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Abstract: Using a very recently proposed theoretical model, electron transfer rates in solution are
calculated from first principles for different donor-acceptor pairs in tetrahydrofuran. We show that
this approach, which integrates tunneling effects into a classical treatment of solvent motion, is able to
provide reliable rate constants and their temperature dependence, even in the case of highly exergonic
reactions, where Marcus’ theory usually fails.
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1. Introduction

Electron transfer (ET) reactions are at foundation of modern chemistry, being exploited
in numerous applications (e.g., photovoltaics, biosensing, molecular electronics), and are
still the subject of active and vibrant research. The seminal work of Marcus paved the way
to the development of this vast field [1–3]. Marcus’ theory relates the kinetics of ET process
to two well-defined physical quantities: (i) the ∆G0 of the whole ET reaction and (ii) the
reorganization energy associated with the motions of both solvent λsolv and reactants λint.
While this elegant theory is still successfully used to address ET phenomena, as for instance
the rational design of organic molecules to be used in technological devices, its classical
treatment of nuclear quantum motion does not allow to explore regimes in which tunneling
is crucial [4–6], and drammatically fails in reproducing ET rates of strongly exothermic
reactions [7].

Alternative theories have been formulated [8], and several papers have focused on
implementing quantum effects arising from high frequency vibrational modes into Marcus’
theory [9–16], but only recently the task of including the whole heat bath provided by
intramolecular coordinates of the redox pair—which represented the real breakthrough
for understanding the unusual temperature dependence of an early ET step occurring in
bacterial photosynthetic reaction center [17–19]—has been undertaken [20]. That objective
has been achieved by introducing a multistep kinetic model of ET reactions, described
in refs. [21,22], in which the motion of the solvent is separated from that of the redox
pair [23,24]. That separation of motion makes it possible the employment of an effective
treatment of tunnelling effects, which incorporates the whole set of nuclear coordinates of
the redox pair and takes into account changes of both the equilibrium nuclear positions
and of vibrational frequencies upon electronic transition, allowing to include effects due to
normal mode mixing too [17,25,26]. The approach has been tested on different D-A pairs in
both polar and non-polar solvents: it proved to provide ET rates in excellent agreement
with measurements [27,28] and to reproduce the expected temperature dependence [20].
The achievement of such a satisfactory result was however subdued to the use of solvent
reorganization energy as extrapolated from available experimental data. Nevertheless,
to make the model predictive, an ab initio determination of such a quantity would be
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highly desirable. The evaluation of the solvent reorganization energy based on molecular
dynamics with an explicit treatment of solvent molecules [29–32] is certainly a possible
choice, but it might be unaffordable for high-throughput screening procedures. Therefore,
the use of implicit solvent methods would be desirable, provided that their accuracy is
properly tested. Herein, we show that the simple non-equilibrium Marcus’ approach for the
evaluation of solvent reorganization energy is extremely effective and leads to calculated
ET rates which are in excellent agreement with the observed ones, yielding also the correct
temperature dependence.

2. Theory
2.1. The Kinetic Model

For a given donor-acceptor system, the multistep mechanism reads as Scheme 1:

D−A
kact

kdact
{D−A}∗

kET

kET
{DA−}∗

kdact

kact
DA−

Scheme 1. The multistep kinetic mechanism of ET.

Where D−A and DA− represent the initial and the final states, respectively, and
{D−A}∗ and {DA−}∗ indicate the ensembles of transient structures in vibronic resonance
with each other.

