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For the first time it is experimentally demonstrated on the JET tokamak that a combination of a low
impurity concentration bulk plasma and large magnetohydrodynamic instabilities is able to suppress
relativistic electron beams without measurable heat loads onto the plasma facing components. Magneto-
hydrodynamic simulations of the instability and modeling of the postinstability plasma confirm the prompt
loss of runaways and the absence of regeneration during the final current collapse. These surprising
findings motivate a new approach to dissipate runaway electrons generated during tokamak plasma
disruptions.

DOI: 10.1103/PhysRevLett.126.175001

Introduction.—Runaway electrons (REs) are created in
thunderstorm clouds [1,2], solar flares [3,4], as well as
during disruptions of tokamak plasmas [5]. The latter two
situations share a close link to magnetic reconnection
events [6], an ability to convert magnetic energy into
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kinetic energy and similar ranges of densities and electric
fields [7–9]. In tokamak disruptions, REs reach energies up
to 10s of MeV in multi-mega-ampere beams [10–12] and
lead to significant localized damage on plasma facing
components (PFC) upon termination [13,14]. The kinetic
and magnetic energy stored by a RE beam in future
tokamaks will reach 10s of megajoules [15,16]. A miti-
gation strategy is therefore mandatory [17].
Shattered pellet injection (SPI) [18] is presently the

baseline RE mitigation actuator planned for the ITER
tokamak. Its goal is to avoid generating REs by suppressing
primary RE generation mechanisms (Dreicer [19], hot tail
[20]) and reduce the avalanche [21]. However, state-of-the
art models when applied to ITER 15MA plasma conditions
find finite RE primary populations are created [15,22] and
avalanched [21,23]. A second line of defense is therefore
needed to mitigate a mature RE beam. SPI was first tested
for RE mitigation on DIII-D [24] and was shown to
successfully dissipate RE beam energy with high-Z noble
gases, building on earlier experiments with massive gas
injection [25–27]. Yet, high-Z mitigation was found to be
ineffective in some JET experiments [10]. There is also
evidence from theoretical models [15,22,28] that high-Z
mitigation will not be sufficient for larger RE currents.
This Letter reports on the use of deuterium injections to

mitigate a RE beam. For the first time, RE beams with
currents up to 1.27 MA were mitigated at JET with no
measurable energy deposition to the plasma facing com-
ponents. This level of RE current is well in excess of levels
previously found to lead to significant damage to the first
wall in JET [29]. This result is achieved through a
combination of the excitation of a large magnetohydrody-
namic (MHD) instability followed by the absence of
regeneration of REs. Qualitatively similar RE terminations
were observed at DIII-D [30]. However, owing to incom-
plete thermography of the PFCs the DIII-D experiments
were unable to assess the implications for first-
wall integrity. The present work builds on those exper-
imental findings and shows that this deconfinement method
is benign for the wall despite large currents at RE
termination. Although the avalanche amplification γREt ≈
Ip=½IAlfvén lnðΛÞ� [21] is predicted to be larger for ITER than
for JET, this mitigation scenario opens a new approach to
dissipate REs generated during tokamak plasma
disruptions.
Experimental background and runaway impact on the

wall.—In this study, RE beams are created in the JET
tokamak using argon injections in a limiter configuration.
A standard RE scenario is shown on Fig. 1, blue curves.
2.38 × 1021 atoms of argon are used to trigger the dis-
ruption (twice the deuterium inventory of the predisruption
plasma) exciting a 750 kA runaway beam. The companion
plasma coexisting with the RE beam is mainly composed
of argon from the disruption-triggering injection [31].
The impact at beam termination is characterized by infrared

thermography. JET camera systems monitor the vast
majority of the plasma facing components, thus ruling
out the possibility of missing localized RE impacts. Heat
loads are computed using a 1D finite difference heat
diffusion method similar to Ref. [29], where the energy
flux and the deposition depth are used to fit the measured
surface temperature decay following the impact. The
energy deposition duration and footprint are determined
by the camera images. Injecting high-Z material into the
beam leads to a faster RE current decay (red curves on
Fig. 1) and a final collapse producing significant heat loads
on the wall [10].
Using deuterium SPI leads to completely different

