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Abstract: Fire radiative power (FRP) is a basic parameter for fire characterization since it represents 

the heat emission rate of fires. Moreover, its temporal integration (fire radiative energy, FRE) is used 

as a proxy for estimating biomass burning and emissions. From satellite, FRP is generally computed 

by comparing the Medium InfraRed (MIR) signal of the fire pixel with the background value on the 

event image. Such an approach is possibly affected by some issues due to fire extent, clouds and 

smoke over the event area. The enlargement of the background window is the commonly used gim-

mick to face these issues. However, it may include unrepresentative signals of the fire pixel because 

of very different land use/cover. In this paper, the alternative Background Radiance Estimator by a 

Multi-temporal Approach (BREMA), based on the Robust Satellite Technique (RST), is proposed to 

characterize background and compute FRP. The approach is presented using data from the Spin-

ning Enhanced Visible and InfraRed Imager (SEVIRI) onboard the Meteosat Second Generation 

(MSG) platform. Moreover, BREMA is here combined with the RST-FIRES (RST for FIRES detection) 

technique for fire pixel identification and the -SEVIRI retrieval algorithm for transmittance evalu-

ation. Results compared to the operational SEVIRI-based FRP-PIXEL product, although highly cor-

related in terms of background radiance (r2=0.95) and FRP values (r2=0.96), demonstrated a major 

capability of BREMA to estimate background radiances regardless of cloudiness or smoke presence 

during the event and independently on fire extent. The possible impact of the proposed approach 

on the estimates of CO2 emissions was also evaluated for comparison with the Global Fire Emissions 

Database (GFED4s). 
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1. Introduction 

For decades, satellite remote sensing has been used to characterize fire properties 

such as temperature, area, biomass burning, and atmospheric emissions (e.g., [1–5]). In-

deed, the fire-emitted radiation rate is expected to be related to the rate of biomass con-

sumption and gases, aerosols, and volatile organic compound (VOC) emissions [3]. The 

first methods used to characterize fires in terms of temperature and fire area (e.g., [1,6]) 

were based on the differences in brightness temperature in the medium (MIR) and infra-

red (TIR) bands [7]. However, this bi-spectral method suffers from the effects caused by 

band-to-band co-registration errors [8] and the uncertain characterization of TIR signals, 

which is more significant in larger pixels [9]. Errors up to 100 K in temperature and up to  

50% in area can occur in the case of a fire occupying a pixel fraction > 0.005; larger errors 

are expected for smaller fires [10]. 

Nowadays, based only on the MIR signal, single-band approaches seem to be pre-

ferred to characterize fires in terms of fire radiative power (FRP). In fact, FRP has shown 
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great potential for emission modeling applications since it was found to be well correlated 

with biomass consumed in a fire (e.g., [11]). New methods have been introduced to esti-

mate FRP through an empirical relation (in W/m2 [3]) or an approximation of the Planck 

function (in W [11,12]). In particular, the latter formulation has become the most widely 

used approach both for polar (e.g., [9,13,14]) and geostationary (e.g., [15–19]) satellite data. 

In both these approaches, a background reference signal is required for estimating the rate 

of the radiative energy emitted from the burning area; it is usually computed considering 

the radiance measured within spatial windows around the fire pixel(s). In such a compu-

tation, signals from cloudy/smoky/water pixels and other hotspots within the selected 

window are excluded. Therefore, in the case of many excluded pixels, the window size is 

enlarged to have significant statistics (e.g., up to 15 x 15 for data from the Spinning En-

hanced Visible and InfraRed Imager–SEVIRI–on the Meteosat Second Generation–MSG–

satellites [20]; rarely up to 50 x 50 pixels for data from the Sea and Land Surface Temper-

ature Radiometer–SLSTR–on Sentinel-3 [9]). Differences in satellite spatial resolution (e.g., 

typically between instruments on geostationary and polar platforms) may lead to signifi-

cantly different background characterization when the incremental window is enlarged 

to search for valid statistics to estimate background [21]. In fact, uncertainty in the back-

ground signal may impact FRP calculation and the variability recorded when near-simul-

taneous FRP from MSG/SEVIRI and the Moderate Resolution Imaging Spectroradiometer 

(MODIS) on the Earth Observing System (EOS) platforms are compared [22]. However, 

too large windows may include background signal values that are unrepresentative of the 

fire pixel area. For example, some authors [23] consider a maximum window of ∼20 km, 

i.e., “a scale found empirically to be appropriate for preventing false alarms induced by an unrep-

resentative selection of background pixels.” Inappropriate background characterization may 

produce significant errors in FRP estimates, particularly in low spatial resolution sensors. 

Assuming a 10 K colder background, some authors [21] record FRP overestimation up to 

80% using data from the Imager on the Geostationary Operational Environmental Satellite 

(GOES). Vegetation cover differences between the fire pixel and surrounding areas may 

affect background characterization [21]. Moreover, background characterization depends 

on fire size and temperature: inaccuracy is more significant when fire size and tempera-

ture decrease [11,24]. 

