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Abstract: The aim of this study was to evaluate the antioxidant properties of the products derived
from the biodegradation of lignin by the ligninolytic enzymes present in an aqueous extract of
the mushroom P. eryngii. A mixture obtained after the incubation of lignin for 18 h with P. eryngii
extract was tested in vitro for its total polyphenol content, reducing power, and 1,1-diphenyl-2-
picrylhydrazyl (DPPH) and hydroxyl (OH) radical-scavenging activities. The results showed that
the enzymatic treatment of lignin enhanced its antioxidant performance. The biocompatibility of
the products of lignin biodegradation and their ability to scavenge reactive oxygen species (ROS)
were also tested on the astrocytic cell line DI-TNC1. The results obtained indicated that a lignin
mixture incubated for 18 h does not affect cell viability or inhibit the H2O2-induced ROS production.
These results suggest that the enzymatic degradation of lignin represents an efficient and ecofriendly
approach to obtain lignin derivatives potentially useful for antioxidant applications.
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1. Introduction

Lignin is one of the main constituents of lignocellulosic biomass; it is the second most
abundant natural polymer after cellulose. Lignin is an amorphous hydrophobic polymer
with a very complex cross-linked structure that varies greatly depending on the plant
species of origin. Lignin results from the polymerization of three monolignols, namely
coniferyl alcohol (G), sinapyl alcohol (S), and p-coumaryl alcohol (H) [1–3]. Due to its aro-
matic nature, the depolymerization of lignin produces various phenolic compounds with
numerous biological properties [4–7]. Among them, one of the most important biological
activities is its antioxidant properties, attributed to the ability of its phenolic structures
to reduce free radicals through hydrogen or electron transfer [8,9]. However, its aromatic
nature and its complex cross-linked structure, as well as the consequent poor solubility of
lignin, make it chemically difficult to degrade [10]. In recent years, the depolymerization of
lignin to produce high value-added chemical compounds has represented one of the most
important challenges [11–13]. A highly successful strategy to promote the degradation of
lignin into biologically active products is represented by enzymatic treatment. Compared
to thermal or chemical degradation, the enzymatic depolymerization of lignin, and there-
fore its valorization through a biological approach, could guarantee both economic and
environmental benefits represented by a reduction in the use of toxic chemicals and the use
of renewable and inexpensive biological catalysts. In addition, the biological valorization of
lignin would represent an interesting opportunity for the pharmaceutical and biomedical
fields [14–18].

Molecules 2024, 29, 5575. https://doi.org/10.3390/molecules29235575 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules29235575
https://doi.org/10.3390/molecules29235575
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-6971-5416
https://orcid.org/0000-0002-1285-2273
https://orcid.org/0000-0001-5692-9335
https://orcid.org/0000-0002-3030-4190
https://doi.org/10.3390/molecules29235575
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules29235575?type=check_update&version=1


Molecules 2024, 29, 5575 2 of 12

It is known that many fungi and some bacterial species are very efficient in the enzy-
matic degradation of lignin [19,20]. Bacteria are less efficient in lignin depolymerization
than fungi. Among the latter, white rot fungi (e.g., Ganoderma spp., Lentinula edodes or Pleu-
rotus spp.) are the most efficient lignin degraders. This ability is due to the combined action
of two groups of enzymes, such as phenol oxidase (laccase, EC 1.10.3.2) and peroxidases
(lignin peroxidase, EC 1.11.1.14; manganese peroxidase, EC 1.11.1.13; versatile peroxidase
and dye-decolorizing peroxidase, EC 1.11.1.19) [21,22]. Due to their high redox potential,
laccases from ligninolytic fungi are considered the preferred enzymes for the enzymatic
depolymerization of lignin into phenolic groups and chemicals of biological origin [23,24].
In most of the studies conducted on the enzymatic depolymerization of lignin, purified
enzymes or a mixture of them is generally used [25–27]. An interesting aspect of this work
consists of having used an aqueous extract of the mushroom P. eryngii, which offers several
advantages when compared to the commercial purified ligninolytic enzymes In fact, the
aqueous extract used in this study is characterized by the presence of various ligninolytic
enzymes, the simplicity of preparation, and the low costs of production compared to those
incurred for the purification of commercial enzymes.