dynamics. On JET pulse #95135, a shattered pellet con-
taining 1.46 × 1023 deuterium atoms is fired onto the RE
beam. Instead of decreasing as with high-Z injections
(Fig. 1, red curves), the RE current rises [Fig. 1(a), green
curve]. Free electron density drops to nonmeasurable
values [<1018 m−3, Fig. 1(c)]. The neutron rate drops by
a factor 10 [Fig. 1(d)]. The effect of D2 is qualitatively
similar to that reported in DIII-D [24], AUG [32], and
COMPASS [33], with the exception of a marked rise in the
radiated power [up to 4.3 MW, Fig. 1(e)], a feature seen
only on JET. The current increase is attributed to a decrease
of the effective resistivity of the REþ companion plasma
system. The decrease of argon line radiation and the
appearance of deuterium lines are consistent with the argon
being expelled from the plasma [34]. The low free electron
density indicates that the plasma has recombined.
A large neutron spike occurs 220 ms after the shattered

pellet arrival, with IRE ≈ 760 kA. The infrared synchrotron
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scenarios. (a) Total current. (b) Average electron density. (c) Total
neutron rate. (d) Total radiated power. (e) Heat flux on the wall
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emission disappears in less than 3 ms, indicating significant
loss of REs. A large magnetic perturbation is measured and
a current quench similar to a conventional disruption occurs
thereafter similarly to Ref. [30].
Full-view thermography of this event available at JET

reveals the striking absence of any localized impact on the
first wall, with heat loads below the infrared (IR) camera
measurement threshold (0.5 MJm−2). This safe termina-
tion is unique to deuterium-background RE beams as
shown in Fig. 1(e) and reported here for the first time.
Owing to incomplete IR camera coverage on DIII-D, only a
postmortem analysis of the event reported in Ref. [30] was
performed. This inspection could only conclude that no
visible damage occurred to the DIII-D carbon tiles. The
heat flux needed to ablate 30 μm of material from a carbon
tile following a 100 μs pulse [30] is around 30 MJm−2
from simulations [35]. It can be considered as the minimum
heat loads inferrable from a postmortem analysis. This
value is much larger than the 0.5 MJm−2 sensitivity of the
measurements reported here and too large for making
reliable predictions of RE terminations in future tokamaks.
The observation reported in the present Letter is therefore
the first time a conclusive demonstration of the absence of
heat loads can be obtained in mega-ampere scale RE beam
terminations. In contrast, REs mitigated by high-Z material
produce significant heat loads despite lower currents at
termination as shown in Fig. 1(e). The benign termination
is explained by the combination of two mechanisms which
will now be elaborated in turn: (1) a violent MHD
instability stochastizing the plasma and (2) the absence
of regeneration of REs during the subsequent current
quench resulting from the expulsion of the high-Z
impurities.
Development of the MHD instability.—The deuterium

SPI leads to an increase of the RE current and therefore a
decrease of the edge safety factor qedge. The MHD
instability triggering the final RE collapse happens when
qedge is between 2 and 5 [high-Z fraction below 0.3 on
Fig. 2(a)]. The large dispersion of qedge at MHD onset
suggests that it is not exclusively a simple current-limiting
instability as proposed in Ref. [30]. Simulations of pulse
#95135 using the SOFT code [36] have been performed to
reconstruct the infrared synchrotron camera images.
A spatially uniform RE energy and pitch angle distribution
was assumed. The best match between the simulation and
the IR images is obtained when the pitch angle is between
(0.1–0.3), the energy less than 15 MeV, and the RE density
profile is hollow (peak density around mid-radius), as
shown on Figs. 3(a) and 3(b). Using a peaked RE density
profile, no energy and pitch angle distribution that explains
the observed pattern on the camera image could be
identified. The RE current profile therefore likely presents
some degree of flatness.
Magnetic islands visible in the infrared images show that

a m ¼ 4 surface lies at a third of the radius shortly before

the collapse [37]. The final instability develops without a
precursor, and reaches its peak dB=dt in 10–20 μs as
shown on Fig. 4(b). The toroidal mode number n ¼ 1
determined by a Mirnov coil array is the most probable,
consistent with a q ¼ 4 instability. qedge is about 5.1 at this
stage and the visible q ¼ 4 surface is close to the core
(r=a ≈ 0.3); this is therefore further evidence for a non-
monotonic q profile. Magnetohydrodyamic simulations of
this RE beam using the JOREK code [38,39] have been made
[37] using the RE fluid model from Ref. [40] and the
current profile estimated above. The dynamics are domi-
nated by tearing mode formation at the two q ¼ 4 surfaces