FRP accurate estimates are critical since FRP temporal integration, i.e., the fire radia-

tive energy (FRE), is considered a valid proxy for atmospheric fire emissions. However, 

cloud/smoke interference is among the primary sources of error in biomass burning emis-

sion estimates [25]. The most drastic situation happens when fires are not detected, occur-

ring under thick clouds and/or smoke; therefore, the FRP value is not computed at all. 

Although it is impossible to avoid fires being undetected under such circumstances, it is 

possible to minimize the influence of clouds/smoke in the computation of the reference 

radiance when fires are still detected, even if under partly smoky/cloudy conditions. An 

attempt to use a different approach, as compared with the background value from the 

image of the event, is made by Engel et al. [19]. They propose as background radiance the 

99th percentile of MIR current-day data after filtering them to cloud and fire contamination 

based on information at the same time of day (current day and previous 28 days). How-

ever, prolonged cloud coverage over the area of interest could strongly affect such an ap-

proach. Although in a different application, the multitemporal method used by Wright 

and Pilger [26] to quantify the heat flux from an erupting volcano using the Wooster et al. 

[12] formulation is worth mentioning. Background radiance is selected for each volcano 

and month of the year using the lowest value of TIR radiance based on a long time series 

of MODVOLC hotspots after eliminating anomalously low (cloud-contaminated) values. 

This month-based scheme takes into account seasonal variations in the background signal, 

even if the radiance of a hotspot cannot be rigorously considered a non-lava-contaminated 

value. 

In this paper, we present an alternative approach, the Background Radiance Estima-

tor by a Multi-temporal Approach (BREMA), based on the Robust Satellite Technique 
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(RST [27,28]). It is proposed to characterize reference radiance for computing FRP, regard-

less of cloudiness during the event, fire extent, smoke/gas presence, proximity to water 

bodies, elevation and land cover of the fire area. It may be implemented independently 

from the specific fire detection algorithm and data used. However, the results presented 

in this paper were achieved using the Wooster et al. [12] formulation, MSG/SEVIRI data, 

the RST-FIRES [29] fire detection algorithm, and the -SEVIRI forward model [30] for at-

mospheric transmittance calculation.  

2. Materials and Methods 

2.1. Study Area 

Every year, Italy is greatly affected by fires. Indeed, it is in third place among the 

European Union countries in terms of burned area, according to the European Forest Fire 

Information System’s (EFFIS) estimates for 2006-2021 [31]. Southern regions, including 

Sicily, turned out to be the most affected areas, reporting more than 70% of the burned 

area in Italy in the period of 2008-2021 [32]. The most significant number of fires occurs in 

the summer season. For example, 84% of the burned area has been recorded from 2002 to 

2019, from June to September [33]. 

Analyses described in this paper refer to two different areas. A comparison in terms 

of background radiance was performed over the whole Italian territory, while analyses in 

terms of FRP and emissions were carried out within a smaller area of interest, which here-

after is indicated as AoI (Figure 1). 

 

Figure 1. Test areas: the whole Italian territory (grey area) and the smaller area of interest (AoI), i.e., 

the portion within the blue box (down-left: 12.95 E, 39.17 N; upper-right: 18.83 E, 42.06 N). 

2.2. Data 

2.2.1. Satellite Data 

The analyses were performed using MSG/SEVIRI geostationary satellite data ac-

quired at the EUMETCast reception station of the University of Basilicata. SEVIRI is 

equipped with twelve channels, from visible to thermal infrared, acquiring every 15 

minutes. Apart from the High Resolution Visible (HRV) channel with a sampling distance 

of 1 km at the nadir, all other SEVIRI channels are acquired at a 3 km spatial sampling 
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distance. SEVIRI is presently flying on two main MSG platforms: Meteosat-11 is the prime 

service, scanning the full disk, which includes Europe, the Atlantic Ocean, and Africa; 

Meteosat-9 guarantees the Indian Ocean Data Coverage (IODC) service. A third platform 

(Meteosat-10) accommodates SEVIRI for the rapid scanning service, which scans a third 

of Meteosat-11′s full disk every five minutes. 

We used SEVIRI Medium InfraRed (MIR, channel 4, centered at 3.9 m) for fire iden-

tification, Visible (VIS, channel 1, centered at 0.6 m) and Thermal InfraRed (TIR, channel 

9, centered at 10.8 m) for cloud detection. 

2.2.2. FRP-PIXEL Product 

The FRP-PIXEL product [20,24,34] was used for comparison, being based on 

MSG/SEVIRI data as well. It is produced by the Satellite Application Facility on Land Sur-

face Analysis (LSA SAF), which is part of the distributed European Organization for the 

Exploitation of Meteorological Satellites (EUMETSAT) application ground segment. 

