.

Remark 5.4. A Borel cross-section for the quotient map q : Γ̂ → Γ̂/ kerα∗ is

a Borel measurable right inverse for q, i.e. a map s̃ : Γ̂/ kerα∗ → Γ̂ such that
q ◦ s̃ = IdΓ̂/ kerα∗ .

Since kerα∗ is closed, and Γ̂ is compact and metrizable (hence separable),
a Borel cross-section for q exists by Mackey’s result in [19, Lemma 1.1].

It follows that there exists a measurable map s : Γ̂ → Γ̂, such that
α∗(s(χ)) = χ.

Indeed, for any χ ∈ Γ̂ let us denote by [χ] the corresponding equivalence

class in Γ̂/ kerα∗. Then [s̃([χ])] = q(s̃([χ])) = [χ] implies s̃([χ])−1χ ∈ kerα∗.
It follows that there exists a unique element η = s̃([χ])−1χ ∈ kerα∗ such that
χ = s̃([χ])η.

Now let us define s : Γ̂ → Γ̂, as s(χ) = s̃([ξ]) if α∗(ξ) = χ. The map
s is well defined since α∗(ξ) = α∗(ξ′) implies [ξ] = [ξ′]. Finally we get, if
η ∈ kerα∗ is the unique element such that ξ = s̃([ξ])η = s(χ)η,

α∗(s(χ)) = α∗(s̃([ξ])) = α∗(s̃([ξ])η) = α∗(ξ) = χ.

In the sequel we shall need the following formula, contained implicitly in
[2], which generalizes the analogous formula obtained by Bownik and Rzes-
zotnik, in Corollary 2.5 of [7], for shift invariant spaces in L2(Rn).
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Lemma 5.5. Assume we are given two closed subspaces V,W ⊂ L2(G) ,
such that W = δ(V ), where δ : L2(G) → L2(G) is a unitary map verifying

(1). Suppose V is π-invariant. Let us denote by µ̃, T̃ , and m̃ the usual objects
given by Stone’s theorem related to the subrepresentation of π on V and by
µ♯, T ♯, and m♯ the corresponding objects for W . Then we have, for µ♯-almost
all χ ∈ Γ̂,

m♯(χ) =
∑

α∗(ξ)=χ

m̃(ξ). (19)

Proof. Let s : Γ̂ → Γ̂ be the map linked to the Borel cross-section for the
quotient map q : Γ̂ → Γ̂/ kerα∗, as in Remark 5.4.

For any index i and any η ∈ kerα∗(recall that | kerα∗| = N), let us define
a collection of Borel measurable sets by

τi,η = {χ ∈ Γ̂, s(χ) η ∈ σ̃i},

and the map

T ′ : δ(V ) →
⊕

i,η

L2(τi,η, µ
♯),

by
[T ′(f)]i,η(χ) = [T̃ (δ−1(f))]i(s(χ)η), χ ∈ τi,η.

We have by (1), and (15), for f ∈ δ(V ), χ ∈ τi,η,

[T ′(π(γ)f)]i,η(χ) = [T̃ (δ−1(π(γ)f))]i (s(χ) η)

= [T̃ (π(α(γ))δ−1(f))]i (s(χ) η)

= (α(γ), s(χ) η) [T̃ (δ−1(f))]i (s(χ) η)

= (γ, α∗(s(χ) η)) [T ′(f)]i,η(χ)

= (γ, χ) [T ′(f)]i,η(χ).

Hence, by Lemma 5.2, the multiplicity function m♯ is given, µ♯-a.e. χ ∈ Γ̂,
by

m♯(χ) =
∑

i,η

Iτi,η(χ) =
∑

η

∑

i

Iσ̃i
(s(χ) η)

=
∑

η

m̃(s(χ) η) =
∑

α∗(ξ)=χ

m̃(ξ).
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Any time we have a π-invariant subspace V , we are given two range
functions: JV by Theorem 4.6, and J̃ . It is worth to compare the respective
dimensions dim JV (χ) and dim J̃(χ).