In the experiments of this study, the extract from P. eryngii was used to evaluate the
antioxidant properties of products derived from the enzymatic biodegradation of lignin
extracted from the shell of pecan nut. The results showed that the enzymatic treatment
of lignin improved both its antioxidant performance in vitro and its ability to scavenge
reactive oxygen species (ROS) in a cell-culture model represented by DI-TNC1 cells.

2. Results and Discussion
2.1. Lignin Characterization

To characterize the structure of lignin from pecan shells, Attenuated Total Reflectance–
Fourier Transform Infrared (ATR-FTIR) Spectroscopy was performed, with the results
compared to the values reported in the literature [28,29]. The ATR-FTIR spectrum was
recorded in the 500–4000 cm−1 region and revealed the presence of functional groups in
different regions. It shows typical absorptions of aromatic molecules at 1603 and 1510 cm−1

assigned to the C=C stretching vibration, while the absorption at 1448 cm−1 is due to the
bending vibration of methoxy groups of guaiacyl (G) and syringyl (S) units. The band
at 1708 cm−1 was assigned to the stretching of carbonyl groups (C=O) in unconjugated
ketones, conjugated aldehydes, and aromatic carboxylic acids. The band at 1110 cm−1 is
assigned to the aromatic C-H in plane deformation of S units, while the band at 1030 cm−1

could be assigned to guaiacyl units. Finally, the band at 819 cm−1 was ascribed to the
out-of-plane deformation of the aromatic rings of both S and G units (Figure 1).
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comparison to the baseline value (t0) (one-way ANOVA followed by Tukey�s post hoc test; p < 0.05). 

As shown in Figure 2, Ext-C had a very low phenolic content compared to the other 
samples analyzed. In fact, to evaluate the release of phenolic compounds derived from the 
depolymerization of lignin by ligninolytic enzymes, the endogenous polyphenols 
contained in the P. eryngii extract (1.4 mg of gallic acid equivalents (GAEs)/mL) were 
removed by filtration on filters with a cut-off of 10 kDa. The results indicated that after 18 
h of enzymatic treatment, the phenolic contents of lignin solutions were increased by 
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2.2. Total Phenolics and Educing Apacity

Figure 2 shows the phenolic content and the reducing capacity (of lignin solutions
after enzymatic treatment with laccase (Lac-mix) or with the mushroom P. eryngii extract
(Ext-mix), and the corresponding controls: Lac-C, Ext-C, and Lig-C, respectively. The total
phenolic content and reducing capacity of samples were expressed as µg of gallic acid
equivalents (GAEs)/mL.
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Figure 2. The total phenolics and reducing capacity detected in vitro in lignin solutions after enzy-
matic treatment with laccase (Lac-mix) or P. eryngii extract (Ext-mix), and with the corresponding con-
trols: Lac-C, Ext-C, and Lig-C. The results are expressed as µg of gallic acid equivalents (GAEs)/mL
of sample. Asterisks indicate a statistically significant difference in comparison to the baseline value
(t0) (one-way ANOVA followed by Tukey’s post hoc test; p < 0.05).

As shown in Figure 2, Ext-C had a very low phenolic content compared to the other
samples analyzed. In fact, to evaluate the release of phenolic compounds derived from the
depolymerization of lignin by ligninolytic enzymes, the endogenous polyphenols contained
in the P. eryngii extract (1.4 mg of gallic acid equivalents (GAEs)/mL) were removed by
filtration on filters with a cut-off of 10 kDa. The results indicated that after 18 h of enzymatic
treatment, the phenolic contents of lignin solutions were increased by 79.0% for Ext-mix
and by 15.5% for Lac-mix, respectively. Whereas, in the case of the reducing power, a
significant increase (79.4%) was observed only for the lignin treated with the mushroom
extract (Ext-mix). By contrast, in Ext-C, Lac-C, and Lig-C, no change was detected after 18 h
of incubation compared to t0. Similarly, no change was detected after 18 h of incubation of
lignin with the extract subjected to thermal treatment (ttExt-mix). The values of phenolic
content and the reducing capacity of all the analyzed samples are listed in Table 1.