Therefore, FRP-PIXEL may be directly received by the EUMETSAT delivery system 

(EUMETCast) or downloaded from the LSA SAF website [34]. Although the acquiring 

station at the University of Basilicata can receive such a product together with raw 

MSG/SEVIRI data, we preferred to download the product from the LSA SAF website to 

analyze all available files.  

FRP-PIXEL provides information on fire pixels (i.e., pixels associated with the pres-

ence of fires) detected every 15 minutes across the full Meteosat disk at the native spatial 

resolution of the SEVIRI sensor. Fire pixels are identified on the basis of the Fire Thermal 

Anomaly (FTA) active fire detection scheme [16,24]. Background radiance is computed 

considering that the closest pixels are the most similar to the “potential” fire in the absence 

of the fire. A variable window, from 5 × 5 to 15 × 15 pixels, is used to have sufficient sam-

ples to estimate background radiance. Within the window, the potential fire pixel and the 

eight nearest pixels are excluded because they could be affected by the fire radiance. More-

over, a set of conditions is applied to brightness temperature and radiance to exclude land 

pixels affected by other phenomena (e.g., cloudiness and point spread function effects). 

When the number of valid land pixels in the background window is less than the mini-

mum percentage (65%), the status flag of the potential fire is “NOBCK” (no background). 

The FRP-PIXEL product consists of two hdf5 files: “List Product” and “Quality Prod-

uct” [20]. The former contains fire radiative power values (“FRP” in MW) of fire pixels 

together with other information such as the latitude (“LATITUDE”) and longitude 

(“LONGITUDE”) of the fire pixel center, the column (“ABS_PIXEL”) and line 

(“ABS_LINE”) number in the SEVIRI native image, the total atmospheric transmittance 

(“PIXEL ATM TRANS”), the number of valid pixels in the background (“BW_NUMPIX”), 

the size of the background window (“BW_SIZE”), and the mean radiance of the back-

ground window (“RAD_BCK” in mW/(m2 sr cm-1)). The “Quality Product” file records 

the processing status of all pixels in the full SEVIRI imaging disk. 

2.2.3. GFED4.1s 

In order to evaluate the impact of different FRP computations on the estimate of fire 

emissions, the Global Fire Emissions Database (GFED, [35]) was used. It is well known 

that biomass-burning emission datasets broadly differ from one another [36], but up to 

now, GFED has been the most used by modeling communities [36]. In particular, we con-

sidered Version 4 [37] based both on standard GFED4 burned areas [38] and burned areas 

boosted by small fires [39], hence the “s” in the GFED4.s’s name. The database provides 

monthly dry matter (DM) emissions, daily fractions [40], and the contribution of different 

fire types (e.g., temperate forest fires and agricultural waste burning) to these emissions. 

They are used to compute trace gas and aerosol emissions using emission factors [41]. 

Data are distributed as annual hdf5 files [42] from 1997, containing information on the 

global scale at the spatial resolution of 0.25 degrees. 
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2.3. Methodology 

2.3.1. The RST Approach and RST-FIRES 

The Robust Satellite Technique (RST, [27,28]) is a change detection scheme based on 

a multi-temporal analysis of co-located satellite images. This approach identifies as 

“anomalous” the signal that deviates significantly from its behavior in the normal condi-

tions of the specific place and time of observation and relies on the Absolutely Local Index 

of Change of the Environment (ALICE): 

⨂V(x,y,t) =
V(x,y,t)-μ

V
(x,y)

σV(x,y)
 (1) 

where V(x,y,t) is the value of the V signal, measured at the place with coordinates (x,y) 

and at the time t. μV(x,y) and σV(x,y) are the temporal mean and standard deviation, re-

spectively, and represent the expected value and the normal variability of the signal 

V(x,y,t) itself. Henceforth, we will refer to them as “reference fields”. They are computed 

based on a pluriannual time series of co-located cloud-free satellite records, which are 

collected following specific homogeneity criteria (i.e., under the same observational con-

ditions such as same platform, time of day, month/season of the year) as the image to be 

processed. As underlined by independent studies (e.g., [43]), 80 images per month, se-

lected in different years, are sufficient to generate significant and converging statistics for 

computing RST reference fields. 

The RST approach has been applied and validated in different fields of application 

such as seismic (e.g., [44]), volcanic (e.g., [45]), and hydrological [46] risks, as well as in 

the context of cloudy-radiance detection [47], Saharan dust (e.g., [48]), gas flaring (e.g., 

[49]), seawater quality (e.g., [50]), and climate-driven vegetation stress [51] monitoring. 

Both polar (e.g., EOS/MODIS, The Advanced Very High Resolution Radiometer–

AVHRR–onboard the National Oceanic and Atmospheric Administration–NOAA, the En-

hanced Thematic Mapper Plus–ETM+–on Landsat7) and geostationary satellite (e.g., the 

Meteosat Visible and Infrared Imager–MVIRI–onboard the Meteosat First Generation–

MFG, the Japanese Advanced meteorological Imager–JAMI–on the Multifunctional 

Transport Satellites–MTSAT, MSG/SEVIRI) data have been used.  