In the following proposition we use the fact that µ̃ is absolutely continuous
with respect to µ to show that a relation always exists.

Proposition 5.6. Let V ⊂ L2(G) be a π-invariant subspace, and JV be the
range function associated with V , provided by Theorem 4.6. Consider the
subrepresentation of π on V , π̃ : Γ → U(V ), the range function J̃ associated

with the unitary map T̃ , and the multiplicity function m̃.
Then for µ̃ almost all χ ∈ Γ̂, m̃(χ) = dim J̃(χ) ≤ dim JV (χ).

Proof. By Helson’s theorem, Theorem 4.6, we get T (V ) =MJV . Consider the

unitary map T̃ : V →MJ̃ as in (10). The composition T|V ◦T̃
−1 :MJ̃ →MJV

is a unitary map. We call it T ◦ T̃−1 for short.
Consider n ∈ N, and the set τ̃n where

m̃(χ) = dim J̃(χ) = n.

Let F1, . . . , Fn ∈ MJ̃ , be pointwise orthonormal µ̃ a.e. on τ̃n and van-
ishing out of it (see [14] p.12 problem 4). We aim to show that pointwise

orthonormality of F1(χ), . . . , Fn(χ) ∈ J̃(χ) implies pointwise orthonormality
of a same number of elements in JV (χ). By (3) we have

∫

Γ̂

(γ, χ) (T ◦ T̃−1(Fj)(χ), T ◦ T̃−1(Fh)(χ)) dµ(χ) (20)

=

∫

Γ̂

(T (π(γ)T̃−1Fj)(χ), T (T̃
−1Fh)(χ)) dµ(χ).

Since T is a unitary operator, by recalling the definition of inner product
in the vector space L2(Γ̂, ℓ2(Γ), µ), the latter is equal to

(π(γ) T̃−1Fj, T̃
−1Fh) = (π̃(γ) T̃−1Fj, T̃

−1Fh) =

∫

Γ̂

(γ, χ) dµ̃T̃−1Fj ,T̃−1Fh
(χ),

see (17). The measure µ̃T̃−1Fj ,T̃−1Fh
is defined in any Borel set E ⊂ Γ̂, in

terms of the spectral measure Π̃ associated with µ̃, see (18), by

µ̃T̃−1Fj ,T̃−1Fh
(E) = (Π̃(E) T̃−1Fj , T̃

−1Fh)

= (T̃−1(IE Fj), T̃
−1(Fh))

= (IE Fj , Fh),
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the last two lines justified by the commuting properties of T̃−1 between Π̃
and the standard spectral measure, and the unitariness of the operator T̃−1.

But, for our choice of F1, . . . , Fn ∈MJ̃ ,

(IE Fj , Fh) =

∫

E

(Fj(χ), Fh(χ)) dµ̃(χ) =

∫

E∩τ̃n

(Fj(χ), Fh(χ)) dµ̃(χ)

= δj,h µ̃(E ∩ τn).

Hence the measure µ̃T̃−1Fj ,T̃−1Fh
is identically zero whenever j 6= h, while

for j = h is nothing else that µ̃ restricted to τ̃n.
It follows that (20) is identically zero whenever j 6= h, while for j = h, if

we call w the nonnegative measurable function on Γ̂, provided by the Radon-
Nikodym Theorem, such that µ̃(E) =

∫
E
w(χ) dµ(χ), for any Borel set E,

(20) is equal to
∫

Γ̂

(γ, χ) ‖T ◦ T̃−1(Fj)(χ)‖
2 dµ(χ) =

∫

Γ̂

(γ, χ) Iτ̃n(χ) w(χ) dµ(χ).

By Lemma 4.5, we get for µ (and hence µ̃) almost all χ ∈ τ̃n,

(T ◦ T̃−1(Fj)(χ), T ◦ T̃−1(Fh)(χ)) = δj,hw(χ).