0 0.2 0.4 0.6 0.8 1 1.2
0

5

10

15

20

25

30

35

q
edge

 = 2

Time from TQ [s]

q ed
ge

 [−
]

0.00 < f(high−Z) < 0.05
0.05 < f(high−Z) < 0.30
0.30 < f(high−Z) < 0.90
0.90 < f(high−Z) < 1.00

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

50

100

150

200

Ip at collapse [MA]
dB

/d
t n

or
m

. d
is

ta
nc

e 
[T

.s
−

1 .m
]

(saturated)
0.00 < f(high−Z) < 0.05
0.05 < f(high−Z) < 0.30
0.30 < f(high−Z) < 0.90
0.90 < f(high−Z) < 1.00

(a)

(b)

FIG. 2. Development of the collapse-inducing instability.
(a) Edge safety factor of RE beams for various fractions of
high-Z species in mitigation material. (b) MHD perturbation
amplitude normalized to the distance to the sensor versus RE
current at termination.

FIG. 3. (a) Measured infrared (λ ¼ 3–3.5 μm) synchrotron
radiation image. (b) Reconstructed synchrotron radiation
using SOFT.
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leading to a stochastization of the magnetic field first
around the outer q ¼ 4 surface, followed by the shrinking
of the core and the destruction of the entire confinement in
about 100 μs (Fig. 5) on a timescale consistent with the
experimental measurements of magnetic fluctuations.
During the burst of MHD activity, more than 95% of the
REs are lost in the simulation and the current is converted
into thermal current while a small current spike appears.
The current profile is strongly flattened by fast magnetic
reconnection during the MHD event. The simulated RE
loss area near the contact point is widened by the edge
stochastization.
The normalized growth rate dBpol=dt of the instability

measured experimentally is compared between cases where
a significant energy is deposited by REs (natural and high-
Z injections) and cases with no measurable impacts on
Fig. 2(b). The growth rate of the perturbation is larger for
D2-mitigated than high-Z-mitigated beams, but with over-
lap. The magnitude δBpol=Bpol of the instability is even less
correlated with wall heat loads. The short timescale of the
instability in D2 cases is therefore a key ingredient of the
large RE loss, but not sufficient to explain the absence of
heat loads.
Regeneration of runaway electrons.—The prompt loss of

REs is followed by a current quench. The current carriers

shift from REs to bulk plasma, thus leading to plasma
reionization and a 50 MW radiated power spike [Fig. 4(a)].
Line radiation of weakly ionized argon dominates the
current quench, indicating that the argon is not completely
purged. For higher argon concentrations some REs are
regenerated: a few milliseconds after the initial termination,
a small RE beam reappears as evidenced by synchrotron
emission (Fig. 6). The current quench rate and the maxi-
mum radiated power normalized to the initial magnetic
energy are correlated with the ratio of the amount of argon
(used to trigger the disruption) to deuterium (in the SPI) as
shown in Fig. 7(a). This behavior can be investigated
through the following model. In the absence of impurities,
the Ohmic reheating of cold plasma is faster than Dreicer
and avalanche mechanisms of RE production [41]. If
enough impurities remain in the plasma, reheating is
hindered by line radiation and the persistent electric field
facilitates the RE avalanche. The system of equations
governing energy balance, vessel current Iv, total plasma
current I, and RE current IRE is solved numerically to
analyze the plasma temperature and current evolution self-
consistently with the RE generation [42,43]:

3

2

∂
∂t nfTe ¼

ðI − IREÞ2
σS2

− nfnZLðTeÞ
d
dt

ðLI þ LvIvÞ ¼ −2πRE

d
dt

ðLvI þ LvIvÞ ¼ −IvRv

1

IRE

∂IRE
∂t ≈

nf þ nb
nf lnΛfðpcÞ þ nb lnΛbðpcÞ

…

…
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ZREðpcÞ þ 5
p

eðE − EcritÞ
mec

where the free electron density nf ¼ nD þ nZZðTeÞ, nD
and nZ are deuterium and impurity densities, ZðTeÞ and
LðTeÞ are the mean impurity ionization level and radiation
efficiency [44], σ the Spitzer conductivity, S the poloidal
cross section area, and R the major radius. The mutual
plasma-vessel inductance is taken equal to the vessel
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FIG. 5. Poincare plots at different times in the JOREK simulation
showing double tearing mode formation and stochastization
starting from the edge. REs are largely lost during the MHD
event. (a) t ¼ 51 μs, (b) t ¼ 117 μs. Early nonlinear phase is
taken as reference time t ¼ 0. Background color scale represents
RE density nr.