When the RST approach is applied to fire detection and monitoring (RST-FIRES), 

thermal anomalies are detected using a “thermal” variable as V(x,y,t). It is usually repre-

sented by different combinations (in time and space domains) of brightness temperature 

measures in the MIR channel to highlight both starting fires and ongoing events of differ-

ent intensity and extent (see [29] for details). RST-FIRES has been applied to detect both 

winter (e.g., [52,53]) and summer fires (e.g., [29,54–57]), in different operational contexts, 

and recently proposed within an integrated satellite system for fire prioritization [58]. 

2.3.2. Fire Radiative Power Estimate 

To compute FRP, we used the formulation proposed in previous studies to charac-

terize active fires with temperatures between ~ 600 and 1500 K [12]. Indeed, such a formu-

lation has been applied to different satellite sensor data such as EOS/MODIS [14], Sentinel-

3/SLSTR [9], the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National 

Polar-orbiting Partnership (S-NPP) platform [13] and NOAA-20 [59], the Imager [15] and 

the Advanced Baseline Imager (ABI) [18] on GOES platforms, the Advanced Himawari 

Imager (AHI) on the Himawari platform [17,19], the FengYun-2 (FY-2) Stretched Visible 

and Infrared Spin Scan Radiometer (S-VISSR) [17], the MTSAT imager [17], and 

MSG/SEVIRI [16]. Therefore, FRP is so computed: 

𝐹𝑅𝑃 =
𝐴𝑝𝑖𝑥𝑒𝑙

𝜏𝑀𝐼𝑅

(
𝜎𝜀𝑓ℎ

𝑎𝜀𝑓,𝑀𝐼𝑅

) (𝐿𝑀𝐼𝑅 − 𝐿𝑏,𝑀𝐼𝑅) (2) 

In Eq. (2), Apixel is the pixel area (km2), τMIR is the atmospheric transmittance in the MIR 

band, σ is the Stefan–Boltzmann constant, εf is the hotspot emissivity over all wavelengths, 
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εf,MIR is the hotspot emissivity in the MIR band, LMIR is the MIR spectral radiance from the 

hot target, Lb,MIR is the background radiance, and a is a sensor-dependent constant [11,20]. 

Since the a constant is expressed in Wm−2sr−1µm−1K−4, a preliminary conversion of SEVIRI 

radiances (expressed in mWm-2sr-1(cm-1)-1) is needed. Moreover, by assuming εf =εf,MIR 

(gray body), the above-mentioned equation may be simplified [11]. 

In this work, atmospheric transmittances in MIR are calculated with the radiative 

transfer model σ-SEVIRI [30]. The methodology in the forward model is based on the one 

that has been developed for hyperspectral sensors such as the Infrared Atmospheric 

Sounder Interferometer (IASI [60]), i.e., σ-IASI [61–63]. This radiative transfer model has 

been validated with upwelling and downwelling radiances in the spectral range between 

100 to 3000 cm-1 (e.g., see [64–69]). σ-IASI is a pseudo-monochromatic radiative transfer 

model that takes into account both specular and Lambertian reflections. The code is based 

on an optical depths look-up table and an interpolation procedure. With instruments like 

SEVIRI, due to the coarser spectral resolution, it is possible to strongly reduce the dimen-

sionality of the data space [70] based on the assumption that any given SEVIRI radiance 

can be represented as a function of only a few monochromatic quantities or predictors. 

This assumption saves storage and computational time, making this methodology ready 

for real-time applications. 

To retrieve Lb,MIR, we used an RST-based approach (Background Radiance Estimator 

by a Multi-temporal Approach—BREMA) with V(x,y,t)LMIR(x,y,t). First, for each obser-

vation time t, the monthly temporal mean of the MIR radiance, LMIR(x,y,t), and corre-

sponding standard deviation, LMIR(x,y,t), are computed for each pixel of the scene. This 

computation is carried out by analyzing a long-term time series of cloud-free LMIR data, 

selected following the RST homogeneity criteria. Therefore, the background radiance 

Lb,MIR of the fire pixel centered at (xf,yf), at the time of observation tf, is represented by the 

mean value, LMIR(xf,yf,tf), which is historically computed for the specific pixel and time of 

observation. LMIR(xf,yf,tf) is the uncertainty associated with LMIR(xf,yf,tf), and it may be 

used to evaluate the uncertainty of the FRP estimate. Similarly to the case of reference 

fields used in other applications, LMIR(x,y,t) and LMIR(x,y,t) are computed once and for all, 

although periodic updates are recommended to take account of possible climate-change-

related effects. This approach allows us to calculate background radiance in any condi-

tions, avoiding the enlargement of the window around the fire pixel when the scene is 

particularly cloudy/smoky or in case of large fires. In this way, BREMA does not need to 

include radiances from areas that are very different (e.g., in elevation and land cover/use) 

from the fire pixel. Moreover, unlike the approach based on the event image, there is no 

risk of underestimating background radiance in case of low values (surrounding the fire 

pixel) due to specific conditions (e.g., escaped clouds). 