The set where w(χ) = 0 has zero measure with respect to µ̃, so we get

for µ̃ almost all χ ∈ τ̃n, 0 6≡ T ◦ T̃−1(Fj)(χ) ∈ JV (χ), and dim JV (χ) ≥ n.

The same argument shows that in the set where dim J̃(χ) = +∞ then
also dim JV (χ) = +∞, (see [14, Theorem 2, p.8]), hence we get, µ̃ a.e.,

dim JV (χ) ≥ dim J̃(χ), as desired.

6. Main results

We first briefly discuss the linear independence of translates of one func-
tion {Tγf, γ ∈ Γ}, compared to linear independence of {π(γ)f, γ ∈ Γ},(recall
that Tγf = f(· − γ)).

In [18, Corollary 4.3.14] Kutyniok has proved, among other things, that,
for any countable set Γ ⊂ G, the set of (left) translates {Tγf, γ ∈ Γ} is
linearly independent for any 0 6= f ∈ L2(G), if and only if, for any finite
subset Λ ⊂ Γ, and for any (cγ)γ∈Λ ⊂ C, (cγ)γ∈Λ 6= 0, we have

∑

γ∈Λ

cγ (γ, χ) 6= 0, a.e. χ ∈ Ĝ,
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where a.e. means with respect the Haar measure on Ĝ.
It turns out that the above equivalence still holds if the countable set

Γ ⊂ G and the left translation are replaced, respectively, by a countable,
closed subgroup and a unitary representation with corresponding measure
µ absolutely continuous with respect the Haar measure, as shown in the
following lemma.

Lemma 6.1. Let G be a locally compact abelian group. Let Γ ⊂ G be a
countable closed subgroup. Let λ be the Haar measure on Γ̂.

Then the following conditions are equivalent.

(i) The set of (left) translates {Tγf, γ ∈ Γ} is linearly independent for any
0 6= f ∈ L2(G);

(ii) For any finite set Λ ⊂ Γ, and for any (cγ)γ∈Λ ⊂ C, (cγ)γ∈Λ 6= 0, we
have ∑

γ∈Λ

cγ (γ, χ) 6= 0, λ− a.e. χ ∈ Γ̂;

(iii) For any unitary representation π : Γ → U(L2(G)), with corresponding
measure µ ≪ λ, and for any 0 6= f ∈ L2(G), the set {π(γ)f, γ ∈ Γ} is
linearly independent.

Proof. (i) implies (ii) is part of the statement of Corollary 4.3.14 in [18]
together with the observation that the hypotheses on Γ guarantee that any
character of Γ extends to a character of G, [21]. Obviously (iii) implies
(i), so we need to show (ii) implies (iii). To this purpose we recall the
unitary operator T defined in (3) and associated with π. Let 0 6= f ∈ L2(G),
and F ⊂ Γ be a finite subset. If (cγ)γ∈F ⊂ C, (cγ)γ∈F 6= 0, is such that∑

γ∈F cγπ(γ)f ≡ 0, we get that 0 ≡
∑

γ∈F cγ T (π(γ)f) implies

(
∑

γ∈F

cγ (γ, χ)

)
[Tf ]i(χ) =

∑

γ∈F

cγ [T (π(γ)f)]i(χ) = 0, µ− a.e.χ ∈ Γ̂,

for any index i arising in the definition of T . By (ii) and absolute continuity of

the measure, the sum
(∑

γ∈F cγ (γ, χ)
)
is µ-a.e. different from zero, yielding

[Tf ]i(χ) = 0 for all i and µ-almost all χ ∈ Γ̂. This implies f ≡ 0, since T is
unitary, against the assumption f 6= 0.
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We now return to questions about linear independence of the affine system
Y and the role played by the endomorphism α defined in Section 2.

A little technical lemma anticipates one of the main results, which ex-
plores the behavior of the space V0 of negative translates, as in [6, Theorem
3.4].