FIG. 6. IR synchrotron emission images (a), just before the RE
dissipation (b) just after the RE dissipation, (c) during the final
collapse, showing regenerated REs.
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inductance Lv, while the plasma inductance L ≈ Li þ Lv
(with Li ≈ 0.5 μ0Rli being the internal plasma inductance).
The Rosenbluth-Putvinski avalanche formula [21] is modi-
fied to include the effect of partially ionized impurities
[28,45], i.e., only a fraction of bound electrons contributes
to the friction of fast particles. This fraction is given by
the ratio of Coulomb logarithms for free [lnΛfðpcÞ] and
bound [lnΛbðpcÞ� electron collisions. In the simulations the
quantities lnΛbðpcÞ, lnΛfðpcÞ, and ZREðpcÞ are taken
from Eqs. (27), (29), and (40) of Ref. [41], respectively.
The critical momentum pcðEÞ is obtained from the accel-
eration-friction force balance equation. Deuterium density
is estimated from the injection amount, while the residual
argon density nZ is chosen such that the maximum radiated
power matches the experiment. With the vacuum vessel
resistive time τv ¼ Lv=Rv ≈ 5 ms [46] and its inductance
Lv ≈ 2 μH, the trend in current quench rates obtained from
the calculations agrees qualitatively with the experimental
measurements [Fig. 7(a)]. Figure 7(b) shows that the argon
purge rate NAr;initial=NAr;final is between 50 and 300. The

calculated avalanche gain is too low to regenerate a full RE
beam in these cases but the small increasing trend with
Ar=D2 ratio in Fig. 7(b) highlights the role of residual
impurities in the RE regeneration. The cases of pure high-Z
SPI can thus be seen as limit cases in which regeneration
occurs continuously during the collapse. Note that an ITER
full current case would require a larger purge ratio due to
the higher RE avalanche amplification.
Continuous RE regeneration during collapse plays a

decisive role in the process of conversion of magnetic
energy (current carried by REs) into kinetic energy depos-
ited on the wall. For the case presented in Figs. 4(a) and
4(b), the magnetic energyWmag ≈ 2.2 MJ is larger than the
kinetic energyWkin ≈ 0.4 MJ. Therefore damage may arise
if a large fraction of Wmag is converted into Wkin [15,16].
The conversion rate calculated using the method proposed
in Ref. [16] adding radiated power as a loss term is shown
in Fig. 7(c). The conversion rate is close to zero for cases
where the companion plasma contains less than 30% of
high-Z impurities. Low-Z and high-Z cases are clearly
distinguished showing that benign terminations due to
deuterium SPI rely on the weak conversion of Wmag

to Wkin.
Discussion.—A scenario leading to a safe termination of

large RE beams is found to be efficient and reproducible on
JET. Further experiments are planned to explore the
minimum level of companion plasma purity needed to
achieve the safe termination scenario and to investigate the
conditions in which the MHD instability develops. The
applicability of such scenarios to larger tokamaks is an
open question: larger avalanche gains are predicted for
ITER, therefore simulations are required to assess the
accessibility of a regime with a large enough MHD
instability and purge ratio. The role of magnetic reconnec-
tion will also be investigated further: MHD reconnection is
known to lead to such energy conversion in solar plasmas
[47], but its role in tokamak plasmas is more ambiguous: it
can lead to conversion [48] or the absence of it as reported
in the present Letter. Nonetheless, even if some runaway
regeneration occurs during the final MHD collapse, only a
fraction of the precollapse current will be converted back to
REs via the avalanche. It is therefore conceivable that a
sequence of harmless RE beam quenches could ensure a
safe termination of an arbitrarily large RE beam by multiple
deuterium SPIs leading to a stepwise reduction of RE
current below the damage threshold. The deuterium RE
mitigation scenario reported in the present Letter could
therefore potentially solve one of the major issues of future
reactors based on the tokamak concept.

This work has been carried out within the framework of
the EUROfusion Consortium and has received funding
from the Euratom research and training programme 2014-
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