3. Results and Discussions 

On the basis of MSG/SEVIRI images from 2004 to 2019, RST-based radiance reference 

fields, LMIR(x,y,t), were computed for June, July, August, and September, for each SEVIRI 

observation time (96 time slots). During their computation, cloudy pixels were excluded 

using a combination of the One-channel Cloudy-radiance-detection Approach (OCA [47]) 

and the EUMETSAT CLoud Mask (CLM) product [71]. Specifically, only pixels that were 

cloud-free for OCA and CLM (or just for OCA, in case of lacking CLM product) were 

saved for the following processing phases. The iterative k clipping procedure described 

in [27], with k=2, was applied to exclude anomalously high (e.g., escaped high reflecting 

clouds and fires) or low (e.g., escaped cold clouds) MIR radiances.  

In Eq. (2), τMIR was retrieved by using the approach described in Section 2.3.2. In par-

ticular, for the AoI in Figure 1, MIR atmospheric transmittances were calculated at SEVIRI 

spatial resolution for the summer months (June to September) from 2012 to 2020. The cal-

culation was performed for the SEVIRI Vertical Zenith Angle (VZA) using the Operational 

Analysis of the European Centre for Middle Term Weather Forecast (ECMWF) as the at-

mospheric state vector. ECMWF operational analysis provides the vertical distribution of 
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temperature, water vapor, and the ozone every 6 hours (00, 06, 12, and 18 UTC). For CO2, 

a constant mixing ratio value of 405 ppmv was used. τMIR values were selected considering 

the first available information that immediately precedes the thermal anomaly acquisition 

time. Spatially, the automatic selection was made considering the SEVIRI pixel center of 

the thermal anomaly and the nearest available -SEVIRI transmittance value on the basis 

of the haversine formula. 

The RST-FIRES methodology was applied to identify thermal anomalies on 

MSG/SEVIRI images during nine days, from 2012 to 2020, in the summer fire season over 

the whole Italian territory: 27 June 2012, 30 July 2012, 10 July 2017, 13 July 2017, 16 August 

2017, 14 September 2019, 15 September 2019, 1 August 2020, 13 September 2020. FRP was 

computed for each detected thermal anomaly using Eq. (2) and the above-described 

BREMA scheme. Results were compared with the operational EUMETSAT product FRP-

PIXEL [24] based on MSG/SEVIRI as well. For this reason, no corrections/adjustments 

were necessary differently from evaluations that are carried out with different satellite 

data (e.g., [16,72]).  

A first comparison was carried out over the whole Italian territory in terms of back-

ground radiance (BREMA versus the FRP-PIXEL approach), considering space/time cor-

responding fire pixels detected by both RST-FIRES and FTA schemes. A total of 1078 fire 

pixels were compared, and a very good correlation (r2=0.95) was found (Figure 2).  

 

Figure 2. Background radiance comparison between BREMA and the FRP-PIXEL approach (radi-

ance unit: mW/(m2 sr cm-1)). 

However, the comparison highlighted that, due to the exclusion of cloudy/hot pixels 

surrounding the fire pixel, FRP-PIXEL must consider a lower number of valid pixels than 

the maximum achievable number by the selected window (e.g., Figure 3b) or a larger win-

dow when the condition of the minimum pixel number is not verified (e.g., Figure 3a). 
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Figure 3. Comparison between BREMA and FRP-PIXEL background radiances corresponding to a 

fire on 19 July 2017. MIR SEVIRI images at 12:15 (a), 12:30 (b), and 16:00 (c) GMT. 

Valid pixels corresponding or close to the minimum allowed by the selected window 

(e.g., 10 pixels if BW_SIZE is 5) is used in the case of huge fires (Figure 4), also to avoid 

background radiance underestimation, which may derive from low radiance values of 

surrounding pixels. This effect is due to the digital filter applied to SEVIRI data, which 

leads to imaging artifacts such as negative lobes of the point spread function (PSF) around 

the fire pixel [24,73]. A specific test is considered in the FRP-PIXEL background pixel iden-

tification to exclude low radiances due to this PSF-negative lobe effect [24]. Due to its con-

struction, BREMA is not affected by this effect. 

 

Figure 4. Comparison between BREMA and FRP-PIXEL background radiances corresponding to a 

large fire on 13 July 2017. Darker pixels represent imaging artifacts. (a) One (red square) of the fire 
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pixels together with the corresponding 5 × 5 pixel window (yellow square), overlaid with MIR chan-

nel, at 16:30 GMT. (b) Same fire, at 18:30 GMT, but another fire pixel together with the corresponding 

5 × 5 pixel window (yellow square), overlaid with the MIR channel. 