Lemma 6.2. Under the hypotheses (1) on α and α(Γ), there exists a finite
set ν1, . . . , νN ∈ Γ with the following property: for any γ ∈ Γ, and for any
j ∈ N, there exists η ∈ Γ such that γ = αj(η)νi for some i = 1, . . . , N.

Proof. By a recursive argument it is sufficient to consider j = 1.
Assume

|Γ/α(Γ)| = N,

and let ν1, ν2, . . . , νN ∈ Γ be a complete set of coset representatives. If γ ∈ Γ,
let i = 1, . . . , N such that [γ] = [νi]. Then γνi

−1 ∈ α(Γ) and so γ = α(η)νi
for some η ∈ Γ.

As in the previous section we denote by T , µ and m the usual objects
linked to the representation π.

The following remark is crucial in the proof of what follows.
We observe that the compatibility condition (2) implies that, for any

M ∈ N, the representation π ◦αM : Γ → U(L2(G) ), is unitarily equivalent to
π, being δM : L2(G) → L2(G) the intertwining operator. It follows that the
corresponding measures µ and, say µM , are equivalent and the multiplicity
functions agree up to a set of measure 0 (with respect to either measure). In
particular, µM is absolutely continuous with respect to the Haar measure on
Γ̂.

The compatibility condition (1) is satisfied too, since π does,

δ−1π(αM(γ))δ = π(α(αM(γ))) = π ◦ αM(α(γ)).

We can conclude that all results of this paper so far hold for the repre-
sentation π ◦ αM as well.

Theorem 6.3. Assume hypothesis (A).
If the system Y = {δj π(γ)ψ, j ∈ Z, γ ∈ Γ} is linearly dependent, then

V0 = span{δj π(γ)ψ, j < 0, γ ∈ Γ} is π ◦ αM -invariant for some M ≥ 0.
Moreover, if we consider the unitary representation

πM := π ◦ αM : Γ → U(L2(G) ),
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and the subrepresentation π̃M on V0, with corresponding measure µ̃M and
multiplicity function m̃M , we have

m̃M (χ) < +∞, µ̃M − a.e. χ ∈ Γ̂.

Proof. The first part follows the proof of Theorem 3.4 in [6].
If the system Y is linearly dependent, there exists a finite set F ⊂ Γ and

a finite non zero sequence cj,γ ∈ C, j ∈ Z, γ ∈ F, such that

0 =
∑

j∈Z

∑

γ∈F

cj,γ δ
j π(γ)ψ. (21)

After several applications of δ, we can assume that the smallest j in the sum
(21) is 0. Call the largest M . Hence

0 =
M∑

j=0

∑

γ∈F

cj,γ δ
j π(γ)ψ.

We define

f :=
∑

γ∈F

c0,γ π(γ)ψ = −
M∑

j=1

∑

γ∈F

cj,γ δ
j π(γ)ψ. (22)

For any h, k ∈ Z, we consider the subspaces in L2(G)

Vh,k = span{δj π(γ)ψ, h ≤ j ≤ k, γ ∈ Γ},

and we note first that f ∈ V1,M , and δ(Vh,k) = Vh+1,k+1; secondly, each Vh,k
is π-invariant whenever h ≥ 0. Indeed, by (2),

π(η)δj π(γ)ψ = δjπ(αj(η)) π(γ)ψ = δjπ(αj(η)γ)ψ ∈ Vh,k.

By (22) and (4), we get, for all i and µ-a.e. χ ∈ σi,

[Tf ]i(χ) =
∑

γ∈Γ

c0,γ [T (π(γ)ψ)]i(χ) =

(
∑

γ∈Γ

c0,γ (γ, χ)

)
[T (ψ)]i(χ).

By (ii) of Lemma 6.1, the hypothesis (A) on linear independence of translates
implies that ∑

γ∈Γ

c0,γ (γ, χ) 6= 0, λ-a.e.χ ∈ Γ̂,
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(λ is the Haar measure) hence, by absolute continuity, µ-a.e.