These results indicated that the enzymatic treatment contributed to the increase in
phenolic content in lignin due to its depolymerization, in agreement with what was reported
by other authors [4]. In this regard, however, it must be pointed out that most of the studies
concerning the enzymatic depolymerization of lignin have been carried out using purified
enzymes and, in particular, laccases [4]. The fact that the treatment of lignin with the
mushroom extract determined a greater increase in phenolic compounds compared to the
treatment with laccase could be the result of a synergic action of laccases with other fungal
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ligninolytic enzymes, such as the peroxidases present in the extract from P. eryngii [21,22].
In our experiments, this hypothesis was confirmed by measuring the activity of laccases
and peroxidases, which evidenced the presence of the two enzymes in the extract (Table 2).

Table 1. Total phenolics, reducing capacity, and antioxidant activity of samples.

Total Phenolics
(µg GAEs/mL)

Reducing Capacity
(µg GAEs/mL)

Radical-Scavenging Activity
(IC50 µg/mL)

DPPH Hydroxyl

sample t0 t18 t0 t18 t0 t18 t0 t18

Ext-C 62.2 ± 3.7 58.4 ± 2.6 54.4 ± 4.2 47.3 ± 5.1 nd nd nd nd
Lac-C nd nd nd nd nd nd nd nd
Lig-C 525.3 ± 7.6 483.6 ± 26.9 326.5 ± 16.2 355.3 ± 34.0 88.2 ± 5.9 92.8 ± 2.1 79.2 ± 3.5 77.7 ± 5.1

Ext-mix 528.2 ± 10.1 * 945.5 ±
15.7 366.1 ± 15.9 * 656.9 ±

22.8 91.2 ± 5.5 * 27.4 ± 3.7 76.3 ± 1.7 * 35.9 ± 4.4
ttExt-mix 513.6 ± 9.7 527.4 ± 20.6 370.2 ± 11.5 366.8 ± 14.4 94.3 ± 8.1 92.22 ± 5.1 78.2 ± 5.5 77.9 ± 3.7
Lac-mix 514.9 ± 7.3 * 594.8 ± 9.5 312.7 ± 17.8 333.0 ± 23.2 87.8 ± 3.4 * 62.5 ± 2.8 81.1 ± 3.3 * 64.3 ± 2.9

Gallic acid (positive control) 5.3 ± 0.3 3.4 ± 0.2
ttExt-mix: corresponds to lignin incubated with a thermally treated extract from P. eryngii. Values correspond to
the mean ± SD of two experiments performed in triplicate (n = 6), except for gallic acid (n = 3). Asterisks indicate
a statistically significant difference in comparison to the baseline value (t0) (one-way ANOVA followed by Tukey’s
post hoc test; p < 0.05).

Table 2. The enzymatic activities detected in the aqueous extract from P. eryngii fruiting bodies.

Laccase
(U/mL)

Peroxidase
(U/mL)

213.0 ± 5.8 52.2 ± 2.2
Values are reported as mean ± SD of two independent experiments performed in triplicate (n = 6).

2.3. Antioxidant Activity

In this study, the antioxidant activity of the lignin solutions was evaluated by DPPH
and hydroxyl radical-scavenging assay. The results are expressed as IC50 values that
represent the concentration of antioxidant necessary to scavenge 50% of free radicals. As
shown in Figure 3 and as listed in Table 1, the enzymatic treatment of lignin for 18 h
(graphs A and B, corresponding to Ext-mix and Lac-mix, respectively), determined a dose-
dependent increase in its antioxidant activity towards both radicals, compared to untreated
lignin (graph C, corresponding to Lig-C). In particular, lignin treated with P. eryngii extract
(Ext-mix) exhibited the strongest antioxidant activity (IC50 = 27.4 ± 3.7 µg/mL) toward the
DPPH radical compared to that treated with laccase (Lac-mix, 62.5 ± 2.8 µg/mL) and the
untreated one (Lig-C, 92.8 ± 2.1 µg/mL). Similar to the hydroxyl radical, the enzymatic
treatment of lignin leads to an increase in its antioxidant capacity, greater for Ext-mix
(IC50 = 35.9 ± 4.4 µg/mL) than for Lac-mix (IC50 = 64.3 ± 2.9 µg/mL). However, as listed
in Table 1, it should be noted that both the DPPH and the hydroxyl radical-scavenging
ability of Ext-mix were lower than those of the antioxidant gallic acid (IC50 = 5.3 ± 0.3 and
3.4 ± 0.2 µg/mL, respectively) used as the positive control.