As mentioned before, in the case of cloudy/smoky conditions, the window size needs 

to be enlarged when background radiance is computed on the event image. Figure 5 

shows an example of the maximum FRP-PIXEL window size during a fire in Sicily (south-

ern Italy) on 1 August 2020. 

 

Figure 5. Background window size under cloudy conditions during a fire in Sicily on 1 August 2020. 

(a) One (red box) of the fire pixels together with the corresponding 5 × 5 pixel window (yellow box), 

and 15 ×15 pixel window (green box), overlaid with MIR channel; (b) Corresponding FRP-PIXEL 

quality flag map. Black boxes, from the smallest to the largest, correspond to the red, yellow, and 

green boxes of (a), respectively; the legend of the colors is reported on the right side. 

As already highlighted in Figure 3, Figure 4, and Figure 5, FRP-PIXEL background 

values are generally greater than BREMA radiances. Considering all 1078 spatially/tem-

porally coincident fire pixels, just in a few cases (4%) their percentage difference (i.e., 

BREMA minus FRP-PIXEL values, as compared with the FRP-PIXEL value) is negligible 

(< 1% in absolute value). In more than 90% of cases, the percentage difference is negative 

and even achieves -30%. Moreover, for all 1078 fire pixels the standard deviation that is 

associated with each fire pixel, LMIR(xf,yf,tf), is lower than the difference between the fire 

pixel radiance, LMIR(xf,yf,tf), and the BREMA reference, LMIR(xf,yf,tf). In particular, 

LMIR(xf,yf,tf) is less than 20% in 89% of cases (Figure 6). This highlights that the uncertainty 

associated with LMIR(xf,yf,tf) is quite low. 
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Figure 6. Histogram and cumulative frequency of the standard deviation associated with fire pix-

els, LMIR(xf,yf,tf), related to the difference between the fire pixel radiance, LMIR(xf,yf,tf), and the 

BREMA reference, LMIR(xf,yf,tf). Such a ratio is expressed in percentages. 

Figure 7 shows three examples of BREMA background radiances and relative uncer-

tainties corresponding to MSG/SEVIRI pixels affected by fires on 27 June 2012 (Figure 7a), 

13 July 2017 (Figure 7b), and 16 August 2017 (Figure 7c). The red line represents the MIR 

radiance over the fire pixel from 00:00 to 23:45 GMT of the fire day. The abrupt increases 

in radiance (evident in the first two cases) highlight the fire start and following fresh out-

breaks. For each SEVIRI time slot, the MIR radiance is shown together with the corre-

sponding BREMA background radiance (blue line) and relative uncertainty (vertical black 

bar), which are unique to the specific location and period of the year. Green diamonds 

indicate time slots when the FRP-PIXEL “Quality Product” flags the SEVIRI pixel as 

“NOBCK”, i.e., “it was not possible to define the background temperature of the candidate poten-

tial fire pixel” [20]. These examples highlight the BREMA capability to provide a back-

ground radiance during the whole fire duration, regardless of the presence of clouds 

around the fire pixel, even in the case of large fires, or when the events occur close to water 

bodies. By looking at the plots, it is worth noting that missed background radiance com-

putations from FRP-PIXEL occur often during the fire evolution, sometimes with a signif-

icant frequency (e.g., 13 times in Figure 7b), with an evident impact on the accuracy of 

total FRP (i.e., FRE) estimation.  
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Figure 7. Plots corresponding to three fires occurred (a) near the Basilicata Ionian coast on 

27/06/2012, (b) close to the eastern Sardinia coast on 13 July 2017, and (c) in the southern Lazio on 

16 August 2017. They show the MIR radiances of the fire day (red line), BREMA background radi-

ances (LMIR(x,y,t), blue line) with relative uncertainties (LMIR(x,y,t), vertical black bars), and the time 

slots with FRP-PIXEL invalid background window (green diamonds). 

A second analysis was carried out in terms of FRP over the selected AoI (Figure 1). 

The FRP-PIXEL product was compared on 223 spatially/temporally coincident fire pixels; 

a very good agreement (r2=0.96, Figure 8) was found. However, the FRP values of the EU-

METSAT product were higher than FRP RST-FIRES in 94% of fire pixels. This mainly re-

sults from the combination of two factors: transmittance value and background radiance 

computation. The FRP-PIXEL transmittance, linearly interpolated from a predefined look-

up table according to the actual water vapor concentration UH2O taken from ECMWF [24], 

is systematically lower than the transmittance retrieved by -SEVIRI. On the other hand, 

the FRP-PIXEL background radiance is influenced by the used window, size as well as the 

pixels excluded within such a window during the computation of mean radiance. Ex-