First, we consider the activation step bringing the donor and the acceptor species into
electronic degeneracy, which is mandatory when initial and final states are not in vibronic
resonance at frozen solvent coordinates. This may typically occur in polar solvents for
which λsolv > ∆G0. The rate constant of this step is hence estimated assuming the sole
involvement of the solvent coordinate and a typical Arrhenius dependence on temperature:

kact = k0 exp
(
−∆G#

kBT

)
(1)

where k0 is a transmission coefficient and ∆G# is the standard activation free energy, i.e.
the free energy difference of {D−A}∗ with respect to D−A. Applying Marcus’ reasoning to
frozen intramolecular coordinates [3], ∆G# is defined as [1,3]:

∆G# =
(∆G0

f i + λ)2

4λsolv
. (2)

In Equation (2), ∆G0
f i is the free energy difference between initial and final states,

λ is the total reorganization energy, composed by the sum of the solvent and reactants
contributions. These in turn may be splitted in the individual contributions pertaining to
the donor and the acceptor, e.g., for the solvent λsolv = λsolv(D) + λsolv(A). Following
Ref. [20], k0 appearing in Equation (1), is defined as:

k0 = kdact
gact

geq
, (3)

where gact and geq are the total degeneracies of the activated and the equilibrium states and
kdact is the rate constant for deactivation, available from experiments, in consistence with
the principle of microscopic reversibility [33].

The second step is the elementary ET process in resonant conditions, for which the
rate can be calculated within the framework of the Fermi Golden Rule, considering a
non-radiative transition between two electronic states |i〉 and | f 〉:

ki→ f =
2π

h̄
F(∆E f i, T), (4)
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where F(∆E f i, T) is:

F(∆E f i, T) = | 〈 f | H′ |i〉 |2 ∑
v′

∑
v”

wv′(T)|
〈
v”
∣∣v′〉|2δ(Eiv′ − E f v” − ∆E f i)

= |Vf i|2ρ(∆E f i, T)
(5)

whereH′ is the electronic coupling element for ET reaction, assumed to be independent of
the vibrational coordinates, v′ and v′ ′ indicate the vectors of the vibrational quantum states
of the |i〉 and | f 〉, respectively, Eiv′ and E f v′′ are the vibronic energies of |iv′〉 and | f v”〉,
respectively, and wv′ is the equilibrium (Boltzmann) population of |iv′〉. Overall, F(∆E f i, T)
consists of an electronic coupling term Vf i and of ρ(∆E f i, T), the Franck-Condon weighted
density of states of the elementary |i〉 → | f 〉 transition at the ∆E of the reaction, averaged
over a thermal equilibrium distribution of initial vibrational states. For weakly interacting
molecules, the vibrational motions of each molecular site upon electron transfer can be
assumed to be independent from each other. It follows that:

ρ(∆E, T) =
∫ ∞

−∞
dED(E)A(∆E− E). (6)

where D(E) andA(E) are the spectral distributions of the donor photoelectronic and of the
acceptor electron attachment spectra [34,35], which can be measured [36–38] and reliably
estimated from ab initio calculations [17,35,39–45].

From the description of the kinetic scheme, it is clear that the determination of the
solvent reorganization energy is apical in the model. In fact, while ET reactions are exother-
mic when both solvent (Q) and molecular (~q) nuclear coordinates are in their equilibrium
conditions, we here assume the elementary ET step to occur at fixed Q. In particular,
we define:

∆G0
e f f = ∆G0

f i + λsolv, (7)

and consider two cases: (i) ∆G0
e f f < 0, for which ET occurs at Q = Q0i, the equilibrium

solvent coordinate of the initial state, without thus requiring any solvent activation; (ii)
∆G0

e f f > 0, for which ET occurs at Q = Qc, the point at which the potential energy surfaces
of the initial and final states cross each other when intramolecular coordinates are kept
fixed at their initial equilibrium value. From Equation (7), it follows that λsolv determines
the occurrence and the rate of the activation step. Furthermore, even in cases when ET
is exothermic and activation is not required, i.e. the kinetic model is not applied, λsolv
still influences the ET rate, inasmuch as the Franck-Condon weighted density of states is
evaluated from Equation (4) at ∆E f i = ∆G0

e f f , which in turns depend on λsolv, Equation (7).