The increase in the antioxidant capacity of enzymatically treated lignin was consistent
with the increase in the total phenol content (Figure 2) responsible for the generation of new
aromatic -OH groups, in agreement with the results reported by other authors [8]. To this
end, Dizhbite et al. [30], investigating the structure–activity relationship of lignins isolated
from different wood species and lignin-related monomeric compounds by DPPH assay,
demonstrated that the antioxidant activity of lignin was attributed to the non-etherified
phenolic hydroxyl groups, the ortho-methoxy groups, and the aliphatic hydroxyl groups in
the side chain.
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Figure 3. Antioxidant activity in vitro. The graphs represent the scavenging activities of lignin against
the DPPH (left panel) and hydroxyl (right panel) radicals. (A): The lignin solution after enzymatic
treatment with P. eryngii extract (Ext-mix); (B): the lignin solution after enzymatic treatment with
laccase (Lac-mix); and (C): lignin solution control (Lig-C).

2.4. Effect of Lignin on DI-TNC1 Viability

The antioxidant properties of lignin, increased following treatment with the ligni-
nolytic enzymes contained in P. eryngii extract, make it potentially usable in various fields,
including biomedical research, cosmetics, polymer materials, and food. However, the prac-
tical application of lignin and its derivatives requires an evaluation of its biocompatibility
in order to ensure its safe use. To assess the biocompatibility of Ext-mix, we evaluated cell
viability on the DI-TNC1, a cell line established from primary cultures of type 1 astrocytes
from murine brain tissue [31]. This cell line has already been used in a previous work to
evaluate the cytotoxicity of a P. eryngii extract enriched in polysaccharides [32]. As reported
in Figure 4, no cytotoxicity was evidenced for Ext-mix at all the concentrations tested,
both at t0 (Figure 4A) and after incubation for 18 h (Figure 4B). Similarly, both the controls
and the lignin treated with laccase (Lac-mix), incubated under the same experimental
conditions, showed no cytotoxicity.
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Figure 4. The effect of the different lignin solutions on cell viability. Confluent DI-TNC1 cells were
treated with the Ext-mix and Lac-mix, as well as with the controls Ext-C, Lac-C, and Lig-C, both
at t0 (A) and after incubation for 18 h (B). After 20 h of incubation at 37 ◦C and 5% CO2, DI-TNC1
were subjected to the MTT assay. The results are expressed as the percentage of surviving cells over
untreated cells. Data are presented as mean ± SD of three different experiments with independent
cell populations. The horizontal dashed line, set at 60%, indicates the threshold of cell viability.
Concentrations of the samples that yielded cell viability values < 60% were considered as toxic doses.