Fire 2023, 6, 48 12 of 19 
 

 

cluded pixels, in their turn, depend on the specific fire detection methodology (FTA algo-

rithm) used to identify fire pixels and the cloud detection algorithm (optimization of the 

MeteoFrance cloud product [24,74]) to identify cloudy pixels. Moreover, the proximity to 

water further affects the number of valid land pixels used to compute background radi-

ance. Larger differences (even > 360 MW, difference percentages up to 52% in absolute 

value) are registered by comparing the two products for high FRP values, and specifically 

due to the presence of saturated pixels. To such pixels, a default radiance value (4.08 

mWm−2sr−1(cm−1)−1) is assigned by the FTA algorithm [24], while RST-FIRES simply uses 

the MIR channel nominal maximum value (i.e., 3.55656 mWm−2sr−1(cm−1)−1). For all these 

reasons, although the comparison in terms of FRP between RST-FIRES and the EU-

METSAT operational product is reported, it may be of little significance. In order to high-

light actual differences just depending on the reduction in the number of pixels within the 

window and/or its possible enlargement due to smoke/clouds/water/hot pixels, a compar-

ison was made using RST-FIRES [29] for fire detection, -SEVIRI transmittance [30], and 

same values for all other parameters in Eq. (2) except background radiance value. An ap-

proach similar to FRP-PIXEL (hereafter, “FRP-PIXEL-like”) was then simulated, which 

differs from BREMA just for the background radiance computation. The FRP-PIXEL-like 

background radiance was calculated on the event image, enlarging the window size from 

5 × 5 to 15 × 15, depending on valid land pixels. FRP was computed if at least 65% of pixels 

were valid after excluding the central thermal anomaly, its eight first neighbor pixels, 

cloudy pixels, water pixels, and other RST-FIRES thermal anomalies within the window. 

 

Figure 8. FRP comparison, on 223 spatially/temporally coincident fire pixels detected by both FTA 

and RST-FIRES, between the FRP-PIXEL product and BREMA values [FRP unit: MW]. 

The comparison was made over the same area test (AoI), considering all RST-FIRES 

detections (1210). FRP values are highly correlated (r2=0.92, Figure 9). 
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Figure 9. FRP comparison, on 1201 fire pixels detected by RST-FIRES, between FRP values com-

puted considering two approaches (FRP-PIXEL-like and BREMA) [FRP unit: MW]. 

Differences become more evident when the daily sum of FRP over fires detected 

within the AoI is considered (Table 1). The comparison with the EUMETSAT operational 

algorithm is reported as well, even if the differences with the FRP products (BREMA and 

FRP-PIXEL-like) based on the RST-FIRES algorithm are due to the above-discussed issues. 

Percentage increase (Column 5) of the FRP calculated with the BREMA scheme (Column 

2) with respect to values computed using the FRP-PIXEL-like approach (Column 3) 

largely varies, from 16% (15 September 2019) to 148% (13 September 2020). Considering 

all days together, the percentage increase continues to be remarkable (44%). This result 

would indicate a general underestimation of FRP when the background is computed us-

ing the event image.  

Table 1. Daily FRP sum over all fires detected by RST-FIRES and FTA within the AoI. Background 

radiances are computed by using BREMA and FRP-PIXEL-like approach on fires detected by the 

RST-FIRES algorithm and by using the FRP-PIXEL approach on fires detected by FTA. 

FRP temporal sum (even if always lower due to possible observational gaps) is pro-

portional to FRE and, consequently, to emissions [e.g., 72]. Although out of the scope of 

the paper, results in Table 1 were compared against CO2 emission estimates to provide a 

preliminary evaluation of BREMA’s possible impact. The analysis was carried out using 

the GFED4s database. It was selected because, among the existing biomass burning emis-

sion datasets, it “has hitherto been the most widely used by modeling communities”, according 

to [36]. Moreover, although GFED4s partially depends on MODIS active fire products to 

derive burned areas for small fires [36], it is a bottom-up approach (i.e., based on burned 

area) and, therefore, less dependent on FRP as compared with top-down approaches (i.e., 

Fire detection algorithm RST-FIRES RST-FIRES FTA   

Background computation approach BREMA FRP-PIXEL-like FRP-PIXEL  

 ∑FRP [MW] [A] ∑FRP [MW] [B] ∑FRP [MW]  Percentage increase [C=(A-B)/B] 

Date 

27 June 2012 2814.26 1354.42 1594.60 108% 

30 July 2012 3003.19 2048.99 5571.20 47% 

10 July 2017 12577.95 8299.10 13317.30 52% 

13 July 2017 10118.78 7720.12 19990.00 31% 

16 August 2017 10476.02 8450.02 11173.50 24% 

14 September 2019 1383.10 1079.17 393.40 28% 

15 September 2019 2851.21 2462.25 611.20 16% 

1 August 2020 771.06 528.67 199.70 46% 

13 September 2020 5162.53 2077.72 555.10 148% 

All days 49158.10 34020.47 53406.00 44% 
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derived from FRP values), which are at the base of other fire emission databases such as 

GFAS [5] and QFED [75]. This makes GFED4s emissions particularly suitable to be used 

in comparison with the results of the BREMA in the framework of a top-down approach. 