2.2. Solvent Reorganization Energy

In a previous study [20], λsolv in tetrahydrofuran (THF) has been directly estimated
from the experimental rate constants of the extremely exothermic BIP-BQO or BIP-NQO
pairs, see Figure 1, and from the electronic coupling elements reported in ref. [29]. How-
ever, this approach provides values of λsolv independent of the chemical nature of the
acceptor, an approximation which works well for the A/D pairs of Figure 1 [29], but likely
impracticable in other cases, and, more importantly, restricts the feasibility of the model to
the study of cases in which λsolv can be extrapolated from measurements, thus limiting its
predictive power.
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Figure 1. Chemical structures of the donor and the acceptors considered in this study. BIP =
1,1-biphenyl, BQO = 2-benzoquinonyl, NAP = 2-naphthyl, NQO = 2-naphtoquinonyl, PHN = 9-
phenanthryl, PYE = 1-pyrenyl.

Here, we calculate λsolv in THF using Marcus’ non-equilibrium approach, according
to which [1,46]:

λsolv = (ne)2
( 1

2rA
+

1
2rD
− 1

R

)( 1
ε∞
− 1

ε0

)
, (8)

where n is the number of exchanged electrons, e is the electron charge, rA and rD are
the radii of cavity accommodating the donor and acceptor, respectively, R the inter-
molecular distance, ε∞ and ε0 the high-frequency and static dielectric constants of the
solvent, respectively.

Since solvent reorganization energies are sensitive to the chosen radii of the dielectric
cavities, only for comparison purposes, we have also employed a nonlocal response func-
tion theory, formulated in the inverted-space representation of the electrostatic fields, in
which the cavity is determined from the atomic radii of A/D pair and solvent [47]. Within
this theory, the solvent reorganization is given by two contributions [47]:

λsolv = λp + λd. (9)

where λp is the usual orientational reorganization energy, associated with the energetic
strength of anisotropic fluctuations of the solvent polarization, and λd the density reor-
ganization energy, which describes how the translational motion of the solvent alters its
response by locally changing solvent density around the solute. We will not consider here
the latter effect, which is not included in Marcus’ theory.

3. Computational Details

Equilibrium geometries, normal coordinates and vibrational frequencies of the neutral
and anionic species are calculated at the density functional theory (DFT) using Gaussian
16 [48]. We employ the B3LYP (Becke [49], 3-parameter [50], Lee–Yang–Parr) [51] functional
with the 6-31+G(d,p) basis set. In all the calculations, solvent effect was included by
using the continuum polarizable medium (PCM) approach [52,53]. To determine λsolv
in Equation (8), the radii of cavities have been obtained from the computed PCM cavity
volumes, assuming spherical shapes, whereas R has been evaluated as the sum of rA,
rD and the androstane spacer length, the latter taken from geometry optimization of the
whole molecules.

Solvent reorganization energies from nonlocal response theory are evaluated employ-
ing the freely available SOLVMOL package [54]; for each redox state, ESP charges evaluated
by Gaussian 16 at the same level of the theory cited above have been employed [55].
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Franck-Condon weighted density of states (FCWDs) are calculated using a devel-
opment version of the MolFC package, available on request. The internal (curvilinear)
representation of normal coordinates have been adopted in all the cases [56]. The electronic
coupling elements reported in ref. [29] have been employed throughout. When activation
step is not necessary, ET rates are calculated by Equation (4) with the FCWD evaluated at
∆G0

e f f . In the other case, the kinetic scheme is used and the set of coupled ordinary differen-
tial equations (ODEs) is solved by using the Dormand-Prince method of order 4, a member
of the Runge-Kutta family of ODE solvers, as implemented in MATLAB package [57] with
kact from Equation (1) and kET from Equation (4) but with the FCWD evaluated at ∆G = 0.