2.5. Effect of Treated Lignin on ROS Production

We also evaluated the ability of Ext-mix and Lac-mix to counteract H2O2-induced ROS
production in the DI-TNC1 cell line. As reported in Figure 5, a dose-dependent decrease in
ROS production was observed in t18 samples of Ext-mix (Figure 5A) and Lac-mix (Figure 5B)
but not in the corresponding controls (Figure 5C,D). By contrast, no protective effect was
observed at t0 for all the preparations tested. A statistically significant decrease in ROS
production was detected at the concentrations 50 and 100 µg/mL in Ext-mix, as well
as in Lac-mix at t18, in comparison to H2O2 and to the corresponding samples at t0. In
particular, as shown in Figure 5A,B, at the highest concentration tested, Ext-mix was able
to reduce the production of ROS by 55% compared to the 30% for Lac-mix. This last
result confirms the synergic action of laccases and peroxidases present in the P. eryngii
extract in enhancing the performance of the biodegradated lignin. The ability to counteract
ROS production exhibited by Ext-mix but not by Ext-C, suggests that this effect is due to
the presence of antioxidant compounds released by lignin following the degradation by
ligninolytic enzymes contained in the P. eryngii extract, and not by endogenous antioxidant
compounds of the mushroom such as polysaccharides or other low molecular weight
molecules as vitamins and polyphenols [32,33]. In fact, although in a previous work the
ability of polysaccharides of P. eryngii extract to counteract the production of ROS in the
same cell line has been demonstrated [32], it should be emphasized that the experimental
conditions used to prepare the extract used in this study did not allow for the extraction
of the polysaccharide fraction. Furthermore, regarding the possible contribution of low
molecular weight compounds, this can be excluded, since these compounds were removed
from the extract following a passage through centrifugal filters with a cut-off of 10 kDa.



Molecules 2024, 29, 5575 7 of 12

Molecules 2024, 29, x FOR PEER REVIEW 7 of 12 
 

 

endogenous antioxidant compounds of the mushroom such as polysaccharides or other 
low molecular weight molecules as vitamins and polyphenols [32,33]. In fact, although in 
a previous work the ability of polysaccharides of P. eryngii extract to counteract the 
production of ROS in the same cell line has been demonstrated [32], it should be 
emphasized that the experimental conditions used to prepare the extract used in this 
study did not allow for the extraction of the polysaccharide fraction. Furthermore, 
regarding the possible contribution of low molecular weight compounds, this can be 
excluded, since these compounds were removed from the extract following a passage 
through centrifugal filters with a cut-off of 10 kDa. 

 
Figure 5. The production of reactive oxygen species (ROS) in DI-TNC1 cells treated with lignin 
solutions. The presence of ROS was assayed, measuring the changes in the fluorescent signal of 2′,7′-
dichlorofluorescein (DCFA) as reported in the Materials and Methods section. Confluent DI-TNC1 
cells, seeded in 96-well plates, were pre-treated for 2 h with the Ext-mix (A) and Lac-mix (B), as well 
as with the controls Ext-C (C), Lac-C, and Lig-C (D) at the indicated concentrations, then loaded 
with 10 µM of the fluorescent probe 2′,7′-dichlorofluorescein diacetate (DCFH-DA). After 30 min of 
incubation, H2O2 at a final concentration of 500 µM was added to the wells. DI-TNC1, treated with 
DCFA alone (CTRL) or with 500 µM H2O2, represented the negative and positive control, 
respectively. The fluorescence was measured by a fluorometer at 525 nm under excitation at 485 nm. 
The ROS production was expressed as a percentage (%) of the photoluminescence (PL) intensity in 
comparison to the positive control. Values are the mean ± SD of n = 3 experiments performed on 
different cell populations. A statistically significant decrease in comparison with H2O2 is indicated 
by asterisks (one-way ANOVA followed by Dunnet�s post hoc test; * p < 0.05; ** p < 0.01; *** p < 0.001). 

3. Materials and Methods 
3.1. Preparation of Enzymatic Extract 

Pleurotus eryngii (strain BIO175) mushroom, axenically cultivated in a laboratory, was 
provided by Bioagritest research center (Interregional Center for Plant Diagnosis, Pignola, 
Italy). Fruiting bodies were freeze-dried and powdered in a mortar with liquid nitrogen, 
then stored at −80 °C. Crude extract was obtained by cold homogenizing, for 4 h, 1 g of 
powder with 15 mL of 50 mM sodium acetate buffer pH 5.5. After centrifugation (12,000× 
g, 10 min at 4 °C), the supernatant was filtered on Whatman 3 paper disks; then, 6 mL of 
filtrate was concentrated 10-fold in a Vivaspin 6 centrifugal filter (MWCO 10,000; GE 
Healthcare, Milan, Italy) at 5000× g and 4 °C, and washed with extraction buffer. 