Daily BREMA FRP sums (Figure 10) are in good agreement with GFED4 CO2 emis-

sions (r2=0.61) and better correlated than values based on the FRP-PIXEL-like approach 

(r2=0.53), which (as already shown in Table 1) seems to systematically underestimate FRP 

sums due to the “contextual” scheme used for background radiance estimation.  

 

Figure 10. Daily FRP sum vs. daily GFED CO2 emissions. 

4. Conclusions 

In this paper, we presented an innovative approach, named BREMA, to compute the 

reference radiance to be used for estimating FRP as an alternative to the background value 

obtained by a “contextual” approach, i.e., from a spatial window around the fire pixel on 

the same image of the event. BREMA is based on the RST scheme [27,28], which is here 

used to completely characterize each satellite image pixel in terms of MIR radiance. By 

construction, the RST approach allows us to take into account the elevation and seasonal 

land cover of the fire area without using any additional external data. The pixel-based 

radiance characterization allows us to have a reference radiance for each pixel without 

taking care of surrounding pixels, even when the scene is particularly cloudy/smoky, in 

case of large fires or when events occur close to the sea or lakes. Moreover, we do not risk 

underestimating background radiance, as the approach based on the event image does, in 

case of low anomalous values due to specific conditions (e.g., escaped clouds) or sensor 

data (e.g., negative lobes around hot pixels over SEVIRI images). In addition, the proposed 

approach permits us to avoid enlarging the background window and including radiances 

from areas that are very different from (and thus, not representative of) the fire pixel. 

Moreover, the proposed approach represents a significant simplification in FRP compu-

tation, as the background radiance is preliminarily retrieved and does not need to be cal-

culated each time a new FRP value is required. A possible limitation of the proposed 

methodology could be related to very rare and uncommon meteorological conditions, 

making the multitemporal background radiance not fully representative of the fire image 

characteristics. However, the periodic and systematic update of RST-based reference 

fields, including the most recent (often warmest) years, may take into account these pos-

sible climate change effects.  

We presented results using MSG/SEVIRI data over the whole Italian territory and a 

smaller area in southern Italy (AoI, Figure 1), analyzing thermal anomalies detected by 

RST-FIRES and FTA (by means of the operational FRP-PIXEL product) during nine days, 

from 2012 to 2020, from June to September. 
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The comparison, in terms of background radiance, over the whole Italian territory, 

between the proposed approach and that used in the EUMETSAT FRP-PIXEL product 

highlighted a high correlation (r2=0.95). The comparison in terms of FRP values was pre-

sented over the AoI, and newly a strong correlation was found (r2=0.96). However, differ-

ences in the parameters used in Eq. 2 (e.g., transmittance and saturated pixel radiance), in 

addition to the dissimilar background radiance computation, do not allow the extraction 

of specific information from FRP value comparison. For these reasons, the actual differ-

ence in FRP values just due to the different background radiance computation was high-

lighted using RST-FIRES (as a fire detection method [29]); transmittance values computed 

with -SEVIRI [30], BREMA and an FRP-PIXEL-like approach for background radiance 

estimate. Notwithstanding the high correlation (r2=0.92) between FRP values derived from 

the two different approaches, large percentage increases (up to 148%) were registered con-

sidering the FRP daily sum for each analyzed day. Even considering all nine analyzed 

days together, we recorded an increase of 44% when BREMA reference radiance, in place 

of the FRP-PIXEL-like approach, was used. This would indicate an underestimation of 

FRP in the case of background radiance computed by a contextual method like FRP-

PIXEL. This underestimation can affect fire emission estimates based on FRE, as shown 

by comparing the daily sum of FRP based on BREMA and the FRP-PIXEL-like approach 

with corresponding GFED4s daily CO2 emission estimates.  

Finally, some considerations should be made about the portability of the proposed 

approach. It was tested considering the Wooster et al. [12] formulation since it is more 

widely used, although it may be exploited, for example, in the Kaufman et al. [3] formu-

lation. In the latter case, MIR brightness temperature, rather than radiance, should be spa-

tially and temporally characterized following RST rules [27,28]. Moreover, we presented 

results based on MSG/SEVIRI geostationary data. Still, the approach may be easily applied 

to data from polar satellites, thanks to the intrinsic (and already tested) exportability of 

the RST methodology regarding different sensors. This could allow us to use the same 

approach for FRP estimates and then use one of the proposed methodologies to integrate 

polar-orbiting and geostationary-derived FRP (e.g., [72]). Such a fusion could indeed be 

important in improving estimates of fire emissions [25], in addition to an FRP computa-

tion that is less dependent on clouds, smoke, and fire extent.  
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