4. Results and Discussion

Calculated values of ∆G0
f is and λsolvs for each A/D pair in THF are listed in Table 1,

along with values of ∆G#s, the standard activation free energy (c.f. Equation (2)), and the
calculated and the observed rate constants. Solvent reorganization energies calculated by
Marcus’ solvent treatment and by nonlocal response theory function are very similar each
other, when only solvent polarization effects are considered; we have thus considered only
the former ones for computing ET rates. Herein, assuming that the entropy of reaction due
to intramolecular vibrations is negligible, we consider the calculated energy differences
as free energies. The extremely exergonic ET reactions involving BIP-BQO and BIP-NQO
pairs do not require an activation step because they retain exergonicity also at frozen
solvent coordinates (see Table 1), so that their rate constants can be directly evaluated by
Equations (4)–(6), using ρ(∆Ge f f , T). Vice versa, all the other A/D pairs require a solvent
activation step, so that their rates have been obtained by numerically solving the systems
of ordinary differential equations associated to the multistep kinetic ET mechanism, c.f.
Scheme 1. The rate of the solvent response to a nonequilibrium charge distribution of the
solute (kdact) has been taken from time dependent spectroscopic measurements (Stokes
shifts) [58], and the transmission coefficient k0 has been set to 5×1012 s−1 for all species, as
in previous work [20]. Table 1 shows that for all systems considered here the calculated
rates differ from the experimental ones by a factor 2–3, the order of magnitude being well
reproduced in all the cases.

Table 1. Calculated equilibrium energy changes (∆G0
f i), reorganization energies (λsolv), activation

free energy (∆G#), and rate constants (k) for ET of each BIP-bridge-A pair. All energies are in eV.
Experimental rate constants from ref. [27].

λsolv k(s−1)
Acceptor ∆G0

f i Equation (8) SolvMol ∆G# Theo Exp

BQO −2.4 0.78 0.71 - 1.2 × 108 (2.5 ± 0.3) × 108

NAP −0.03 0.74 0.71 0.2 4.4 × 106 (1.5 ± 0.5) × 106

NQO −2.1 0.73 0.64 - 6.7 × 108 (3.8 ± 1) × 108

PHN −0.1 0.71 0.68 0.2 1.3 × 107 (1.2 ± 0.2) × 107

PYE −0.5 0.66 0.68 0.01 4.0 × 109 (1.5 ± 0.5) × 109

In Figure 2, the temperature dependence of ET for two acceptors, BQO and NAP,
the only two for which experimental results are available [59], is reported. ET from BIP
to NAP needs activation by solvent motion and therefore the T dependence of ET rate
constant is dominated by the Arrenhius exponential factor, and thus ET rates change by
over 4 orders of magnitude. Conversely, ET from BIP to BQO occurs by tunneling and it
is almost temperature independent. In this case, we have considered that the dielectric
constant of THF exhibits a significant temperature dependence, which, in the temperature
range−78 to 30 ◦C, can be expressed by the following relation: ε(T) = −1.50+ 2650/T [60].
It is interesting to remark as ε(T) increases with T, so does solvent reorganization energy.
However, since ET rates occurs by tunneling, the larger values of λsolv do not produce an
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exponentially decrease of the rate. In fact, we observed an increase of the Franck-Condon
weighted density of states with a mild effect on ET rates, c.f. Figure 2.

Figure 2. Experimental (red squares) and calculated (blu triangles) temperature dependence of rate
constat for BIP-NAP (panel (a)) and BIP-BQO (panel (b)) pairs in THF.

5. Conclusions

In our approach, we have assumed that elementary ET reactions always occurs by
tunneling and that solvent motion modulates the energy condition under which this
phenomenon occurs. Herein, at variance with a previous study, we calculate solvent
reorganization energy using Marcus’ original expression, showing that it yields satisfying
results for the systems considered here. That is a significant step toward the development of
a predictive first-principles approach for the calculation of ET rates, which ultimately tends
to avoid the long and laborious calculations of molecular dynamics, routinely used for
determining ET rates in solution. However, the approach still makes use of an adjustable
parameter to be set from experimental data, i.e. the transmission coefficient k0, and this
parameter has to be related to solvent properties; work is in progress along this line.
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