Figure 5. The production of reactive oxygen species (ROS) in DI-TNC1 cells treated with lignin
solutions. The presence of ROS was assayed, measuring the changes in the fluorescent signal of 2′,7′-
dichlorofluorescein (DCFA) as reported in the Materials and Methods section. Confluent DI-TNC1
cells, seeded in 96-well plates, were pre-treated for 2 h with the Ext-mix (A) and Lac-mix (B), as well
as with the controls Ext-C (C), Lac-C, and Lig-C (D) at the indicated concentrations, then loaded
with 10 µM of the fluorescent probe 2′,7′-dichlorofluorescein diacetate (DCFH-DA). After 30 min of
incubation, H2O2 at a final concentration of 500 µM was added to the wells. DI-TNC1, treated with
DCFA alone (CTRL) or with 500 µM H2O2, represented the negative and positive control, respectively.
The fluorescence was measured by a fluorometer at 525 nm under excitation at 485 nm. The ROS
production was expressed as a percentage (%) of the photoluminescence (PL) intensity in comparison
to the positive control. Values are the mean ± SD of n = 3 experiments performed on different cell
populations. A statistically significant decrease in comparison with H2O2 is indicated by asterisks
(one-way ANOVA followed by Dunnet’s post hoc test; * p < 0.05; ** p < 0.01; *** p < 0.001).

3. Materials and Methods
3.1. Preparation of Enzymatic Extract

Pleurotus eryngii (strain BIO175) mushroom, axenically cultivated in a laboratory, was
provided by Bioagritest research center (Interregional Center for Plant Diagnosis, Pignola,
Italy). Fruiting bodies were freeze-dried and powdered in a mortar with liquid nitrogen,
then stored at −80 ◦C. Crude extract was obtained by cold homogenizing, for 4 h, 1 g of
powder with 15 mL of 50 mM sodium acetate buffer pH 5.5. After centrifugation (12,000× g,
10 min at 4 ◦C), the supernatant was filtered on Whatman 3 paper disks; then, 6 mL of
filtrate was concentrated 10-fold in a Vivaspin 6 centrifugal filter (MWCO 10,000; GE
Healthcare, Milan, Italy) at 5000× g and 4 ◦C, and washed with extraction buffer.

3.2. Enzymatic Laccase Assay

Laccase activity was measured by the method developed by Setti et al. [34], based
on the oxidative coupling reaction between the 3-methyl 2-benzothiazolinone hydrazone
(MBTH) and guaiacol (Sigma Aldrich, St Louis, MO, USA), with some modifications.
Briefly, samples were prepared by adding 40 µL of extract and 20 µL of guaiacol to 1 mL
of 50 mM acetate buffer at pH 5.5, preheated to 30 ◦C, then incubated at 30 ◦C for 10 min.
Subsequently, 200 µL of 0.05% MBTH was added to the reaction mixture. After 7 min,
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the reaction was stopped by adding 200 µL of 1N H2SO4 and 400 µL of acetone, and the
absorbance was measured at 502 nm (Ultrospec 2000 spectrophotomer, Pharmacia Biotech,
Uppsala, Sweden). The laccase activity was expressed in terms of International Unit (U),
where 1 U (µmol/min) is defined as the amount of the enzyme that catalyzes the conversion
of one micromole of substrate per minute.

3.3. Enzymatic Peroxidase Assay

The activity of peroxidase was assessed by monitoring the oxidation of syringaldazine
(Sigma Aldrich, St Louis, MO, USA) at 530 nm (ε = 6.5 × 104·M−1·cm−1) [35]. The assay
mixture (1 mL) contained 50 mM potassium phosphate buffer (pH 7.0), 0.1 mL of enzyme
extract, 50 µM syringaldazine, and 4 mM H2O2. Peroxidase activity was monitored by
measuring the increase in absorbance at 530 nm for 5 min. Enzyme activity was expressed
in International Unit (U/mL); one Unit was defined as 1 µmol of syringaldazine oxidized
per minute at 30 ◦C. The blank contained all solutions except the enzyme.

3.4. Lignin

Lignin from pecan shells was recovered by green methods using a deep eutectic
solvent (DES)-based treatment, as previously reported [36].