[T (ψ)]i(χ) =
1∑

γ∈Γ c0,γ (γ, χ)
[Tf ]i(χ),

and we obtain, by Corollary 4.7, that ψ ∈ V1,M .
Therefore, since V1,M is π-invariant, {π(γ)ψ, γ ∈ Γ} ⊂ V1,M , yielding

V0,M ⊂ V1,M , and so V1,M = V0,M . By several application of δk, we get also
Vk+1,M+k = Vk,M+k. The argument goes on as in the proof of [6], we include
it for completeness. By induction it is proved that

Vr,M = V1,M , for all r ≤ 0.

Indeed, by above the statement is true for r = 0. Suppose it is true for
r+1 ≤ 0, and consider r ≤ 0, then obviously Vr+1,M+r ⊂ Vr+1,M and we have

Vr,M+r = Vr+1,M+r ⊂ Vr+1,M = V1,M ,

the latter equality being the induction hypothesis.
So the inclusion

{δjπ(γ)ψ, r ≤ j ≤M, γ ∈ Γ} ⊂ {δjπ(γ)ψ, r ≤ j ≤M + r, γ ∈ Γ} ∪

{δjπ(γ)ψ, r + 1 ≤ j ≤M, γ ∈ Γ}

implies, since r ≤ 0,

Vr,M = span{δjπ(γ)ψ, r ≤ j ≤M, γ ∈ Γ}

⊂ V1,M ∪ Vr+1,M = V1,M ∪ V1,M = V1,M ⊂ Vr,M ,

as needed.
Hence we obtain

VM+1 = span{δjπ(γ)ψ, j ≤M, γ ∈ Γ} =
⋃

r≤0

Vr,M = V1,M ,

and V0 = δ−(M+1)(VM+1) = V−M,−1.
Now we prove that V0 is π ◦ αM -invariant. Indeed, for −M ≤ j ≤ −1,

and η, ν ∈ Γ, by equality (2) we have

π ◦ αM(η)(δjπ(ν)ψ) = δ−Mπ(η)δM(δjπ(ν)ψ) = δ−Mπ(η)δM+jπ(ν)(ψ)

= δ−MδM+jπ(αM+j(η))π(ν)(ψ) = δjπ(αM+j(η)ν)(ψ),
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and the latter is again in V−M,−1 = V0. Furthermore, by Lemma 6.2, any
element of Γ is of the form αM+j(η)ν, for ν varying in a finite set and η ∈ Γ,
hence by the above equality we get also that

V0 = span{π ◦ αM(η)(δjπ(νi)ψ), −M ≤ j ≤ −1, i = 1, . . . , N, η ∈ Γ}.

Finally let us consider the unitary representation π◦αM : Γ → U(L2(G)),
the associate unitary map TM as defined in (3) together with the measure
µM . By Theorem 4.6, if JV0,M denotes a µM measurable range function cor-

responding to V0 we have, µM -a.e. χ ∈ Γ̂,

JV0,M(χ) = span{TM(δjπ(νi)ψ)(χ), −M ≤ j ≤ −1, i = 1, . . . , N}.

By Proposition 4.9, we have dim JV0,M(χ) < +∞, and so, by Proposition 5.6,
we get m̃M(χ) < +∞, µ̃M -a.e., as required.

Theorem 6.4. Let π be a unitary representation of Γ on L2(G) verifying
(1), and suppose that hypothesis (A) holds true. Assume V ⊂ L2(G) is
π-invariant and V = δV .

Let µ and µ̃ denote the obvious measures and assume that µ is absolutely
continuous with respect the Haar measure on Γ̂. Let m̃ be the multiplicity
function associated with the subrepresentation of π on V . Then we have, for
µ̃-almost all χ ∈ Γ̂, m̃(χ) = +∞.