3.4.1. Chemical Characterization by Attenuated Total Reflectance–Fourier Transform
Infrared (ATR-FTIR) Spectroscopy

ATR-FTIR spectra were recorded on a model J-460 instrument (Jasco Europe Srl,
Cremella, Italy) equipped with an ATR accessory, a Smart Orbit with a type II A diamond
crystal and a refractive index of 2.4, and a KBr beam splitter and a MCT/B detector. Spectra
were recorded in the region from 4000 to 500 cm−1 with a spectral resolution of 2 cm−1 and
256 scans. Background spectrum was recorded and subtracted from the sample spectra.
The spectrum was smoothed and fitted to an automatic baseline correction using Jasco
Spectra Manager software ver. 154A.

3.4.2. Lignin Solution

A total of 25 mg of lignin was dissolved in 1 mL of sodium hydroxide aqueous solution
(0.1 M) and, after stirring for 10 min, the solution was diluted with 9 mL of 50 mM sodium
acetate buffer pH 5.5/0.05% Tween 80, then centrifuged (10,000× g, 15 min at 4 ◦C) and
kept in the dark at room temperature.

3.5. Enzymatic Treatment of Lignin with Extract or Laccase

To 0.1 mL of enzymatic extract or commercial laccase (from Agaricus bisporus, Sigma
Aldrich, St Louis, MO, USA), both containing 21.3 U of laccase, 0.9 mL of 0.25% (w/v)
lignin solution was added, which was then vortexed and incubated at 30 ◦C for 18 h
in the dark. After incubation, the reaction mixtures (Ext-mix and Lac-mix, respectively)
were centrifuged, and the supernatants were immediately used for the analysis or freeze-
dried. In another set of experiments, the extract from P. eryngii was heated for 5 min
at 90 ◦C, cooled, and added to the lignin solution in the same experimental conditions
described above. Control incubations were carried out either without lignin (Ext-C or
Lac-C, respectively) or without enzymes (Lig-C).

3.6. Total Phenolics

The total phenolic (TP) content of samples was determined spectrophotometrically
with the Folin–Ciocalteu reagent, with some modifications [37]. Briefly, 0.1 mL of the
extracts was mixed with 0.5 mL of Folin–Ciocalteu reagent (diluted 10 times with water),
and after 2 min, 0.4 mL of 7.5% sodium carbonate was added. After 90 min of incubation at
room temperature in the dark, the absorbance was measured at 765 nm. The total phenol
content was expressed as µg of gallic acid equivalents (GAEs)/mL.
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3.7. Reducing Capacity

For the total reducing capacity (TRC) assay, 0.1 mL of the samples was mixed with
0.5 mL of 0.2 M sodium phosphate buffer at pH 6.6 and 0.5 mL of 1% potassium ferricyanide.
After 30 min of incubation at 50 ◦C, 0.25 mL of 20% trichloro acetic acid was added to the
mixture and then centrifuged (10 min at 4000× g). Afterwards, 0.5 mL of the supernatant
was mixed with 0.5 mL of distilled water and 0.1 mL of 0.1% ferric chloride. The absorbance
was read at 700 nm [32]. The total reducing capacity was expressed as µg of gallic acid
equivalents (GAEs)/mL.

3.8. DPPH and Hydroxyl Radical Scavenging Activity

For the DPPH assay, 0.1 mL of samples at different concentrations was added to
0.7 mL of 0.2 mM 2,2-diphenyl-1-picrylhydraziyl (DPPH) in ethanol and incubated at
room temperature for 30 min in the dark [32]. The absorbance was measured at 517 nm.
For the hydroxyl radical-scavenging assay, the reaction mixture was prepared by adding
0.05 mL of 18 mM salicylic acid, 0.1 mL of sample, 0.1 mL of 9.1 mM heptahydrated
ferrous sulfate, and 0.65 mL of water, in that order. Then, 0.6 mL of 8.8 mM H2O2 was
added, and, after incubation at 37 ◦C for 30 min, the absorbance was measured at 510 nm.
The scavenging activities were expressed as IC50, where IC50 values indicate the sample
concentration (µg/mL) required to inhibit (scavenge) 50% of DPPH or OH free radicals.
Radical-scavenging activity (%) = [(Abscontrol − Abssample)/Abscontrol] × 100. Gallic acid
was used as the positive control.

3.9. MTT Viability Assay

The effect of the different lignin solutions was tested for cell viability on DI-TNC1 cells
using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay as
reported by Latronico et al. [38]. The DI-TNC1 cell line (ATCC CRL-2005) was acquired
and authenticated from the ATCC (www.lgcstandards-atcc.org, (accessed on 21 November
2024)). Briefly, confluent cells plated in serum-free DMEM in a 96-well plate were treated
for 20 h with Ext-mix and Lac-mix, Ext-C, Lac-C, or Lig-C, at concentrations ranging from
10 to 500 µg/mL; then, the culture medium was removed, and cells were incubated for 2 h
at 37 ◦C and 5% CO2 with 0.5 mg/mL of MTT. At the end of the incubation, the culture
medium was removed and the formazan crystals in the cells were solubilized with absolute
ethanol. The amount of the formazan product was determined by optical absorbance at
545 nm with a reference wavelength of 690 nm. Cell viability was expressed as percentage
of the negative control (ctrl), represented by untreated cells, which was set at 100%.

3.10. Intracellular Reactive Oxygen Species Detection

The detection of reactive oxygen species (ROS) in DI-TNC1 cells was performed
as reported by Latronico et al. [39]. Briefly, confluent DI-TNC1 cells, seeded in 96-well
plates, were pre-treated for 2 h with Ext-mix, Lac-mix, Ext-C, Lac-C, or Lig-C, at concen-
trations ranging from 1 to 100 µg/mL, then loaded with 10 µM of the fluorescent probe
2′,7′-dichlorofluorescein diacetate (DCFH-DA) in phenol red–free DMEM. After 30 min
of incubation at 37 ◦C, H2O2 at a final concentration of 500 µM was added in each well.
The negative control (CTRL) was represented by cells treated only with DCFH-DA. The
positive control was represented by cells treated only with H2O2. The fluorescence intensity
of cells was measured after 30 min of incubation at 37 ◦C, through a spectrofluorimetric
analysis at 525 nm under excitation at 485 nm in a microplate reader (Cytation 3 Imaging
Reader; Bio Tek, Winooski, VT, United States). The results were normalized to cell via-
bility, and ROS production was expressed as a relative percentage of photoluminescence
intensity (PLI) versus the positive control (H2O2) using the following equation: % ROS
production = (PLIsample/PLIH2O2) × 100.

www.lgcstandards-atcc.org
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4. Conclusions

Lignin represents an enormous potential, largely unexploited, as a source of com-
pounds that can serve as building blocks for products with high added value. A prerequisite
for lignin valorization is represented by its depolymerization, which is still an interesting
challenge for the industrial research.

Compared to chemical degradation, the biological depolymerization of lignin offers
several economic and environmental advantages. Mushrooms represent the most important
players in lignin degradation, by producing oxidative enzymes, such as as peroxidases
and laccases.

In this study, an aqueous extract obtained from the mushroom P. eryngii was used to
evaluate the antioxidant properties of the products derived from the enzymatic degradation
of lignin. The use of an aqueous extract offers several advantages when compared to the
use of a single purified ligninolytic enzyme or mixtures of them. In fact, the aqueous extract
is simple to prepare, taking advantage of the synergic action of several enzymatic activities
and allowing us to reduce the costs, compared to those incurred for the use of commercial
enzymes. The results of this study showed that the enzymatic activities present in P. eryngii
extract successfully improved the antioxidant performance of lignin through the release of
phenol compounds. Furthermore, it was also demonstrated that the compounds derived
from the biodegradation of lignin by the mushroom extract do not affect cell viability or
inhibit the H2O2-induced ROS production, thus underscoring their potential for the food
industry and for biomedical applications. In conclusion, the use of the P. eryngii extract for
the bioprocessing of lignin could provide an efficient and ecofriendly approach to obtain
lignin derivatives potentially useful for value-added applications in antioxidant research.
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