Proof. Since V = δV, the multiplicity function, m♯, associated with the sub-
representation of π on δV coincides with m̃. Hence, by (19) we get µ̃-almost

all χ ∈ Γ̂,

m̃(χ) = m♯(χ) =
∑

α∗(ξ)=χ

m̃(ξ). (23)

The proof follows now the same standard ergodic argument as in [6,
Lemma 3.5].

Let E = {χ ∈ Γ̂, m̃(χ) ≥ 1}, then α∗(E) ⊂ E, i.e. E ⊂ (α∗)−1(E). Since
α∗ is measure-preserving, in the sense that λ((α∗)−1(E)) = λ(E), λ being

the Haar measure on Γ̂, we have that E = (α∗)−1(E) modulo null-sets. Since
α∗ is ergodic we must have either λ(E) = 0 or λ(E) = 1, and since V 6= {0},
it follows that λ(E) = 1.

So m̃(χ) ≥ 1 for a.e. χ ∈ Γ̂. From (23) above and the fact that all elements

ξ verifying α∗(ξ) = χ yield the same coset in Γ̂/ kerα∗, it follows first that
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m̃(χ) ≥ N > 1 for a.e. χ ∈ Γ̂, (N = | kerα∗|) and secondly m̃(χ) = +∞ for

a.e. χ ∈ Γ̂. The hypothesis µ ≪ λ and the fact that µ̃≪ µ, see Remark 5.1,
complete the proof.

Proof of Theorem 1 By hypothesis V0 is π-invariant.
If V0 6= V1 = δ(V0) then Theorem 3.4 yields the linear independence of Y .
If V0 = V1, then the restriction of δ to V0, say δV0

, is a unitary map onto V0.
If we assume that Y is linear dependent, by Theorem 6.3 there exists an

M ≥ 0 such that V0 is πM := π ◦αM -invariant, and the multiplicity function
m̃M verifies m̃M (χ) < +∞, for µ̃M -almost all χ ∈ Γ̂.

But the πM -invariance implies that the subrepresentations π̃M and π̃ on V0
are equivalent, δMV0

being the intertwining operator, and so the corresponding
measures µ̃M and µ̃ are equivalent. Furthermore the multiplicity functions
agree up to a set of measure 0 (with respect to either measure), so m̃(χ) <

+∞, for µ̃-almost all χ ∈ Γ̂, leading to a contradiction of Theorem 6.4.
Proof of Theorem 2

It follows by Theorem 3.2 and Theorem 1.
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[12] H. Führ, Abstract Harmonic Analysis of Continuous Wavelet Trans-
forms, LNM 1863, Springer, 2005

[13] H. Helson, Lectures on Invariant Subspaces, Academic Press, 1964.

[14] H. Helson, The Spectral Theorem, Lecture Notes in Math. 1227,
Springer-Verlag, 1986.

[15] J. W. Iverson, Subspaces of L2(G) invariant under translations by an
abelian subgroup, preprint.

[16] R. A. Kamyabi Gol, R. Raisi Tousi, The structure of shift invariant
spaces on a locally compact abelian group, J. Math. Anal. Appl., 340
(2008), 219–225.

[17] R. A. Kamyabi Gol, R. Raisi Tousi, A range function approach to shift-
invariant spaces on locally compact abelian groups, Int. J. Wavelets Mul-
tiresolut. Inf. Process., 8 (2010), 49–59.

[18] G. Kutyniok,Time-frequency analysis on locally compact groups, Ph.D.
thesis, University of Paderborn, Germany, 2000.

[19] G. W. Mackey, Induced representation of locally compact groups. I, Ann.
Math. (2), 55 (1952), 101–139.

[20] J. Rosenblatt, Linear independence of translations, Int. J. Pure Appl.
Math., 45 (2008), 463–473.

[21] W. Rudin, Fourier Analysis on Groups, John Wiley, 1962.

30


	1 Introduction
	2 Hypotheses and Notations
	3 Extension of Bownik and Speegle result
	4 Invariant spaces and range functions
	5 The multiplicity function
	6 Main results

